From 1801ddffbdbd15534a9e7b94be5d44e6e9136498 Mon Sep 17 00:00:00 2001 From: fslongjin Date: Wed, 4 May 2022 23:20:39 +0800 Subject: [PATCH] :new: fork --- kernel/driver/disk/ahci/ahci.c | 6 +- kernel/driver/interrupt/apic/apic.c | 2 +- kernel/process/process.c | 383 +++++++++++++++++++++++++++- kernel/process/process.h | 48 +++- kernel/sched/sched.c | 7 +- kernel/syscall/syscall.c | 11 + 6 files changed, 430 insertions(+), 27 deletions(-) diff --git a/kernel/driver/disk/ahci/ahci.c b/kernel/driver/disk/ahci/ahci.c index 1a67f016..372651fa 100644 --- a/kernel/driver/disk/ahci/ahci.c +++ b/kernel/driver/disk/ahci/ahci.c @@ -281,7 +281,7 @@ static bool ahci_read(HBA_PORT *port, uint32_t startl, uint32_t starth, uint32_t port->ci = 1 << slot; // Issue command - current_pcb->flags |= PROC_NEED_SCHED; + current_pcb->flags |= PF_NEED_SCHED; sched_cfs(); int retval = AHCI_SUCCESS; // Wait for completion @@ -361,7 +361,7 @@ static bool ahci_write(HBA_PORT *port, uint32_t startl, uint32_t starth, uint32_ // printk("[slot]{%d}", slot); port->ci = 1; // Issue command - current_pcb->flags |= PROC_NEED_SCHED; + current_pcb->flags |= PF_NEED_SCHED; //sched_cfs(); int retval = AHCI_SUCCESS; @@ -465,7 +465,7 @@ static struct ahci_request_packet_t *ahci_make_request(long cmd, uint64_t base_a void ahci_end_request() { ahci_req_queue.in_service->wait_queue.pcb->state = PROC_RUNNING; - ahci_req_queue.in_service->wait_queue.pcb->flags |= PROC_NEED_SCHED; + ahci_req_queue.in_service->wait_queue.pcb->flags |= PF_NEED_SCHED; kfree((uint64_t *)ahci_req_queue.in_service); ahci_req_queue.in_service = NULL; diff --git a/kernel/driver/interrupt/apic/apic.c b/kernel/driver/interrupt/apic/apic.c index 6fb80fee..974d7b9c 100644 --- a/kernel/driver/interrupt/apic/apic.c +++ b/kernel/driver/interrupt/apic/apic.c @@ -509,7 +509,7 @@ void do_IRQ(struct pt_regs *rsp, ul number) kBUG("current_pcb->preempt_count<0! pid=%d", current_pcb->pid); // should not be here // 检测当前进程是否可被调度 - if (current_pcb->flags & PROC_NEED_SCHED) + if (current_pcb->flags & PF_NEED_SCHED) { // kdebug("to sched"); sched_cfs(); diff --git a/kernel/process/process.c b/kernel/process/process.c index 5122aa58..3cc19fc2 100644 --- a/kernel/process/process.c +++ b/kernel/process/process.c @@ -9,10 +9,21 @@ #include #include #include +#include + +spinlock_t process_global_pid_write_lock; // 增加pid的写锁 +long process_global_pid = 0; // 系统中最大的pid extern void system_call(void); extern void kernel_thread_func(void); +/** + * @brief 将进程加入到调度器的就绪队列中 + * + * @param pcb 进程的pcb + */ +static inline void process_wakeup(struct process_control_block *pcb); + ul _stack_start; // initial proc的栈基地址(虚拟地址) struct mm_struct initial_mm = {0}; struct thread_struct initial_thread = @@ -386,7 +397,7 @@ int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigne // kdebug("kernel_thread_func=%#018lx", kernel_thread_func); // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func); // kdebug("1111\tregs.rip = %#018lx", regs.rip); - return do_fork(®s, flags, 0, 0); + return do_fork(®s, flags | CLONE_VM, 0, 0); } /** @@ -406,26 +417,47 @@ void process_init() initial_mm.rodata_addr_start = (ul)&_rodata; initial_mm.rodata_addr_end = (ul)&_erodata; + initial_mm.bss_start = (uint64_t)&_bss; + initial_mm.bss_end = (uint64_t)&_ebss; initial_mm.brk_start = 0; initial_mm.brk_end = memory_management_struct.kernel_end; initial_mm.stack_start = _stack_start; - // 初始化进程和tss - // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7); - initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp; + + // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 ===================== + + // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间, + // 因此需要先在IDLE进程的顶层页表内映射二级页表 + + uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL)); + + for (int i = 256; i < 512; ++i) + { + uint64_t *tmp = idle_pml4t_vaddr + i; + if(*tmp==0) + { + void* pdpt = kmalloc(PAGE_4K_SIZE,0); + memset(pdpt, 0, PAGE_4K_SIZE); + set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT)); + } + } /* kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp); kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1); kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1); */ + // 初始化pid的写锁 + spin_init(&process_global_pid_write_lock); + // 初始化进程的循环链表 list_init(&initial_proc_union.pcb.list); - kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程 + kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核进程 initial_proc_union.pcb.state = PROC_RUNNING; initial_proc_union.pcb.preempt_count = 0; + initial_proc_union.pcb.cpu_id = 0; // 获取新的进程的pcb // struct process_control_block *p = container_of(list_next(¤t_pcb->list), struct process_control_block, list); @@ -446,17 +478,23 @@ void process_init() unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size) { + int retval = 0; struct process_control_block *tsk = NULL; // kdebug("222\tregs.rip = %#018lx", regs->rip); - // 获取一个物理页并在这个物理页内初始化pcb - struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL); - tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys); + // 为新的进程分配栈空间,并将pcb放置在底部 + tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0); + kdebug("struct process_control_block ADDRESS=%#018lx", (uint64_t)tsk); + + if (tsk == NULL) + { + retval = -ENOMEM; + return retval; + } memset(tsk, 0, sizeof(struct process_control_block)); - // 将当前进程的pcb复制到新的pcb内 - *tsk = *current_pcb; + memcpy(tsk, current_pcb, sizeof(struct process_control_block)); // kdebug("current_pcb->flags=%#010lx", current_pcb->flags); @@ -466,12 +504,62 @@ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned // list_add(&initial_proc_union.pcb.list, &tsk->list); tsk->priority = 2; tsk->preempt_count = 0; - ++(tsk->pid); + + // 增加全局的pid并赋值给新进程的pid + spin_lock(&process_global_pid_write_lock); + tsk->pid = process_global_pid++; + + // 加入到进程链表中 + tsk->next_pcb = initial_proc_union.pcb.next_pcb; + initial_proc_union.pcb.next_pcb = tsk; + tsk->parent_pcb = current_pcb; + + spin_unlock(&process_global_pid_write_lock); + tsk->cpu_id = proc_current_cpu_id; tsk->state = PROC_UNINTERRUPTIBLE; list_init(&tsk->list); - list_add(&initial_proc_union.pcb.list, &tsk->list); + // list_add(&initial_proc_union.pcb.list, &tsk->list); + retval = -ENOMEM; + + // 拷贝标志位 + if (process_copy_flags(clone_flags, tsk)) + goto copy_flags_failed; + + // 拷贝内存空间分布结构体 + if (process_copy_mm(clone_flags, tsk)) + goto copy_mm_failed; + + // 拷贝文件 + if (process_copy_files(clone_flags, tsk)) + goto copy_files_failed; + + // 拷贝线程结构体 + if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs)) + goto copy_thread_failed; + + // 拷贝成功 + retval = tsk->pid; + // 唤醒进程 + process_wakeup(tsk); + + return retval; + +copy_thread_failed:; + // 回收线程 + process_exit_thread(tsk); +copy_files_failed:; + // 回收文件 + process_exit_files(tsk); +copy_mm_failed:; + // 回收内存空间分布结构体 + process_exit_mm(tsk); +copy_flags_failed:; + kfree(tsk); + return