🆕 内核栈反向追踪

This commit is contained in:
fslongjin
2022-06-22 23:31:47 +08:00
parent 7a03b221a6
commit 1ab51cb334
13 changed files with 379 additions and 24 deletions

View File

@ -18,12 +18,10 @@ LD_LIST := head.o
OBJ_LIST := head.o
kernel_subdirs := common driver process
kernel_subdirs := common driver process debug
head.o: head.S
gcc -E head.S > head.s # 预处理
as $(ASFLAGS) -o head.o head.s
@ -144,17 +142,34 @@ uart.o: driver/uart/uart.c
gcc $(CFLAGS) -c driver/uart/uart.c -o driver/uart/uart.o
all: kernel
all: kernel
echo "Linking kernel..."
ld -b elf64-x86-64 -z muldefs -o kernel head.o main.o $(shell find . -name "*.o") -T link.lds
# 生成kallsyms
current_dir=$(pwd)
@dbg='debug';for x in $$dbg; do \
cd $$x;\
$(MAKE) generate_kallsyms kernel_root_path="$(shell pwd)";\
cd ..;\
done
# 重新链接
echo "Re-Linking kernel..."
ld -b elf64-x86-64 -z muldefs -o kernel head.o main.o $(shell find . -name "*.o") ./debug/kallsyms.o -T link.lds
echo "Generating kernel ELF file..."
# 生成内核文件
objcopy -I elf64-x86-64 -O elf64-x86-64 -R ".comment" -R ".eh_frame" kernel ../bin/kernel/kernel.elf
echo "Done."
kernel: head.o entry.o main.o printk.o trap.o mm.o slab.o irq.o pic.o sched.o syscall.o multiboot2.o cpu.o acpi.o ps2_keyboard.o ps2_mouse.o ata.o pci.o ahci.o smp.o apu_boot.o rtc.o HPET.o softirq.o timer.o fat32.o MBR.o VFS.o $(OBJ_LIST)
@list='$(kernel_subdirs)'; for subdir in $$list; do \
echo "make all in $$subdir";\
cd $$subdir;\
$(MAKE) all CFLAGS="$(CFLAGS)" ASFLAGS="$(ASFLAGS)";\
$(MAKE) all CFLAGS="$(CFLAGS)" ASFLAGS="$(ASFLAGS)" kernel_root_path="$(shell pwd)";\
cd ..;\
done
@ -162,4 +177,9 @@ kernel: head.o entry.o main.o printk.o trap.o mm.o slab.o irq.o pic.o sched.o sy
clean:
rm -rf $(GARBAGE)
rm -rf $(GARBAGE)
@list='$(kernel_subdirs)'; for subdir in $$list; do \
echo "Clean in dir: $$subdir";\
cd $$subdir && $(MAKE) clean;\
cd .. ;\
done

2
kernel/debug/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
kallsyms
kallsyms.S

24
kernel/debug/Makefile Normal file
View File

@ -0,0 +1,24 @@
all: traceback.o
CFLAGS += -I .
kallsyms.o: kallsyms.c
gcc -o kallsyms kallsyms.c
rm -rf kallsyms.o
traceback.o: traceback/traceback.c
gcc $(CFLAGS) -c traceback/traceback.c -o traceback/traceback.o
# 生成内核栈符号表的汇编文件
generate_kallsyms: kallsyms.o
echo "Generating kallsyms..."
nm -n $(kernel_root_path)/kernel | ./kallsyms > kallsyms.S
gcc -c kallsyms.S -o kallsyms.o
echo "Kallsyms generated."
clean:
rm -rf kallsyms

