mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-21 22:43:23 +00:00
进程管理模块重构完成 (#380)
* 添加新版pcb的数据结构 (#273) * 将pcb中的内容分类,分别加锁 (#305) * 进程管理重构:完成fork的主体逻辑 (#309) 1.完成fork的主体逻辑 2.将文件系统接到新的pcb上 3.经过思考,暂时弃用signal机制,待进程管理重构完成后,重写signal机制.原因是原本的signal机制太烂了 * chdir getcwd pid pgid ppid (#310) --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * 删除旧的fork以及signal的代码,并调整fork/vfork/execve系统调用 (#325) 1.删除旧的fork 2.删除signal相关代码,等进程管理重构结束之后,再重新写. 3.调整了fork/vfork/execve系统调用 * 实现切换进程的代码 (#331) * 实现切换进程的代码 * Patch modify preempt (#332) * 修改设置preempt的代码 * 删除rust的list和refcount * 为每个核心初始化idle进程 (#333) * 为每个核心初始化idle进程 * 完成了新的内核线程机制 (#335) * 调度器的pcb替换为新的Arc<ProcessControlBlock>,把调度器队列锁从 RwSpinLock 替换为了 SpinLock (#336) * 把调度器的pcb替换为新的Arc<ProcessControlBlock> * 把调度器队列锁从 RwSpinLock 替换为了 SpinLock ,修改了签名以通过编译 * 修正一些双重加锁、细节问题 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * github workflow自动检查代码是否格式化 * cache toolchain yml * 调整rust版本的waitqueue中的pcb为新版的pcb (#343) * 解决设置rust workspace带来的“工具链不一致”的问题 (#344) * 解决设置rust workspace带来的“工具链不一致”的问题 更改workflow * 调整pcb的sched_info和rwlock,以避免调度器死锁问题 (#341) * 调整pcb的sched_info和rwlock,以避免调度器死锁问题 * 修改为在 WriterGuard 中维护 Irq_guard * 修正了 write_irqsave方法 * 优化了代码 * 把 set state 操作从 wakup 移动到 sched_enqueue 中 * 修正为在 wakeup 中设置 running ,以保留 set_state 的私有性 * 移除了 process_wakeup * 实现进程退出的逻辑 (#340) 实现进程退出的逻辑 * 标志进程sleep * 修复wakeup的问题 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * rust 重构 completion (#350) * 完成了completion的基本结构,待完善上级调用 * 用SpinLock保护结构体并发安全 * 修改原子变量为u32,修复符号错误 * irq guard * 修改为具有内部可变性的结构体 * temp fix * 修复了由于进程持有自旋锁导致的不被调度的问题 * 对 complete 系列方法上锁,保护 done 数据并发安全 * 移除了未使用的依赖 * 重写显示刷新驱动 (#363) * 重构显示刷新驱动 * Patch refactor process management (#366) * 维护进程树 * 维护进程树 * 更改代码结构 * 新建进程时,设置cwd * 调整adopt childern函数,降低开销 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * waitqueue兼容C部分 (#351) * PATH * safe init * waitqueue兼容C部分 * waitqueue兼容C部分 * 删除semaphore.c,在ps2_keyboard中使用waitqueue * 删除semaphore.c,在ps2_keyboard中使用waitqueue * current_pcb的C兼容 * current_pcb的C兼容 * current_pcb的C兼容 * fmt * current_pcb的兼容 * 针对修改 * 调整代码 * fmt * 删除pcb的set flags * 更改函数名 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * merge master * Patch debug process management refactor (#372) * 能够调通,执行完textui_init * 能跑到initial kernel thread * fmt * 能够正常初始化所有服务(尚未能切换到用户程序) * 删除部分无用的extern * 存在问题:ap处理器启动后,bsp的smp_init函数return之后就出错了,怀疑是栈损坏 * 解决smp启动由于未换栈导致的内存访问错误 * debug * 1 * 1 * lock no preempt * 调通 * 优化代码,删除一些调试日志 * fix * 使用rust重写wait4 (#377) * 维护进程树 * 维护进程树 * 更改代码结构 * 新建进程时,设置cwd * 调整adopt childern函数,降低开销 * wait4 * 删除c_sys_wait4 * 使用userbuffer保护裸指针 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * 消除warning * 1. 修正未设置cpu executing的问题 * 修正kthread机制可能存在的内存泄露问题 * 删除pcb文档 * 删除C的tss struct --------- Co-authored-by: Bullet <93781792+GP-Bullet@users.noreply.github.com> Co-authored-by: Chiichen <39649411+Chiichen@users.noreply.github.com> Co-authored-by: hanjiezhou <zhouhanjie@dragonos.org> Co-authored-by: GnoCiYeH <118462160+GnoCiYeH@users.noreply.github.com> Co-authored-by: houmkh <1119644616@qq.com>
This commit is contained in:
@ -1,3 +1,4 @@
|
||||
#![allow(dead_code)]
|
||||
use core::arch::x86_64::_popcnt64;
|
||||
|
||||
/// @brief ffz - 寻找u64中的第一个0所在的位(从第0位开始寻找)
|
||||
|
@ -1,12 +0,0 @@
|
||||
// 该函数在cmpxchg.c中实现
|
||||
extern "C" {
|
||||
fn __try_cmpxchg_q(ptr: *mut u64, old_ptr: *mut u64, new_ptr: *mut u64) -> bool;
|
||||
}
|
||||
|
||||
/// @brief 封装lock cmpxchg指令
|
||||
/// 由于Rust实现这部分的内联汇编比较麻烦(实在想不出办法),因此使用C的实现。
|
||||
#[inline]
|
||||
pub unsafe fn try_cmpxchg_q(ptr: *mut u64, old_ptr: *mut u64, new_ptr: *mut u64) -> bool {
|
||||
let retval = __try_cmpxchg_q(ptr, old_ptr, new_ptr);
|
||||
return retval;
|
||||
}
|
@ -1,19 +0,0 @@
|
||||
use crate::include::bindings::bindings::process_control_block;
|
||||
|
||||
use core::{arch::asm, sync::atomic::compiler_fence};
|
||||
|
||||
/// @brief 获取指向当前进程的pcb的可变引用
|
||||
#[inline]
|
||||
pub fn current_pcb() -> &'static mut process_control_block {
|
||||
let ret: Option<&mut process_control_block>;
|
||||
|
||||
unsafe {
|
||||
let mut tmp: u64 = !(32767u64);
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
asm!("and {0}, rsp", inout(reg)(tmp),);
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
ret = (tmp as *mut process_control_block).as_mut();
|
||||
}
|
||||
|
||||
ret.unwrap()
|
||||
}
|
@ -1,6 +1,2 @@
|
||||
pub mod irqflags;
|
||||
#[macro_use]
|
||||
pub mod current;
|
||||
pub mod bitops;
|
||||
pub mod cmpxchg;
|
||||
pub mod ptrace;
|
||||
pub mod irqflags;
|
||||
|
@ -1,12 +0,0 @@
|
||||
#![allow(dead_code)]
|
||||
use crate::include::bindings::bindings::pt_regs;
|
||||
|
||||
/// @brief 判断给定的栈帧是否来自用户态
|
||||
/// 判断方法为:根据代码段选择子是否具有ring3的访问权限(低2bit均为1)
|
||||
pub fn user_mode(regs: *const pt_regs) -> bool {
|
||||
if (unsafe { (*regs).cs } & 0x3) != 0 {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
@ -13,13 +13,13 @@ void __arch_spin_lock(spinlock_t *lock)
|
||||
"jmp 1b \n\t" // 尝试加锁
|
||||
"3:"
|
||||
: "=m"(lock->lock)::"memory");
|
||||
preempt_disable();
|
||||
rs_preempt_disable();
|
||||
}
|
||||
|
||||
void __arch_spin_unlock(spinlock_t *lock)
|
||||
{
|
||||
preempt_enable();
|
||||
__asm__ __volatile__("movb $1, %0 \n\t" : "=m"(lock->lock)::"memory");
|
||||
rs_preempt_enable();
|
||||
}
|
||||
|
||||
void __arch_spin_lock_no_preempt(spinlock_t *lock)
|
||||
@ -44,13 +44,13 @@ void __arch_spin_unlock_no_preempt(spinlock_t *lock)
|
||||
long __arch_spin_trylock(spinlock_t *lock)
|
||||
{
|
||||
uint64_t tmp_val = 0;
|
||||
preempt_disable();
|
||||
rs_preempt_disable();
|
||||
// 交换tmp_val和lock的值,若tmp_val==1则证明加锁成功
|
||||
asm volatile("lock xchg %%bx, %1 \n\t" // 确保只有1个进程能得到锁
|
||||
: "=q"(tmp_val), "=m"(lock->lock)
|
||||
: "b"(0)
|
||||
: "memory");
|
||||
if (!tmp_val)
|
||||
preempt_enable();
|
||||
rs_preempt_enable();
|
||||
return tmp_val;
|
||||
}
|
||||
}
|
||||
|
@ -1,31 +0,0 @@
|
||||
use crate::include::bindings::bindings::{process_control_block, switch_proc};
|
||||
|
||||
use core::sync::atomic::compiler_fence;
|
||||
|
||||
use super::fpu::{fp_state_restore, fp_state_save};
|
||||
|
||||
/// @brief 切换进程的上下文(没有切换页表的动作)
|
||||
///
|
||||
/// @param next 下一个进程的pcb
|
||||
/// @param trap_frame 中断上下文的栈帧
|
||||
#[inline(always)]
|
||||
pub fn switch_process(
|
||||
prev: &'static mut process_control_block,
|
||||
next: &'static mut process_control_block,
|
||||
) {
|