retval; + + /* // 将线程结构体放置在pcb的后面 struct thread_struct *thd = (struct thread_struct *)(tsk + 1); memset(thd, 0, sizeof(struct thread_struct)); @@ -498,6 +586,277 @@ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned tsk->state = PROC_RUNNING; sched_cfs_enqueue(tsk); + */ return 0; } + +/** + * @brief 根据pid获取进程的pcb + * + * @param pid + * @return struct process_control_block* + */ +struct process_control_block *process_get_pcb(long pid) +{ + struct process_control_block *pcb = initial_proc_union.pcb.next_pcb; + + // 使用蛮力法搜索指定pid的pcb + // todo: 使用哈希表来管理pcb + for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb) + { + if (pcb->pid == pid) + return pcb; + } + return NULL; +} +/** + * @brief 将进程加入到调度器的就绪队列中 + * + * @param pcb 进程的pcb + */ +static inline void process_wakeup(struct process_control_block *pcb) +{ + pcb->state = PROC_RUNNING; + sched_cfs_enqueue(pcb); +} + +/** + * @brief 拷贝当前进程的标志位 + * + * @param clone_flags 克隆标志位 + * @param pcb 新的进程的pcb + * @return uint64_t + */ +uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb) +{ + if (clone_flags & CLONE_VM) + pcb->flags |= PF_VFORK; + return 0; +} + +/** + * @brief 拷贝当前进程的文件描述符等信息 + * + * @param clone_flags 克隆标志位 + * @param pcb 新的进程的pcb + * @return uint64_t + */ +uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb) +{ + int retval = 0; + // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符 + // 文件描述符已经在复制pcb时被拷贝 + if (clone_flags & CLONE_FS) + return retval; + + // 为新进程拷贝新的文件描述符 + for (int i = 0; i < PROC_MAX_FD_NUM; ++i) + { + if (current_pcb->fds[i] == NULL) + continue; + + pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0); + memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t)); + } + + return retval; +} + +/** + * @brief 回收进程的所有文件描述符 + * + * @param pcb 要被回收的进程的pcb + * @return uint64_t + */ +uint64_t process_exit_files(struct process_control_block *pcb) +{ + // 与父进程共享文件描述符 + if (pcb->flags & PF_VFORK) + return 0; + + for (int i = 0; i < PROC_MAX_FD_NUM; ++i) + { + if (pcb->fds[i] == NULL) + continue; + kfree(pcb->fds[i]); + } + memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM); +} + +/** + * @brief 拷贝当前进程的内存空间分布结构体信息 + * + * @param clone_flags 克隆标志位 + * @param pcb 新的进程的pcb + * @return uint64_t + */ +uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb) +{ + int retval = 0; + // 与父进程共享内存空间 + if (clone_flags & CLONE_VM) + { + pcb->mm = current_pcb->mm; + return retval; + } + + // 分配新的内存空间分布结构体 + struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0); + memset(new_mms, 0, sizeof(struct mm_struct)); + + memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct)); + + pcb->mm = new_mms; + + // 分配顶层页表, 并设置顶层页表的物理地址 + new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0)); + + // 拷贝内核空间的页表指针 + memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2); + + pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(current_pcb->mm->pgd); + + // 迭代地拷贝用户空间 + for (int i = 0; i <= 255; ++i) + { + // 当前页表项为空 + if ((current_pgd + i)->pml4t == 0) + continue; + + // 分配新的二级页表 + pdpt_t *new_pdpt = (pdpt_t *)kmalloc(PAGE_4K_SIZE, 0); + memset(new_pdpt, 0, PAGE_4K_SIZE); + // 在新的一级页表中设置新的二级页表表项 + set_pml4t((uint64_t *)(current_pgd + i), mk_pml4t(virt_2_phys(new_pdpt), ((current_pgd + i)->pml4t) & 0xfffUL)); + + pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL)); + // 设置二级页表 + for (int j = 0; j < 512; ++j) + { + if ((current_pdpt + j)->pdpt == 0) + continue; + // 分配新的三级页表 + pdt_t *new_pdt = (pdt_t *)kmalloc(PAGE_4K_SIZE, 0); + memset(new_pdt, 0, PAGE_4K_SIZE); + + // 在新的二级页表中设置三级页表的表项 + set_pdpt((uint64_t *)new_pdpt, mk_pdpt(virt_2_phys(new_pdt), (current_pdpt + j)->pdpt & 0xfffUL)); + + pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL)); + + // 拷贝内存页 + for (int k = 0; k < 512; ++k) + { + if ((current_pdt + k)->pdt == 0) + continue; + // 获取一个新页 + struct Page *pg = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED); + set_pdt((uint64_t *)(current_pdt + k), mk_pdt(pg->addr_phys, (current_pdt + k)->pdt & 0x1fffUL)); + + // 拷贝数据 + memcpy(phys_2_virt(pg->addr_phys), phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL)), PAGE_2M_SIZE); + } + } + } + + return retval; +} + +/** + * @brief 释放进程的页表 + * + * @param pcb 要被释放页表的进程 + * @return uint64_t + */ +uint64_t process_exit_mm(struct process_control_block *pcb) +{ + if (pcb->flags & CLONE_VM) + return 0; + if (pcb->mm == NULL) + { + kdebug("pcb->mm==NULL"); + return 0; + } + if (pcb->mm->pgd == NULL) + { + kdebug("pcb->mm->pgd==NULL"); + return 0; + } + // 获取顶层页表 + pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd); + + // 迭代地释放用户空间 + for (int i = 0; i <= 255; ++i) + { + // 当前页表项为空 + if ((current_pgd + i)->pml4t == 0) + continue; + + // 二级页表entry + pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL)); + // 遍历二级页表 + for (int j = 0; j < 512; ++j) + { + if ((current_pdpt + j)->pdpt == 0) + continue; + + // 三级页表的entry + pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL)); + + // 释放三级页表的内存页 + for (int k = 0; k < 512; ++k) + { + if ((current_pdt + k)->pdt == 0) + continue; + // 释放内存页 + free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1); + } + // 释放三级页表 + kfree(current_pdt); + } + // 释放二级页表 + kfree(current_pdpt); + } + // 释放顶层页表 + kfree(current_pgd); + + // 释放内存空间分布结构体 + kfree(pcb->mm); + + return 0; +} +/** + * @brief 拷贝当前进程的线程结构体 + * + * @param clone_flags 克隆标志位 + * @param pcb 新的进程的pcb + * @return uint64_t + */ +uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs) +{ + // 将线程结构体放置在pcb后方 + struct thread_struct *thd = (struct thread_struct *)(pcb + 1); + memset(thd, 0, sizeof(struct thread_struct)); + pcb->thread = thd; + + // 拷贝栈空间 + struct pt_regs *child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs)); + memcpy(child_regs, current_regs, sizeof(struct pt_regs)); + + child_regs->rax = 0; + child_regs->rsp = stack_start; + + thd->rbp = (uint64_t)pcb + STACK_SIZE; + thd->rsp = (uint64_t)child_regs; + thd->fs = current_pcb->thread->fs; + thd->gs = current_pcb->thread->gs; + + // 根据是否为内核线程,设置进程的开始执行的地址 + if (pcb->flags & PF_KTHREAD) + thd->rip = (uint64_t)kernel_thread_func; + else + thd->rip = (uint64_t)ret_from_system_call; + kdebug("new proc's ret addr = %#018lx\tchild_regs->rsp = %#018lx", child_regs->rbx, child_regs->rsp); + return 0; +} \ No newline at end of file diff --git a/kernel/process/process.h b/kernel/process/process.h index c8eb6d5b..c1eacc6f 100644 --- a/kernel/process/process.h +++ b/kernel/process/process.h @@ -15,7 +15,7 @@ #include "../mm/mm.h" #include "../syscall/syscall.h" #include "ptrace.h" - +#include #include // 进程最大可拥有的文件描述符数量 @@ -46,9 +46,9 @@ #define USER_DS (0x30) // 进程初始化时的数据拷贝标志位 -#define CLONE_FS (1 << 0) -#define CLONE_FILES (1 << 1) -#define CLONE_SIGNAL (1 << 2) +#define CLONE_FS (1 << 0) // 在进程间共享打开的文件 +#define CLONE_SIGNAL (1 << 1) +#define CLONE_VM (1 << 2) // 在进程间共享虚拟内存空间 /** * @brief 内存空间分布结构体 @@ -63,6 +63,8 @@ struct mm_struct ul