200
kernel/debug/kallsyms.c Normal file
View File

@ -0,0 +1,200 @@
/**
* @file kallsyms.c
* @author longjin (longjin@RinGoTek.cn)
* @brief 内核栈跟踪
* @version 0.1
* @date 2022-06-22
*
* @copyright Copyright (c) 2022
*
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/**
* @brief 判断符号是否需要被输出只输出text段内的符号
*
*/
#define symbol_to_write(vaddr, tv, etv) \
((vaddr < tv || vaddr > etv) ? 0 : 1)
/**
* @brief 使用nm命令提取出来的信息存到这个结构体之中
*
*/
struct kernel_symbol_entry_t
{
uint64_t vaddr;
char type;
char *symbol;
int symbol_length;
};
struct kernel_symbol_entry_t *symbol_table;
// 符号表最大能容纳的entry数量
uint64_t table_size = 0;
// 符号表当前的entry数量
uint64_t entry_count = 0;
// 符号表中text和etext的下标
uint64_t text_vaddr, etext_vaddr;
/**
* @brief 读取一个符号到entry之中
*
* @param filp stdin的文件指针
* @param entry 待填写的entry
* @return int 返回码
*/
int read_symbol(FILE *filp, struct kernel_symbol_entry_t *entry)
{
// 本函数假设nm命令输出的结果中每行最大512字节
char str[512] = {0};
int retval = fscanf(filp, "%llx %c %510s\n", &entry->vaddr, &entry->type, str);
// 如果当前行不符合要求
if (retval != 3)
{
if (retval != EOF)
{
// 如果不是输入流的结尾,说明该行不符合要求,将其过滤
fgets(str, 512, filp);
}
return -1;
}
// malloc一块内存然后把str的内容拷贝进去接着修改symbol指针
entry->symbol = strdup(str);
entry->symbol_length = strlen(str) + 1; // +1的原因是.asciz指令会在字符串末尾自动添加结束符\0
return 0;
}
/**
* @brief 接收标准输入流的数据解析nm命令输出的内容
*
* @param filp
*/
void read_map(FILE *filp)
{
// 循环读入数据直到输入流结束
while (!feof(filp))
{
// 给符号表扩容
if (entry_count >= table_size)
{
table_size += 100;
// 由于使用了realloc因此符号表原有的内容会被自动的copy过去
symbol_table = (struct kernel_symbol_entry_t *)realloc(symbol_table, sizeof(struct kernel_symbol_entry_t) * table_size);
}
// 若成功读取符号表的内容,则将计数器+1
if (read_symbol(filp, &symbol_table[entry_count]) == 0)
++entry_count;
}
// 查找符号表中的text和etext标签
for (uint64_t i = 0; i < entry_count; ++i)
{
if (strcmp(symbol_table[i].symbol, "_text")==0)
text_vaddr = symbol_table[i].vaddr;
if (strcmp(symbol_table[i].symbol, "_etext")==0)
etext_vaddr = symbol_table[i].vaddr;
}
}
/**
* @brief 输出最终的kallsyms汇编代码文件
* 直接输出到stdout通过命令行的 > 命令,写入文件
*/
void generate_result()
{
printf(".section .rodata\n\n");
printf(".global kallsyms_address\n");
printf(".align 8\n\n");
printf("kallsyms_address:\n"); // 地址数组
uint64_t last_vaddr = 0;
uint64_t total_syms_to_write = 0; // 真正输出的符号的数量
// 循环写入地址数组
for (uint64_t i = 0; i < entry_count; ++i)
{
// 判断是否为text段的符号
if (!symbol_to_write(symbol_table[i].vaddr, text_vaddr, etext_vaddr))
continue;
if (symbol_table[i].vaddr == last_vaddr)
continue;
// 输出符号地址
printf("\t.quad\t%#llx\n", symbol_table[i].vaddr);
++total_syms_to_write;
last_vaddr = symbol_table[i].vaddr;
}
putchar('\n');
// 写入符号表的表项数量
printf(".global kallsyms_num\n");
printf(".align 8\n");
printf("kallsyms_num:\n");
printf("\t.quad\t%lld\n", total_syms_to_write);
putchar('\n');
// 循环写入符号名称的下标索引
printf(".global kallsyms_names_index\n");
printf(".align 8\n");
printf("kallsyms_names_index:\n");
uint64_t position = 0;
last_vaddr = 0;
for (uint64_t i = 0; i < entry_count; ++i)
{
// 判断是否为text段的符号
if (!symbol_to_write(symbol_table[i].vaddr, text_vaddr, etext_vaddr))
continue;
if (symbol_table[i].vaddr == last_vaddr)
continue;
// 输出符号名称的偏移量
printf("\t.quad\t%lld\n", position);
position += symbol_table[i].symbol_length;
last_vaddr = symbol_table[i].vaddr;
}
putchar('\n');
// 输出符号名
printf(".global kallsyms_names\n");
printf(".align 8\n");
printf("kallsyms_names:\n");
last_vaddr = 0;
for (uint64_t i = 0; i < entry_count; ++i)
{
// 判断是否为text段的符号
if (!symbol_to_write(symbol_table[i].vaddr, text_vaddr, etext_vaddr))
continue;
if (symbol_table[i].vaddr == last_vaddr)
continue;
// 输出符号名称
printf("\t.asciz\t\"%s\"\n", symbol_table[i].symbol);
last_vaddr = symbol_table[i].vaddr;
}
putchar('\n');
}
int main(int argc, char **argv)
{
read_map(stdin);
generate_result();
}