||||
fp_state_save(prev);
|
||||
fp_state_restore(next);
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
let new_address_space = next.address_space().unwrap_or_else(|| {
|
||||
panic!(
|
||||
"switch_process: next process:{} address space is null",
|
||||
next.pid
|
||||
)
|
||||
});
|
||||
unsafe {
|
||||
// 加载页表
|
||||
new_address_space.read().user_mapper.utable.make_current();
|
||||
switch_proc(prev, next);
|
||||
}
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
}
|
@ -1,5 +1,3 @@
|
||||
use core::arch::asm;
|
||||
|
||||
use x86::cpuid::{cpuid, CpuIdResult};
|
||||
|
||||
/// @brief 获取当前cpu的apic id
|
||||
@ -10,13 +8,6 @@ pub fn current_cpu_id() -> u32 {
|
||||
return cpu_id;
|
||||
}
|
||||
|
||||
/// @brief 通过pause指令,让cpu休息一会儿。降低空转功耗
|
||||
pub fn cpu_relax() {
|
||||
unsafe {
|
||||
asm!("pause");
|
||||
}
|
||||
}
|
||||
|
||||
/// 重置cpu
|
||||
pub fn cpu_reset() -> ! {
|
||||
// 重启计算机
|
||||
|
@ -1,17 +1,4 @@
|
||||
use core::{
|
||||
arch::{
|
||||
asm,
|
||||
x86_64::{_fxrstor64, _fxsave64},
|
||||
},
|
||||
ffi::c_void,
|
||||
ptr::null_mut,
|
||||
};
|
||||
|
||||
use alloc::boxed::Box;
|
||||
|
||||
use crate::{exception::InterruptArch, include::bindings::bindings::process_control_block};
|
||||
|
||||
use crate::arch::CurrentIrqArch;
|
||||
use core::arch::x86_64::{_fxrstor64, _fxsave64};
|
||||
|
||||
/// https://www.felixcloutier.com/x86/fxsave#tbl-3-47
|
||||
#[repr(C, align(16))]
|
||||
@ -53,94 +40,29 @@ impl Default for FpState {
|
||||
}
|
||||
}
|
||||
impl FpState {
|
||||
#[allow(dead_code)]
|
||||
#[inline]
|
||||
pub fn new() -> Self {
|
||||
assert!(core::mem::size_of::<Self>() == 512);
|
||||
return Self::default();
|
||||
}
|
||||
#[allow(dead_code)]
|
||||
|
||||
#[inline]
|
||||
pub fn save(&mut self) {
|
||||
unsafe {
|
||||
_fxsave64(self as *mut FpState as *mut u8);
|
||||
}
|
||||
}
|
||||
#[allow(dead_code)]
|
||||
|
||||
#[inline]
|
||||
pub fn restore(&self) {
|
||||
unsafe {
|
||||
_fxrstor64(self as *const FpState as *const u8);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 清空fp_state
|
||||
/// 清空fp_state
|
||||
#[allow(dead_code)]
|
||||
pub fn clear(&mut self) {
|
||||
*self = Self::default();
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 从用户态进入内核时,保存浮点寄存器,并关闭浮点功能
|
||||
pub fn fp_state_save(pcb: &mut process_control_block) {
|
||||
// 该过程中不允许中断
|
||||
let guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||||
|
||||
let fp: &mut FpState = if pcb.fp_state == null_mut() {
|
||||
let f = Box::leak(Box::new(FpState::default()));
|
||||
pcb.fp_state = f as *mut FpState as usize as *mut c_void;
|
||||
f
|
||||
} else {
|
||||
unsafe { (pcb.fp_state as usize as *mut FpState).as_mut().unwrap() }
|
||||
};
|
||||
|
||||
// 保存浮点寄存器
|
||||
fp.save();
|
||||
|
||||
// 关闭浮点功能
|
||||
unsafe {
|
||||
asm!(
|
||||
"mov rax, cr4",
|
||||
"and ax,~(3<<9)", //[9][10]->0
|
||||
"mov cr4,rax",
|
||||
"mov rax, cr0",
|
||||
"and ax,~(02h)", //[1]->0
|
||||
"or ax, ~(0FFFBh)", //[2]->1
|
||||
"mov cr0, rax" /*
|
||||
"mov rax, cr0",
|
||||
"and ax, 0xFFFB",
|
||||
"or ax,0x2",
|
||||
"mov cr0,rax",
|
||||
"mov rax, cr4",
|
||||
"or ax,3<<9",
|
||||
"mov cr4, rax" */
|
||||
)
|
||||
}
|
||||
drop(guard);
|
||||
}
|
||||
|
||||
/// @brief 从内核态返回用户态时,恢复浮点寄存器,并开启浮点功能
|
||||
pub fn fp_state_restore(pcb: &mut process_control_block) {
|
||||
// 该过程中不允许中断
|
||||
let guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||||
|
||||
if pcb.fp_state == null_mut() {
|
||||
panic!("fp_state_restore: fp_state is null. pid={}", pcb.pid);
|
||||
}
|
||||
|
||||
unsafe {
|
||||
asm! {
|
||||
"mov rax, cr0",
|
||||
"and ax, 0FFFBh",//[2]->0
|
||||
"or ax,02h",//[1]->1
|
||||
"mov cr0,rax",
|
||||
"mov rax, cr4",
|
||||
"or ax,3<<9",
|
||||
"mov cr4, rax",
|
||||
"clts",
|
||||
"fninit"
|
||||
}
|
||||
}
|
||||
|
||||
let fp = unsafe { (pcb.fp_state as usize as *mut FpState).as_mut().unwrap() };
|
||||
fp.restore();
|
||||
fp.clear();
|
||||
|
||||
drop(guard);
|
||||
}
|
||||
|
@ -1,21 +0,0 @@
|
||||
#pragma once
|
||||
#include <common/glib.h>
|
||||
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize("O0")
|
||||
struct process_control_block;
|
||||
// 获取当前的pcb
|
||||
struct process_control_block *get_current_pcb()
|
||||
{
|
||||
struct process_control_block *current = NULL;
|
||||
// 利用了当前pcb和栈空间总大小为32k大小对齐,将rsp低15位清空,即可获得pcb的起始地址
|
||||
barrier();
|
||||
__asm__ __volatile__("andq %%rsp, %0 \n\t"
|
||||
: "=r"(current)
|
||||
: "0"(~32767UL));
|
||||
barrier();
|
||||
|
||||
return current;
|
||||
};
|
||||
#define current_pcb get_current_pcb()
|
||||
#pragma GCC pop_options
|
@ -61,3 +61,78 @@ impl InterruptArch for X86_64InterruptArch {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
}
|
||||
}
|
||||
|
||||
/// 中断栈帧结构体
|
||||
#[repr(C)]
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct TrapFrame {
|
||||
pub r15: ::core::ffi::c_ulong,
|
||||
pub r14: ::core::ffi::c_ulong,
|
||||
pub r13: ::core::ffi::c_ulong,
|
||||
pub r12: ::core::ffi::c_ulong,
|
||||
pub r11: ::core::ffi::c_ulong,
|
||||
pub r10: ::core::ffi::c_ulong,
|
||||
pub r9: ::core::ffi::c_ulong,
|
||||
pub r8: ::core::ffi::c_ulong,
|
||||
pub rbx: ::core::ffi::c_ulong,
|
||||
pub rcx: ::core::ffi::c_ulong,
|
||||
pub rdx: ::core::ffi::c_ulong,
|
||||
pub rsi: ::core::ffi::c_ulong,
|
||||
pub rdi: ::core::ffi::c_ulong,
|
||||
pub rbp: ::core::ffi::c_ulong,
|
||||
pub ds: ::core::ffi::c_ulong,
|
||||
pub es: ::core::ffi::c_ulong,
|
||||
pub rax: ::core::ffi::c_ulong,
|
||||
pub func: ::core::ffi::c_ulong,
|
||||
pub errcode: ::core::ffi::c_ulong,
|
||||
pub rip: ::core::ffi::c_ulong,
|
||||
pub cs: ::core::ffi::c_ulong,
|
||||
pub rflags: ::core::ffi::c_ulong,
|
||||
pub rsp: ::core::ffi::c_ulong,
|
||||
pub ss: ::core::ffi::c_ulong,
|
||||
}
|
||||
|
||||
impl TrapFrame {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
r15: 0,
|
||||
r14: 0,
|
||||
r13: 0,
|
||||
r12: 0,
|
||||
r11: 0,
|
||||
r10: 0,
|
||||
r9: 0,
|
||||
r8: 0,
|
||||
rbx: 0,
|
||||
rcx: 0,
|
||||
rdx: 0,
|
||||
rsi: 0,
|
||||
rdi: 0,
|
||||
rbp: 0,
|
||||
ds: 0,
|
||||
es: 0,
|
||||
rax: 0,
|
||||
func: 0,
|
||||
errcode: 0,
|
||||
rip: 0,
|
||||
cs: 0,
|
||||
rflags: 0,
|
||||
rsp: 0,
|
||||
ss: 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// 设置中断栈帧返回值
|
||||
pub fn set_return_value(&mut self, value: usize) {
|
||||
self.rax = value as u64;
|
||||