data_addr_start, data_addr_end; // 只读数据段空间 ul rodata_addr_start, rodata_addr_end; + // BSS段的空间 + uint64_t bss_start, bss_end; // 动态内存分配区(堆区域) ul brk_start, brk_end; // 应用层栈基地址 @@ -89,8 +91,10 @@ struct thread_struct // ========= pcb->flags ========= // 进程标志位 -#define PF_KTHREAD (1UL << 0) -#define PROC_NEED_SCHED (1UL << 1) // 进程需要被调度 +#define PF_KTHREAD (1UL << 0) // 内核线程 +#define PF_NEED_SCHED (1UL << 1) // 进程需要被调度 +#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享 + /** * @brief 进程控制块 * @@ -110,7 +114,7 @@ struct process_control_block // 进程切换时保存的状态信息 struct thread_struct *thread; - // 连接各个pcb的双向链表 + // 连接各个pcb的双向链表(todo:删除这个变量) struct List list; // 地址空间范围 @@ -125,6 +129,11 @@ struct process_control_block // 进程拥有的文件描述符的指针数组 // todo: 改用动态指针数组 struct vfs_file_t *fds[PROC_MAX_FD_NUM]; + + // 链表中的下一个pcb + struct process_control_block *next_pcb; + // 父进程的pcb + struct process_control_block *parent_pcb; }; // 将进程的pcb和内核栈融合到一起,8字节对齐 @@ -148,7 +157,9 @@ union proc_union .priority = 2, \ .preempt_count = 0, \ .cpu_id = 0, \ - .fds = { 0 } \ + .fds = {0}, \ + .next_pcb = &proc, \ + .parent_pcb = &proc \ } /** @@ -254,6 +265,27 @@ void process_init(); */ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size); +/** + * @brief 根据pid获取进程的pcb + * + * @param pid + * @return struct process_control_block* + */ +struct process_control_block *process_get_pcb(long pid); + +/** + * @brief 切换页表 + * @param prev 前一个进程的pcb + * @param next 下一个进程的pcb + * + */ +#define process_switch_mm(prev, next) \ + do \ + { \ + asm volatile("movq %0, %%cr3 \n\t" ::"r"(next->mm->pgd) \ + : "memory"); \ + } while (0) + // 获取当前cpu id #define proc_current_cpu_id (current_pcb->cpu_id) diff --git a/kernel/sched/sched.c b/kernel/sched/sched.c index 0e93e583..98b114fa 100644 --- a/kernel/sched/sched.c +++ b/kernel/sched/sched.c @@ -51,13 +51,13 @@ void sched_cfs_enqueue(struct process_control_block *pcb) void sched_cfs() { cli(); - current_pcb->flags &= ~PROC_NEED_SCHED; + current_pcb->flags &= ~PF_NEED_SCHED; struct process_control_block *proc = sched_cfs_dequeue(); if (current_pcb->virtual_runtime >= proc->virtual_runtime || current_pcb->state != PROC_RUNNING) // 当前进程运行时间大于了下一进程的运行时间,进行切换 { - if (current_pcb->state = PROC_RUNNING) // 本次切换由于时间片到期引发,则再次加入就绪队列,否则交由其它功能模块进行管理 + if (current_pcb->state == PROC_RUNNING) // 本次切换由于时间片到期引发,则再次加入就绪队列,否则交由其它功能模块进行管理 sched_cfs_enqueue(current_pcb); if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0) @@ -75,6 +75,7 @@ void sched_cfs() } } // kdebug("before switch, next.rip = %#018lx\tnext->gs=%#018lx", proc->thread->rip, proc->thread->gs); + process_switch_mm(current_pcb, proc); switch_proc(current_pcb, proc); } else // 不进行切换 @@ -127,7 +128,7 @@ void sched_update_jiffies() } // 时间片耗尽,标记可调度 if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0) - current_pcb->flags |= PROC_NEED_SCHED; + current_pcb->flags |= PF_NEED_SCHED; } /** diff --git a/kernel/syscall/syscall.c b/kernel/syscall/syscall.c index 2128f8f2..f6bea54d 100644 --- a/kernel/syscall/syscall.c +++ b/kernel/syscall/syscall.c @@ -336,6 +336,17 @@ uint64_t sys_lseek(struct pt_regs *regs) return retval; } +uint64_t sys_fork(struct pt_regs *regs) +{ + kdebug("sys_fork"); + return do_fork(regs, 0, regs->rsp, 0); +} +uint64_t sys_vfork(struct pt_regs *regs) +{ + kdebug("sys vfork"); + return do_fork(regs, CLONE_VM | CLONE_FS | CLONE_SIGNAL, regs->rsp, 0); +} + ul sys_ahci_end_req(struct pt_regs *regs) { ahci_end_request();