}
|
||||
|
||||
/// 判断当前中断是否来自用户模式
|
||||
pub fn from_user(&self) -> bool {
|
||||
if (self.cs & 0x3) != 0 {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
10
kernel/src/arch/x86_64/ipc/mod.rs
Normal file
10
kernel/src/arch/x86_64/ipc/mod.rs
Normal file
@ -0,0 +1,10 @@
|
||||
use super::interrupt::TrapFrame;
|
||||
|
||||
use crate::{arch::CurrentIrqArch, exception::InterruptArch};
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn do_signal(_frame: &mut TrapFrame) {
|
||||
CurrentIrqArch::interrupt_enable();
|
||||
// todo: 处理信号
|
||||
return;
|
||||
}
|
@ -389,7 +389,6 @@ unsafe fn allocator_init() {
|
||||
|
||||
// 初始化buddy_allocator
|
||||
let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
|
||||
|
||||
// 设置全局的页帧分配器
|
||||
unsafe { set_inner_allocator(buddy_allocator) };
|
||||
kinfo!("Successfully initialized buddy allocator");
|
||||
|
@ -1,15 +1,17 @@
|
||||
#[macro_use]
|
||||
pub mod asm;
|
||||
pub mod context;
|
||||
pub mod cpu;
|
||||
pub mod fpu;
|
||||
pub mod interrupt;
|
||||
pub mod ipc;
|
||||
pub mod libs;
|
||||
pub mod mm;
|
||||
pub mod msi;
|
||||
pub mod pci;
|
||||
pub mod process;
|
||||
pub mod rand;
|
||||
pub mod sched;
|
||||
pub mod smp;
|
||||
pub mod syscall;
|
||||
|
||||
pub use self::pci::pci::X86_64PciArch as PciArch;
|
||||
|
13
kernel/src/arch/x86_64/process/c_adapter.rs
Normal file
13
kernel/src/arch/x86_64/process/c_adapter.rs
Normal file
@ -0,0 +1,13 @@
|
||||
use super::table::TSSManager;
|
||||
|
||||
#[no_mangle]
|
||||
unsafe extern "C" fn set_current_core_tss(stack_start: usize, ist0: usize) {
|
||||
let current_tss = TSSManager::current_tss();
|
||||
current_tss.set_rsp(x86::Ring::Ring0, stack_start as u64);
|
||||
current_tss.set_ist(0, ist0 as u64);
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
unsafe extern "C" fn rs_load_current_core_tss() {
|
||||
TSSManager::load_tr();
|
||||
}
|
98
kernel/src/arch/x86_64/process/kthread.rs
Normal file
98
kernel/src/arch/x86_64/process/kthread.rs
Normal file
@ -0,0 +1,98 @@
|
||||
use core::arch::asm;
|
||||
|
||||
use alloc::sync::Arc;
|
||||
|
||||
use crate::{
|
||||
arch::{
|
||||
interrupt::TrapFrame,
|
||||
process::table::{KERNEL_CS, KERNEL_DS},
|
||||
},
|
||||
process::{
|
||||
fork::CloneFlags,
|
||||
kthread::{kernel_thread_bootstrap_stage2, KernelThreadCreateInfo, KernelThreadMechanism},
|
||||
Pid, ProcessManager,
|
||||
},
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
impl KernelThreadMechanism {
|
||||
/// 伪造trapframe,创建内核线程
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回创建的内核线程的pid
|
||||
pub fn __inner_create(
|
||||
info: &Arc<KernelThreadCreateInfo>,
|
||||
clone_flags: CloneFlags,
|
||||
) -> Result<Pid, SystemError> {
|
||||
// WARNING: If create failed, we must drop the info manually or it will cause memory leak. (refcount will not decrease when create failed)
|
||||
let create_info: *const KernelThreadCreateInfo =
|
||||
KernelThreadCreateInfo::generate_unsafe_arc_ptr(info.clone());
|
||||
|
||||
let mut frame = TrapFrame::new();
|
||||
frame.rbx = create_info as usize as u64;
|
||||
frame.ds = KERNEL_DS.bits() as u64;
|
||||
frame.es = KERNEL_DS.bits() as u64;
|
||||
frame.cs = KERNEL_CS.bits() as u64;
|
||||
frame.ss = KERNEL_DS.bits() as u64;
|
||||
|
||||
// 使能中断
|
||||
frame.rflags |= 1 << 9;
|
||||
|
||||
frame.rip = kernel_thread_bootstrap_stage1 as usize as u64;
|
||||
|
||||
// fork失败的话,子线程不会执行。否则将导致内存安全问题。
|
||||
let pid = ProcessManager::fork(&mut frame, clone_flags).map_err(|e| {
|
||||
unsafe { KernelThreadCreateInfo::parse_unsafe_arc_ptr(create_info) };
|
||||
e
|
||||
})?;
|
||||
|
||||
ProcessManager::find(pid)
|
||||
.unwrap()
|
||||
.set_name(info.name().clone());
|
||||
|
||||
return Ok(pid);
|
||||
}
|
||||
}
|
||||
|
||||
/// 内核线程引导函数的第一阶段
|
||||
///
|
||||
/// 当内核线程开始执行时,会先执行这个函数,这个函数会将伪造的trapframe中的数据弹出,然后跳转到第二阶段
|
||||
///
|
||||
/// 跳转之后,指向Box<KernelThreadClosure>的指针将传入到stage2的函数
|
||||
#[naked]
|
||||
pub(super) unsafe extern "sysv64" fn kernel_thread_bootstrap_stage1() {
|
||||
asm!(
|
||||
concat!(
|
||||
"
|
||||
|
||||
pop r15
|
||||
pop r14
|
||||
pop r13
|
||||
pop r12
|
||||
pop r11
|
||||
pop r10
|
||||
pop r9
|
||||
pop r8
|
||||
pop rbx
|
||||
pop rcx
|
||||
pop rdx
|
||||
pop rsi
|
||||
pop rdi
|
||||
pop rbp
|
||||
pop rax
|
||||
mov ds, ax
|
||||
pop rax
|
||||
mov es, ax
|
||||
pop rax
|
||||
add rsp, 0x20
|
||||
popfq
|
||||
add rsp, 0x10
|
||||
mov rdi, rbx
|
||||
jmp {stage2_func}
|
||||
"
|
||||
),
|
||||
stage2_func = sym kernel_thread_bootstrap_stage2,
|
||||
options(noreturn)
|
||||
)
|
||||
}
|
496
kernel/src/arch/x86_64/process/mod.rs
Normal file
496
kernel/src/arch/x86_64/process/mod.rs
Normal file
@ -0,0 +1,496 @@
|
||||
use core::{
|
||||
arch::asm,
|
||||
intrinsics::unlikely,
|
||||
mem::ManuallyDrop,
|
||||
sync::atomic::{compiler_fence, Ordering},
|
||||
};
|
||||
|
||||
use alloc::{string::String, sync::Arc, vec::Vec};
|
||||
|
||||
use memoffset::offset_of;
|
||||
use x86::{controlregs::Cr4, segmentation::SegmentSelector};
|
||||
|
||||
use crate::{
|
||||
arch::process::table::TSSManager,
|
||||
exception::InterruptArch,
|
||||
libs::spinlock::SpinLockGuard,
|
||||
mm::{
|
||||
percpu::{PerCpu, PerCpuVar},
|
||||
VirtAddr,
|
||||
},
|
||||
process::{
|
||||
fork::CloneFlags, KernelStack, ProcessControlBlock, ProcessFlags, ProcessManager,
|
||||
SwitchResult, SWITCH_RESULT,
|
||||
},
|
||||
syscall::{Syscall, SystemError},
|
||||
};
|
||||
|
||||
use self::{
|
||||
kthread::kernel_thread_bootstrap_stage1,
|
||||
table::{switch_fs_and_gs, KERNEL_DS, USER_DS},
|
||||
};
|
||||
|
||||
use super::{fpu::FpState, interrupt::TrapFrame, CurrentIrqArch};
|
||||
|
||||
mod c_adapter;
|
||||
pub mod kthread;
|
||||
pub mod syscall;
|
||||
pub mod table;
|
||||
|
||||
extern "C" {
|
||||
/// 从中断返回
|
||||
fn ret_from_intr();
|
||||
}
|
||||
|
||||
/// PCB中与架构相关的信息
|
||||
#[derive(Debug, Clone)]
|
||||
#[allow(dead_code)]
|
||||
pub struct ArchPCBInfo {
|
||||
rflags: usize,
|
||||
rbx: usize,
|
||||
r12: usize,
|
||||
r13: usize,
|
||||
r14: usize,
|
||||
r15: usize,
|
||||
rbp: usize,
|
||||
rsp: usize,
|
||||
rip: usize,
|
||||
cr2: usize,
|
||||
fsbase: usize,
|
||||
gsbase: usize,
|
||||
fs: u16,
|
||||
gs: u16,
|
||||
|
||||
/// 浮点寄存器的状态
|
||||
fp_state: Option<FpState>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl ArchPCBInfo {
|
||||
/// 创建一个新的ArchPCBInfo
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `kstack`:内核栈的引用,如果为None,则不会设置rsp和rbp。如果为Some,则会设置rsp和rbp为内核栈的最高地址。
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回一个新的ArchPCBInfo
|
||||
pub fn new(kstack: Option<&KernelStack>) -> Self {
|
||||
let mut r = Self {
|
||||
rflags: 0,
|
||||
rbx: 0,
|
||||
r12: 0,
|
||||
r13: 0,
|
||||
r14: 0,
|
||||
r15: 0,
|
||||
rbp: 0,
|
||||
rsp: 0,
|
||||
rip: 0,
|
||||
cr2: 0,
|
||||
fsbase: 0,
|
||||
gsbase: 0,
|
||||
fs: KERNEL_DS.bits(),
|
||||
gs: KERNEL_DS.bits(),
|
||||
fp_state: None,
|
||||
};
|
||||
|
||||
if kstack.is_some() {
|
||||
let kstack = kstack.unwrap();
|
||||
r.rsp = kstack.stack_max_address().data();
|
||||
r.rbp = kstack.stack_max_address().data();
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
pub fn set_stack(&mut self, stack: VirtAddr) {
|
||||
self.rsp = stack.data();
|
||||
}
|
||||
|
||||
pub fn set_stack_base(&mut self, stack_base: VirtAddr) {
|
||||
self.rbp = stack_base.data();
|
||||
}
|
||||
|
||||
pub fn rbp(&self) -> usize {
|
||||
self.rbp
|
||||
}
|
||||
|
||||
pub unsafe fn push_to_stack(&mut self, value: usize) {
|
||||
self.rsp -= core::mem::size_of::<usize>();
|
||||
*(self.rsp as *mut usize) = value;
|
||||
}
|
||||
|
||||
pub unsafe fn pop_from_stack(&mut self) -> usize {
|
||||
let value = *(self.rsp as *const usize);
|
||||
self.rsp += core::mem::size_of::<usize>();
|
||||
value
|
||||
}
|
||||
|
||||
pub fn save_fp_state(&mut self) {
|
||||
if self.fp_state.is_none() {
|
||||
self.fp_state = Some(FpState::new());
|
||||
}
|
||||
|
||||
self.fp_state.as_mut().unwrap().save();
|
||||
}
|
||||
|
||||
pub fn restore_fp_state(&mut self) {
|
||||
if unlikely(self.fp_state.is_none()) {
|
||||
return;
|
||||
}
|
||||
|
||||
self.fp_state.as_mut().unwrap().restore();
|
||||
}
|
||||
|
||||
pub unsafe fn save_fsbase(&mut self) {
|
||||
if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
|
||||
self.fsbase = x86::current::segmentation::rdfsbase() as usize;
|
||||
} else {
|
||||
self.fsbase = 0;
|
||||
}
|
||||
}
|
||||
|
||||
pub unsafe fn save_gsbase(&mut self) {
|
||||
if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
|
||||
self.gsbase = x86::current::segmentation::rdgsbase() as usize;
|
||||
} else {
|
||||
self.gsbase = 0;
|
||||
}
|
||||
}
|
||||
|
||||
pub unsafe fn restore_fsbase(&mut self) {
|
||||
if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
|
||||
x86::current::segmentation::wrfsbase(self.fsbase as u64);
|
||||
}
|
||||
}
|
||||
|
||||
pub unsafe fn restore_gsbase(&mut self) {
|
||||
if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
|
||||
x86::current::segmentation::wrgsbase(self.gsbase as u64);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn fsbase(&self) -> usize {
|
||||
self.fsbase
|
||||
}
|
||||
|
||||
pub fn gsbase(&self) -> usize {
|
||||
self.gsbase
|
||||
}
|
||||
}
|
||||
|
||||
impl ProcessControlBlock {
|
||||
/// 获取当前进程的pcb
|
||||
pub fn arch_current_pcb() -> Arc<Self> {
|
||||
// 获取栈指针
|
||||
let ptr = VirtAddr::new(x86::current::registers::rsp() as usize);
|
||||
let stack_base = VirtAddr::new(ptr.data() & (!(KernelStack::ALIGN - 1)));
|
||||
// 从内核栈的最低地址处取出pcb的地址
|
||||
let p = stack_base.data() as *const *const ProcessControlBlock;
|
||||
if unlikely((unsafe { *p }).is_null()) {
|
||||
panic!("current_pcb is null");
|
||||
}
|
||||
unsafe {
|
||||
// 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
|
||||
let arc_wrapper: ManuallyDrop<Arc<ProcessControlBlock>> =
|
||||
ManuallyDrop::new(Arc::from_raw(*p));
|
||||
|
||||
let new_arc: Arc<ProcessControlBlock> = Arc::clone(&arc_wrapper);
|
||||
return new_arc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ProcessManager {
|
||||
pub fn arch_init() {
|
||||
{
|
||||
// 初始化进程切换结果 per cpu变量
|
||||
let mut switch_res_vec: Vec<SwitchResult> = Vec::new();
|
||||
for _ in 0..PerCpu::MAX_CPU_NUM {
|
||||
switch_res_vec.push(SwitchResult::new());
|
||||
}
|
||||
unsafe {
|
||||
SWITCH_RESULT = Some(PerCpuVar::new(switch_res_vec).unwrap());
|
||||
}
|
||||
}
|
||||
}
|
||||
/// fork的过程中复制线程
|
||||
///
|
||||
/// 由于这个过程与具体的架构相关,所以放在这里
|
||||
pub fn copy_thread(
|
||||
_clone_flags: &CloneFlags,
|
||||
current_pcb: &Arc<ProcessControlBlock>,
|
||||
new_pcb: &Arc<ProcessControlBlock>,
|
||||
current_trapframe: &TrapFrame,
|
||||
) -> Result<(), SystemError> {
|
||||
let mut child_trapframe = current_trapframe.clone();
|
||||
|
||||
// 子进程的返回值为0
|
||||
child_trapframe.set_return_value(0);
|
||||
|
||||
// 设置子进程的栈基址(开始执行中断返回流程时的栈基址)
|
||||
let mut new_arch_guard = new_pcb.arch_info();
|
||||
let kernel_stack_guard = new_pcb.kernel_stack();
|
||||
|
||||
// 设置子进程在内核态开始执行时的rsp、rbp
|
||||
new_arch_guard.set_stack_base(kernel_stack_guard.stack_max_address());
|
||||
|
||||
let trap_frame_vaddr: VirtAddr =
|
||||
kernel_stack_guard.stack_max_address() - core::mem::size_of::<TrapFrame>();
|
||||
new_arch_guard.set_stack(trap_frame_vaddr);
|
||||
|
||||
// 拷贝栈帧
|
||||
unsafe {
|
||||
let trap_frame_ptr = trap_frame_vaddr.data() as *mut TrapFrame;
|
||||
*trap_frame_ptr = child_trapframe;
|
||||
}
|
||||
|
||||
let current_arch_guard = current_pcb.arch_info_irqsave();
|
||||
new_arch_guard.fsbase = current_arch_guard.fsbase;
|
||||
new_arch_guard.gsbase = current_arch_guard.gsbase;
|
||||
new_arch_guard.fs = current_arch_guard.fs;
|
||||
new_arch_guard.gs = current_arch_guard.gs;
|
||||
new_arch_guard.fp_state = current_arch_guard.fp_state.clone();
|
||||
|
||||
// 拷贝浮点寄存器的状态
|
||||
if let Some(fp_state) = current_arch_guard.fp_state.as_ref() {
|
||||
new_arch_guard.fp_state = Some(*fp_state);
|
||||
}
|
||||
drop(current_arch_guard);
|
||||
|
||||
// 设置返回地址(子进程开始执行的指令地址)
|
||||
|
||||
if new_pcb.flags().contains(ProcessFlags::KTHREAD) {
|
||||
let kthread_bootstrap_stage1_func_addr = kernel_thread_bootstrap_stage1 as usize;
|
||||
|
||||
new_arch_guard.rip = kthread_bootstrap_stage1_func_addr;
|
||||
} else {
|
||||
new_arch_guard.rip = ret_from_intr as usize;
|
||||
}
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
/// 切换进程
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `prev`:上一个进程的pcb
|
||||
/// - `next`:下一个进程的pcb
|
||||
pub unsafe fn switch_process(prev: Arc<ProcessControlBlock>, next: Arc<ProcessControlBlock>) {
|
||||
assert!(CurrentIrqArch::is_irq_enabled() == false);
|
||||
|
||||
// 保存浮点寄存器
|
||||
prev.arch_info().save_fp_state();
|
||||
// 切换浮点寄存器
|
||||
next.arch_info().restore_fp_state();
|
||||
|
||||
// 切换fsbase
|
||||
prev.arch_info().save_fsbase();
|
||||
next.arch_info().restore_fsbase();
|
||||
|
||||
// 切换gsbase
|
||||
prev.arch_info().save_gsbase();
|
||||
next.arch_info().restore_gsbase();
|
||||
|
||||
// 切换地址空间
|
||||
let next_addr_space = next.basic().user_vm().as_ref().unwrap().clone();
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
|
||||
next_addr_space.read().user_mapper.utable.make_current();
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
// 切换内核栈
|
||||
|
||||
// 获取arch info的锁,并强制泄露其守卫(切换上下文后,在switch_finish_hook中会释放锁)
|
||||
let next_arch = SpinLockGuard::leak(next.arch_info());
|
||||
let prev_arch = SpinLockGuard::leak(prev.arch_info());
|
||||
|
||||
prev_arch.rip = switch_back as usize;
|
||||
|
||||
// 恢复当前的 preempt count*2
|
||||
ProcessManager::current_pcb().preempt_enable();
|
||||
ProcessManager::current_pcb().preempt_enable();
|
||||
SWITCH_RESULT.as_mut().unwrap().get_mut().prev_pcb = Some(prev.clone());
|
||||
SWITCH_RESULT.as_mut().unwrap().get_mut().next_pcb = Some(next.clone());
|
||||
|
||||
// 切换tss
|
||||
TSSManager::current_tss().set_rsp(
|
||||
x86::Ring::Ring0,
|
||||
next.kernel_stack().stack_max_address().data() as u64,
|
||||
);
|
||||
// kdebug!("switch tss ok");
|
||||
|
||||
// 正式切换上下文
|
||||
switch_to_inner(prev_arch, next_arch);
|
||||
}
|
||||
}
|
||||
|
||||
/// 保存上下文,然后切换进程,接着jmp到`switch_finish_hook`钩子函数
|
||||
#[naked]
|
||||
unsafe extern "sysv64" fn switch_to_inner(prev: &mut ArchPCBInfo, next: &mut ArchPCBInfo) {
|
||||
asm!(
|
||||
// As a quick reminder for those who are unfamiliar with the System V ABI (extern "C"):
|
||||
//
|
||||
// - the current parameters are passed in the registers `rdi`, `rsi`,
|
||||
// - we can modify scratch registers, e.g. rax
|
||||
// - we cannot change callee-preserved registers arbitrarily, e.g. rbx, which is why we
|
||||
// store them here in the first place.
|
||||
concat!("
|
||||
// Save old registers, and load new ones
|
||||
mov [rdi + {off_rbx}], rbx
|
||||
mov rbx, [rsi + {off_rbx}]
|
||||
|
||||
mov [rdi + {off_r12}], r12
|
||||
mov r12, [rsi + {off_r12}]
|
||||
|
||||
mov [rdi + {off_r13}], r13
|
||||
mov r13, [rsi + {off_r13}]
|
||||
|
||||
mov [rdi + {off_r14}], r14
|
||||
mov r14, [rsi + {off_r14}]
|
||||
|
||||
mov [rdi + {off_r15}], r15
|
||||
mov r15, [rsi + {off_r15}]
|
||||
|
||||
// switch segment registers (这些寄存器只能通过接下来的switch_hook的return来切换)
|
||||
mov [rdi + {off_fs}], fs
|
||||
mov [rdi + {off_gs}], gs
|
||||
|
||||
push rbp
|
||||
push rax
|
||||
|
||||
mov [rdi + {off_rbp}], rbp
|
||||
mov rbp, [rsi + {off_rbp}]
|
||||
|
||||
mov [rdi + {off_rsp}], rsp
|
||||
mov rsp, [rsi + {off_rsp}]
|
||||
|
||||
// // push RFLAGS (can only be modified via stack)
|
||||
pushfq
|
||||
// // pop RFLAGS into `self.rflags`
|
||||
pop QWORD PTR [rdi + {off_rflags}]
|
||||
|
||||
// // push `next.rflags`
|
||||
push QWORD PTR [rsi + {off_rflags}]
|
||||
// // pop into RFLAGS
|
||||
popfq
|
||||
|
||||
// push next rip to stack
|
||||
push QWORD PTR [rsi + {off_rip}]
|
||||
|
||||
|
||||
// When we return, we cannot even guarantee that the return address on the stack, points to
|
||||
// the calling function. Thus, we have to execute this Rust hook by
|
||||
// ourselves, which will unlock the contexts before the later switch.
|
||||
|
||||
// Note that switch_finish_hook will be responsible for executing `ret`.
|
||||
jmp {switch_hook}
|
||||
"),
|
||||
|
||||
off_rflags = const(offset_of!(ArchPCBInfo, rflags)),
|
||||
|
||||
off_rbx = const(offset_of!(ArchPCBInfo, rbx)),
|
||||
off_r12 = const(offset_of!(ArchPCBInfo, r12)),
|
||||
off_r13 = const(offset_of!(ArchPCBInfo, r13)),
|
||||
off_r14 = const(offset_of!(ArchPCBInfo, r14)),
|
||||
off_rbp = const(offset_of!(ArchPCBInfo, rbp)),
|
||||
off_rsp = const(offset_of!(ArchPCBInfo, rsp)),
|
||||
off_r15 = const(offset_of!(ArchPCBInfo, r15)),
|
||||
off_rip = const(offset_of!(ArchPCBInfo, rip)),
|
||||
off_fs = const(offset_of!(ArchPCBInfo, fs)),
|
||||
off_gs = const(offset_of!(ArchPCBInfo, gs)),
|
||||
|
||||
switch_hook = sym crate::process::switch_finish_hook,
|
||||
options(noreturn),
|
||||
);
|
||||
}
|
||||
|
||||
/// 从`switch_to_inner`返回后,执行这个函数
|
||||
///
|
||||
/// 也就是说,当进程再次被调度时,会从这里开始执行
|
||||
#[inline(never)]
|
||||
unsafe extern "sysv64" fn switch_back() {
|
||||
asm!(concat!(
|
||||
"
|
||||
pop rax
|
||||
pop rbp
|
||||
"
|
||||
))
|
||||
}
|
||||
|
||||
pub unsafe fn arch_switch_to_user(path: String, argv: Vec<String>, envp: Vec<String>) -> ! {
|
||||
// 以下代码不能发生中断
|
||||
CurrentIrqArch::interrupt_disable();
|
||||
|
||||
let current_pcb = ProcessManager::current_pcb();
|
||||
let trap_frame_vaddr = VirtAddr::new(
|
||||
current_pcb.kernel_stack().stack_max_address().data() - core::mem::size_of::<TrapFrame>(),
|
||||
);
|
||||
// kdebug!("trap_frame_vaddr: {:?}", trap_frame_vaddr);
|
||||
let new_rip = VirtAddr::new(ret_from_intr as usize);
|
||||
|
||||
assert!(
|
||||
(x86::current::registers::rsp() as usize) < trap_frame_vaddr.data(),
|
||||
"arch_switch_to_user(): current_rsp >= fake trap
|
||||
frame vaddr, this may cause some illegal access to memory!
|
||||
rsp: {:#x}, trap_frame_vaddr: {:#x}",
|
||||
x86::current::registers::rsp() as usize,
|
||||
trap_frame_vaddr.data()
|
||||
);
|
||||
|
||||
let mut arch_guard = current_pcb.arch_info_irqsave();
|
||||
arch_guard.rsp = trap_frame_vaddr.data();
|
||||
|
||||
arch_guard.fs = USER_DS.bits();
|
||||
arch_guard.gs = USER_DS.bits();
|
||||
|
||||
switch_fs_and_gs(
|
||||
SegmentSelector::from_bits_truncate(arch_guard.fs),
|
||||
SegmentSelector::from_bits_truncate(arch_guard.gs),
|
||||
);
|
||||
arch_guard.rip = new_rip.data();
|
||||
|
||||
drop(arch_guard);
|
||||
|
||||
// 删除kthread的标志
|
||||
current_pcb.flags().remove(ProcessFlags::KTHREAD);
|
||||
current_pcb.worker_private().take();
|
||||
|
||||
let mut trap_frame = TrapFrame::new();
|
||||
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
Syscall::do_execve(path, argv, envp, &mut trap_frame).unwrap_or_else(|e| {
|
||||
panic!(
|
||||
"arch_switch_to_user(): pid: {pid:?}, Failed to execve: , error: {e:?}",
|
||||
pid = current_pcb.pid(),
|
||||
e = e
|
||||
);
|
||||
});
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
|
||||
// 重要!在这里之后,一定要保证上面的引用计数变量、动态申请的变量、锁的守卫都被drop了,否则可能导致内存安全问题!
|
||||
|
||||
drop(current_pcb);
|
||||
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
ready_to_switch_to_user(trap_frame, trap_frame_vaddr.data(), new_rip.data());
|
||||
}
|
||||
|
||||
/// 由于需要依赖ret来切换到用户态,所以不能inline
|
||||
#[inline(never)]
|
||||
unsafe extern "sysv64" fn ready_to_switch_to_user(
|
||||
trap_frame: TrapFrame,
|
||||
trapframe_vaddr: usize,
|
||||
new_rip: usize,
|
||||
) -> ! {
|
||||
*(trapframe_vaddr as *mut TrapFrame) = trap_frame;
|
||||
asm!(
|
||||
"mov rsp, {trapframe_vaddr}",
|
||||
"push {new_rip}",
|
||||
"ret",
|
||||
trapframe_vaddr = in(reg) trapframe_vaddr,
|
||||
new_rip = in(reg) new_rip
|
||||
);
|
||||
unreachable!()
|
||||
}
|
116
kernel/src/arch/x86_64/process/syscall.rs
Normal file
116
kernel/src/arch/x86_64/process/syscall.rs
Normal file
@ -0,0 +1,116 @@
|
||||
use alloc::{string::String, vec::Vec};
|
||||
|
||||
use crate::{
|
||||
arch::{
|
||||
interrupt::TrapFrame,
|
||||
process::table::{USER_CS, USER_DS},
|
||||
CurrentIrqArch,
|
||||
},
|
||||
exception::InterruptArch,
|
||||
mm::ucontext::AddressSpace,
|
||||
process::{
|
||||
exec::{load_binary_file, ExecParam, ExecParamFlags},
|
||||
ProcessManager,
|
||||
},
|
||||
syscall::{Syscall, SystemError},
|
||||
};
|
||||
|
||||
impl Syscall {
|
||||
pub fn do_execve(
|
||||
path: String,
|
||||
argv: Vec<String>,
|
||||
envp: Vec<String>,
|
||||
regs: &mut TrapFrame,
|
||||
) -> Result<(), SystemError> {
|
||||
// kdebug!(
|
||||
// "tmp_rs_execve: path: {:?}, argv: {:?}, envp: {:?}\n",
|
||||
// path,
|
||||
// argv,
|
||||
// envp
|
||||
// );
|
||||
// 关中断,防止在设置地址空间的时候,发生中断,然后进调度器,出现错误。
|
||||
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||||
let pcb = ProcessManager::current_pcb();
|
||||
|
||||
let mut basic_info = pcb.basic_mut();
|
||||
// 暂存原本的用户地址空间的引用(因为如果在切换页表之前释放了它,可能会造成内存use after free)
|
||||
let old_address_space = basic_info.user_vm();
|
||||
|
||||
// 在pcb中原来的用户地址空间
|
||||
unsafe {
|
||||
basic_info.set_user_vm(None);
|
||||
}
|
||||
// 创建新的地址空间并设置为当前地址空间
|
||||
let address_space = AddressSpace::new(true).expect("Failed to create new address space");
|
||||
unsafe {
|
||||
basic_info.set_user_vm(Some(address_space.clone()));
|
||||
}
|
||||
|
||||
// to avoid deadlock
|
||||
drop(basic_info);
|
||||
|
||||
assert!(
|
||||
AddressSpace::is_current(&address_space),
|
||||
"Failed to set address space"
|
||||
);
|
||||
// kdebug!("Switch to new address space");
|
||||
|
||||
// 切换到新的用户地址空间
|
||||
unsafe { address_space.read().user_mapper.utable.make_current() };
|
||||
|
||||
drop(old_address_space);
|
||||
drop(irq_guard);
|
||||
// kdebug!("to load binary file");
|
||||
let mut param = ExecParam::new(path.as_str(), address_space.clone(), ExecParamFlags::EXEC);
|
||||
|
||||
// 加载可执行文件
|
||||
let load_result = load_binary_file(&mut param)
|
||||
.unwrap_or_else(|e| panic!("Failed to load binary file: {:?}, path: {:?}", e, path));
|
||||
// kdebug!("load binary file done");
|
||||
// kdebug!("argv: {:?}, envp: {:?}", argv, envp);
|
||||
param.init_info_mut().args = argv;
|
||||
param.init_info_mut().envs = envp;
|
||||
|
||||
// 把proc_init_info写到用户栈上
|
||||
|
||||
let (user_sp, argv_ptr) = unsafe {
|
||||
param
|
||||
.init_info()
|
||||
.push_at(
|
||||
address_space
|
||||
.write()
|
||||
.user_stack_mut()
|
||||
.expect("No user stack found"),
|
||||
)
|
||||
.expect("Failed to push proc_init_info to user stack")
|
||||
};
|
||||
|
||||
// kdebug!("write proc_init_info to user stack done");
|
||||
|
||||
// (兼容旧版libc)把argv的指针写到寄存器内
|
||||
// TODO: 改写旧版libc,不再需要这个兼容
|
||||
regs.rdi = param.init_info().args.len() as u64;
|
||||
regs.rsi = argv_ptr.data() as u64;
|
||||
|
||||
// 设置系统调用返回时的寄存器状态
|
||||
// TODO: 中断管理重构后,这里的寄存器状态设置要删掉!!!改为对trap frame的设置。要增加架构抽象。
|
||||
regs.rsp = user_sp.data() as u64;
|
||||
regs.rbp = user_sp.data() as u64;
|
||||
regs.rip = load_result.entry_point().data() as u64;
|
||||
|
||||
regs.cs = USER_CS.bits() as u64;
|
||||
regs.ds = USER_DS.bits() as u64;
|
||||
regs.ss = USER_DS.bits() as u64;
|
||||
regs.es = 0;
|
||||
regs.rflags = 0x200;
|
||||
regs.rax = 1;
|
||||
|
||||
// kdebug!("regs: {:?}\n", regs);
|
||||
|
||||
// kdebug!(
|
||||
// "tmp_rs_execve: done, load_result.entry_point()={:?}",
|
||||
// load_result.entry_point()
|
||||
// );
|
||||
return Ok(());
|
||||
}
|
||||
}
|
75
kernel/src/arch/x86_64/process/table.rs
Normal file
75
kernel/src/arch/x86_64/process/table.rs
Normal file
@ -0,0 +1,75 @@
|
||||
use x86::{current::task::TaskStateSegment, segmentation::SegmentSelector, Ring};
|
||||
|
||||
use crate::{
|
||||
mm::{percpu::PerCpu, VirtAddr},
|
||||
smp::core::smp_get_processor_id,
|
||||
};
|
||||
|
||||
// === 段选择子在GDT中的索引 ===
|
||||
/// kernel code segment selector
|
||||
pub const KERNEL_CS: SegmentSelector = SegmentSelector::new(1, Ring::Ring0);
|
||||
/// kernel data segment selector
|
||||
pub const KERNEL_DS: SegmentSelector = SegmentSelector::new(2, Ring::Ring0);
|
||||
/// user code segment selector
|
||||
pub const USER_CS: SegmentSelector = SegmentSelector::new(5, Ring::Ring3);
|
||||
/// user data segment selector
|
||||
pub const USER_DS: SegmentSelector = SegmentSelector::new(6, Ring::Ring3);
|
||||
|
||||
static mut TSS_MANAGER: TSSManager = TSSManager::new();
|
||||
|
||||
extern "C" {
|
||||
static mut GDT_Table: [u64; 512];
|
||||
}
|
||||
/// 切换fs和gs段寄存器
|
||||
///
|
||||
/// 由于需要return使得它生效,所以不能inline
|
||||
#[inline(never)]
|
||||
pub unsafe fn switch_fs_and_gs(fs: SegmentSelector, gs: SegmentSelector) {
|
||||
x86::segmentation::load_fs(fs);
|
||||
x86::segmentation::load_gs(gs);
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct TSSManager {
|
||||
tss: [TaskStateSegment; PerCpu::MAX_CPU_NUM],
|
||||
}
|
||||
|
||||
impl TSSManager {
|
||||
const fn new() -> Self {
|
||||
return Self {
|
||||
tss: [TaskStateSegment::new(); PerCpu::MAX_CPU_NUM],
|
||||
};
|
||||
}
|
||||
|
||||
/// 获取当前CPU的TSS
|
||||
pub unsafe fn current_tss() -> &'static mut TaskStateSegment {
|
||||
&mut TSS_MANAGER.tss[smp_get_processor_id() as usize]
|
||||
}
|
||||
|
||||
/// 加载当前CPU的TSS
|
||||
pub unsafe fn load_tr() {
|
||||
let index = (10 + smp_get_processor_id() * 2) as u16;
|
||||
let selector = SegmentSelector::new(index, Ring::Ring0);
|
||||
|
||||
Self::set_tss_descriptor(
|
||||
index,
|
||||
VirtAddr::new(Self::current_tss() as *mut TaskStateSegment as usize),
|
||||
);
|
||||
x86::task::load_tr(selector);
|
||||
}
|
||||
|
||||
unsafe fn set_tss_descriptor(index: u16, vaddr: VirtAddr) {
|
||||
const LIMIT: u64 = 103;
|
||||
let gdt_vaddr = VirtAddr::new(&GDT_Table as *const _ as usize);
|
||||
|
||||
let gdt: &mut [u64] = core::slice::from_raw_parts_mut(gdt_vaddr.data() as *mut u64, 512);
|
||||
|
||||
let vaddr = vaddr.data() as u64;
|
||||
gdt[index as usize] = (LIMIT & 0xffff)
|
||||
| ((vaddr & 0xffff) << 16)
|
||||
| (((vaddr >> 16) & 0xff) << 32)
|
||||
| (0x89 << 40)
|
||||
| (((vaddr >> 24) & 0xff) << 56);
|
||||
gdt[index as usize + 1] = ((vaddr >> 32) & 0xffffffff) | 0;
|
||||
}
|
||||
}
|
@ -1,10 +1,10 @@
|
||||
use crate::include::bindings::bindings::{enter_syscall_int, SYS_SCHED};
|
||||
use crate::{include::bindings::bindings::enter_syscall_int, syscall::SYS_SCHED};
|
||||
|
||||
/// @brief 若内核代码不处在中断上下文中,那么将可以使用本函数,发起一个sys_sched系统调用,然后运行调度器。
|
||||
/// 由于只能在中断上下文中进行进程切换,因此需要发起一个系统调用SYS_SCHED。
|
||||
#[no_mangle]
|
||||
pub extern "C" fn sched() {
|
||||
unsafe {
|
||||
enter_syscall_int(SYS_SCHED.into(), 0, 0, 0, 0, 0, 0, 0, 0);
|
||||
enter_syscall_int(SYS_SCHED as u64, 0, 0, 0, 0, 0, 0, 0, 0);
|
||||
}
|
||||
}
|
||||
|
61
kernel/src/arch/x86_64/smp/mod.rs
Normal file
61
kernel/src/arch/x86_64/smp/mod.rs
Normal file
@ -0,0 +1,61 @@
|
||||
use core::{arch::asm, hint::spin_loop, sync::atomic::compiler_fence};
|
||||
|
||||
use memoffset::offset_of;
|
||||
|
||||
use crate::{
|
||||
arch::process::table::TSSManager, exception::InterruptArch,
|
||||
include::bindings::bindings::cpu_core_info, kdebug, process::ProcessManager,
|
||||
smp::core::smp_get_processor_id,
|
||||
};
|
||||
|
||||
use super::CurrentIrqArch;
|
||||
|
||||
extern "C" {
|
||||
fn smp_ap_start_stage2();
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
struct ApStartStackInfo {
|
||||
vaddr: usize,
|
||||
}
|
||||
|
||||
/// AP处理器启动时执行
|
||||
#[no_mangle]
|
||||
unsafe extern "C" fn smp_ap_start() -> ! {
|
||||
CurrentIrqArch::interrupt_disable();
|
||||
let vaddr = cpu_core_info[smp_get_processor_id() as usize].stack_start as usize;
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
let v = ApStartStackInfo { vaddr };
|
||||
smp_init_switch_stack(&v);
|
||||
}
|
||||
|
||||
#[naked]
|
||||
unsafe extern "sysv64" fn smp_init_switch_stack(st: &ApStartStackInfo) -> ! {
|
||||
asm!(concat!("
|
||||
mov rsp, [rdi + {off_rsp}]
|
||||
mov rbp, [rdi + {off_rsp}]
|
||||
jmp {stage1}
|
||||
"),
|
||||
off_rsp = const(offset_of!(ApStartStackInfo, vaddr)),
|
||||
stage1 = sym smp_ap_start_stage1,
|
||||
options(noreturn));
|
||||
}
|
||||
|
||||
unsafe extern "C" fn smp_ap_start_stage1() -> ! {
|
||||
let id = smp_get_processor_id();
|
||||
kdebug!("smp_ap_start_stage1: id: {}\n", id);
|
||||
let current_idle = ProcessManager::idle_pcb()[smp_get_processor_id() as usize].clone();
|
||||
|
||||
let tss = TSSManager::current_tss();
|
||||
|
||||
tss.set_rsp(
|
||||
x86::Ring::Ring0,
|
||||
current_idle.kernel_stack().stack_max_address().data() as u64,
|
||||
);
|
||||
TSSManager::load_tr();
|
||||
|
||||
smp_ap_start_stage2();
|
||||
loop {
|
||||
spin_loop();
|
||||
}
|
||||
}
|
@ -1,28 +1,15 @@
|
||||
use core::{ffi::c_void, panic};
|
||||
use core::ffi::c_void;
|
||||
|
||||
use alloc::{string::String, vec::Vec};
|
||||
use alloc::string::String;
|
||||
|
||||
use crate::{
|
||||
arch::{asm::current::current_pcb, CurrentIrqArch},
|
||||
exception::InterruptArch,
|
||||
filesystem::vfs::MAX_PATHLEN,
|
||||
include::bindings::bindings::{
|
||||
pt_regs, set_system_trap_gate, CLONE_FS, CLONE_SIGNAL, CLONE_VM, USER_CS, USER_DS,
|
||||
},
|
||||
ipc::signal::sys_rt_sigreturn,
|
||||
mm::{ucontext::AddressSpace, verify_area, VirtAddr},
|
||||
process::exec::{load_binary_file, ExecParam, ExecParamFlags},
|
||||
syscall::{
|
||||
user_access::{check_and_clone_cstr, check_and_clone_cstr_array},
|
||||
Syscall, SystemError, SYS_EXECVE, SYS_FORK, SYS_RT_SIGRETURN, SYS_VFORK,
|
||||
},
|
||||
include::bindings::bindings::set_system_trap_gate,
|
||||
syscall::{Syscall, SystemError, SYS_RT_SIGRETURN},
|
||||
};
|
||||
|
||||
use super::{asm::ptrace::user_mode, mm::barrier::mfence};
|
||||
use super::{interrupt::TrapFrame, mm::barrier::mfence};
|
||||
|
||||
extern "C" {
|
||||
fn do_fork(regs: *mut pt_regs, clone_flags: u64, stack_start: u64, stack_size: u64) -> u64;
|
||||
|
||||
fn syscall_int();
|
||||
}
|
||||
|
||||
@ -35,85 +22,28 @@ macro_rules! syscall_return {
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "C" fn syscall_handler(regs: &mut pt_regs) -> () {
|
||||
let syscall_num = regs.rax as usize;
|
||||
pub extern "C" fn syscall_handler(frame: &mut TrapFrame) -> () {
|
||||
let syscall_num = frame.rax as usize;
|
||||
let args = [
|
||||
regs.r8 as usize,
|
||||
regs.r9 as usize,
|
||||
regs.r10 as usize,
|
||||
regs.r11 as usize,
|
||||
regs.r12 as usize,
|
||||
regs.r13 as usize,
|
||||
regs.r14 as usize,
|
||||
regs.r15 as usize,
|
||||
frame.r8 as usize,
|
||||
frame.r9 as usize,
|
||||
frame.r10 as usize,
|
||||
frame.r11 as usize,
|
||||
frame.r12 as usize,
|
||||
frame.r13 as usize,
|
||||
frame.r14 as usize,
|
||||
frame.r15 as usize,
|
||||
];
|
||||
mfence();
|
||||
mfence();
|
||||
let from_user = user_mode(regs);
|
||||
|
||||
// 由于进程管理未完成重构,有些系统调用需要在这里临时处理,以后这里的特殊处理要删掉。
|
||||
match syscall_num {
|
||||
SYS_FORK => unsafe {
|
||||
syscall_return!(do_fork(regs, 0, regs.rsp, 0), regs);
|
||||
},
|
||||
SYS_VFORK => unsafe {
|
||||
syscall_return!(
|
||||
do_fork(
|
||||
regs,
|
||||
(CLONE_VM | CLONE_FS | CLONE_SIGNAL) as u64,
|
||||
regs.rsp,
|
||||
0,
|
||||
),
|
||||
regs
|
||||
);
|
||||
},
|
||||
SYS_EXECVE => {
|
||||
let path_ptr = args[0];
|
||||
let argv_ptr = args[1];
|
||||
let env_ptr = args[2];
|
||||
|
||||
// 权限校验
|
||||
if from_user
|
||||
&& (verify_area(VirtAddr::new(path_ptr), MAX_PATHLEN).is_err()
|
||||
|| verify_area(VirtAddr::new(argv_ptr), MAX_PATHLEN).is_err()
|
||||
|| verify_area(VirtAddr::new(env_ptr), MAX_PATHLEN).is_err())
|
||||
{
|
||||
syscall_return!(SystemError::EFAULT.to_posix_errno() as u64, regs);
|
||||
} else {
|
||||
unsafe {
|
||||
// kdebug!("syscall: execve\n");
|
||||
syscall_return!(
|
||||
rs_do_execve(
|
||||
path_ptr as *const u8,
|
||||
argv_ptr as *const *const u8,
|
||||
env_ptr as *const *const u8,
|
||||
regs
|
||||
),
|
||||
regs
|
||||
);
|
||||
// let path = String::from("/bin/about.elf");
|
||||
// let argv = vec![String::from("/bin/about.elf")];
|
||||
// let envp = vec![String::from("PATH=/bin")];
|
||||
// let r = tmp_rs_execve(path, argv, envp, regs);
|
||||
// kdebug!("syscall: execve r: {:?}\n", r);
|
||||
|
||||
// syscall_return!(
|
||||
// r.map(|_| 0).unwrap_or_else(|e| e.to_posix_errno() as usize),
|
||||
// regs
|
||||
// )
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SYS_RT_SIGRETURN => {
|
||||
syscall_return!(sys_rt_sigreturn(regs), regs);
|
||||
syscall_return!(SystemError::ENOSYS.to_posix_errno() as usize, frame);
|
||||
}
|
||||
// SYS_SCHED => {
|
||||
// syscall_return!(sched(from_user) as u64, regs);
|
||||
// }
|
||||
_ => {}
|
||||
}
|
||||
syscall_return!(Syscall::handle(syscall_num, &args, from_user) as u64, regs);
|
||||
syscall_return!(Syscall::handle(syscall_num, &args, frame) as u64, frame);
|
||||
}
|
||||
|
||||
/// 系统调用初始化
|
||||
@ -123,142 +53,15 @@ pub fn arch_syscall_init() -> Result<(), SystemError> {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_do_execve(
|
||||
path: *const u8,
|
||||
argv: *const *const u8,
|
||||
envp: *const *const u8,
|
||||
regs: &mut pt_regs,
|
||||
) -> usize {
|
||||
if path.is_null() {
|
||||
return SystemError::EINVAL.to_posix_errno() as usize;
|
||||
}
|
||||
|
||||
let x = || {
|
||||
let path: String = check_and_clone_cstr(path, Some(MAX_PATHLEN))?;
|
||||
let argv: Vec<String> = check_and_clone_cstr_array(argv)?;
|
||||
let envp: Vec<String> = check_and_clone_cstr_array(envp)?;
|
||||
Ok((path, argv, envp))
|
||||
};
|
||||
let r: Result<(String, Vec<String>, Vec<String>), SystemError> = x();
|
||||
if let Err(e) = r {
|
||||
panic!("Failed to execve: {:?}", e);
|
||||
}
|
||||
let (path, argv, envp) = r.unwrap();
|
||||
|
||||
return tmp_rs_execve(path, argv, envp, regs)
|
||||
.map(|_| 0)
|
||||
.unwrap_or_else(|e| {
|
||||
panic!(
|
||||
"Failed to execve, pid: {} error: {:?}",
|
||||
current_pcb().pid,
|
||||
e
|
||||
)
|
||||
});
|
||||
}
|
||||
|
||||
/// 执行第一个用户进程的函数(只应该被调用一次)
|
||||
///
|
||||
/// 当进程管理重构完成后,这个函数应该被删除。调整为别的函数。
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_exec_init_process(regs: &mut pt_regs) -> usize {
|
||||
pub extern "C" fn rs_exec_init_process(frame: &mut TrapFrame) -> usize {
|
||||
let path = String::from("/bin/shell.elf");
|
||||
let argv = vec![String::from("/bin/shell.elf")];
|
||||
let envp = vec![String::from("PATH=/bin")];
|
||||
let r = tmp_rs_execve(path, argv, envp, regs);
|
||||
let r = Syscall::do_execve(path, argv, envp, frame);
|
||||
// kdebug!("rs_exec_init_process: r: {:?}\n", r);
|
||||
return r.map(|_| 0).unwrap_or_else(|e| e.to_posix_errno() as usize);
|
||||
}
|
||||
|
||||
/// 临时的execve系统调用实现,以后要把它改为普通的系统调用。
|
||||
///
|
||||
/// 现在放在这里的原因是,还没有重构中断管理模块,未实现TrapFrame这个抽象,
|
||||
/// 导致我们必须手动设置中断返回时,各个寄存器的值,这个过程很繁琐,所以暂时放在这里。
|
||||
fn tmp_rs_execve(
|
||||
path: String,
|
||||
argv: Vec<String>,
|
||||
envp: Vec<String>,
|
||||
regs: &mut pt_regs,
|
||||
) -> Result<(), SystemError> {
|
||||
// kdebug!(
|
||||
// "tmp_rs_execve: path: {:?}, argv: {:?}, envp: {:?}\n",
|
||||
// path,
|
||||
// argv,
|
||||
// envp
|
||||
// );
|
||||
// 关中断,防止在设置地址空间的时候,发生中断,然后进调度器,出现错误。
|
||||
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||||
// 暂存原本的用户地址空间的引用(因为如果在切换页表之前释放了它,可能会造成内存use after free)
|
||||
let old_address_space = current_pcb().address_space();
|
||||
// 在pcb中原来的用户地址空间
|
||||
unsafe {
|
||||
current_pcb().drop_address_space();
|
||||
}
|
||||
// 创建新的地址空间并设置为当前地址空间
|
||||
let address_space = AddressSpace::new(true).expect("Failed to create new address space");
|
||||
unsafe {
|
||||
current_pcb().set_address_space(address_space.clone());
|
||||
}
|
||||
assert!(
|
||||
AddressSpace::is_current(&address_space),
|
||||
"Failed to set address space"
|
||||
);
|
||||
// kdebug!("Switch to new address space");
|
||||
|
||||
// 切换到新的用户地址空间
|
||||
unsafe { address_space.read().user_mapper.utable.make_current() };
|
||||
|
||||
drop(old_address_space);
|
||||
drop(irq_guard);
|
||||
// kdebug!("to load binary file");
|
||||
let mut param = ExecParam::new(path.as_str(), address_space.clone(), ExecParamFlags::EXEC);
|
||||
// 加载可执行文件
|
||||
let load_result = load_binary_file(&mut param)
|
||||
.unwrap_or_else(|e| panic!("Failed to load binary file: {:?}, path: {:?}", e, path));
|
||||
// kdebug!("load binary file done");
|
||||
|
||||
param.init_info_mut().args = argv;
|
||||
param.init_info_mut().envs = envp;
|
||||
|
||||
// 把proc_init_info写到用户栈上
|
||||
|
||||
let (user_sp, argv_ptr) = unsafe {
|
||||
param
|
||||
.init_info()
|
||||
.push_at(
|
||||
address_space
|
||||
.write()
|
||||
.user_stack_mut()
|
||||
.expect("No user stack found"),
|
||||
)
|
||||
.expect("Failed to push proc_init_info to user stack")
|
||||
};
|
||||
|
||||
// kdebug!("write proc_init_info to user stack done");
|
||||
|
||||
// (兼容旧版libc)把argv的指针写到寄存器内
|
||||
// TODO: 改写旧版libc,不再需要这个兼容
|
||||
regs.rdi = param.init_info().args.len() as u64;
|
||||
regs.rsi = argv_ptr.data() as u64;
|
||||
|
||||
// 设置系统调用返回时的寄存器状态
|
||||
// TODO: 中断管理重构后,这里的寄存器状态设置要删掉!!!改为对trap frame的设置。要增加架构抽象。
|
||||
regs.rsp = user_sp.data() as u64;
|
||||
regs.rbp = user_sp.data() as u64;
|
||||
regs.rip = load_result.entry_point().data() as u64;
|
||||
|
||||
regs.cs = USER_CS as u64 | 3;
|
||||
regs.ds = USER_DS as u64 | 3;
|
||||
regs.ss = USER_DS as u64 | 3;
|
||||
regs.es = 0;
|
||||
regs.rflags = 0x200;
|
||||
regs.rax = 1;
|
||||
|
||||
// kdebug!("regs: {:?}\n", regs);
|
||||
|
||||
// kdebug!(
|
||||
// "tmp_rs_execve: done, load_result.entry_point()={:?}",
|
||||
// load_result.entry_point()
|
||||
// );
|
||||
return Ok(());
|
||||
}
|
||||
|
Reference in New Issue
Block a user