View File

@ -0,0 +1,69 @@
#include "traceback.h"
#include <common/printk.h>
#include <process/process.h>
static int lookup_kallsyms(uint64_t addr, int level)
{
const char *str = (const char *)&kallsyms_names;
// 暴力查找符合要求的symbol
// todo: 改用二分搜索。
// 由于符号表使用nm -n生成因此是按照地址升序排列的因此可以二分
uint64_t index = 0;
for (index = 0; index < kallsyms_num - 1; ++index)
{
if (addr > kallsyms_address[index] && addr <= kallsyms_address[index + 1])
break;
}
if (index < kallsyms_num) // 找到对应的函数
{
// 依次输出函数名称、rip离函数起始处的偏移量、函数执行的rip
printk("function:%s() \t(+) %04d address:%#018lx\n", &str[kallsyms_names_index[index]], addr - kallsyms_address[index], addr);
return 0;
}
else
return -1;
}
/**
* @brief 追溯内核栈调用情况
*
* @param regs 内核栈结构体
*/
void traceback(struct pt_regs *regs)
{
// 先检验是否为用户态出错,若为用户态出错,则直接返回
if (verify_area(regs->rbp, 0))
{
printk_color(YELLOW, BLACK, "Kernel traceback: Fault in userland. pid=%ld, rbp=%#018lx\n", current_pcb->pid, regs->rbp);
return;
}
uint64_t *rbp = (uint64_t *)regs->rbp;
printk_color(YELLOW, BLACK, "======== Kernel traceback =======\n");
// printk("&kallsyms_address:%#018lx,kallsyms_address:%#018lx\n", &kallsyms_address, kallsyms_address);
// printk("&kallsyms_syms_num:%#018lx,kallsyms_syms_num:%d\n", &kallsyms_num, kallsyms_num);
// printk("&kallsyms_index:%#018lx\n", &kallsyms_names_index);
// printk("&kallsyms_names:%#018lx,kallsyms_names:%s\n", &kallsyms_names, &kallsyms_names);
uint64_t ret_addr = regs->rip;
// 最大追踪10层调用栈
for (int i = 0; i < 10; ++i)
{
printk_color(ORANGE, BLACK, "rbp:%#018lx,*rbp:%#018lx\n", rbp, *rbp);
if (lookup_kallsyms(ret_addr, i) != 0)
break;
// 由于内核栈大小32K因此当前rbp的值为按照32K对齐时表明调用栈已经到头了追踪结束。
if (((*rbp) & (~STACK_SIZE)) == 0)
break;
// 由于x86处理器在执行call指令时先将调用返回地址压入栈中然后再把函数的rbp入栈最后将rsp设为新的rbp。
// 因此此处的rbp就是上一层的rsp那么*(rbp+1)得到的就是上一层函数的返回地址
ret_addr = *(rbp + 1);
rbp = (uint64_t *)(*rbp);
printk("\n");
}
printk_color(YELLOW, BLACK, "======== Kernel traceback end =======\n");
}

View File

@ -0,0 +1,17 @@
#pragma once
#include <common/glib.h>
#include<process/ptrace.h>
// 使用弱引用属性导出kallsyms中的符号表。
// 采用weak属性是由于第一次编译时kallsyms还未链接进来若不使用weak属性则会报错
extern const uint64_t kallsyms_address[] __attribute__((weak));
extern const uint64_t kallsyms_num __attribute__((weak));
extern const uint64_t kallsyms_names_index[] __attribute__((weak));
extern const char* kallsyms_names __attribute__((weak));
/**
* @brief 追溯内核栈调用情况
*
* @param regs 内核栈结构体
*/
void traceback(struct pt_regs * regs);

View File

@ -10,3 +10,6 @@ all:
$(MAKE) all CFLAGS="$(CFLAGS)";\
cd ..;\
done
clean:
echo "Done."

View File

@ -3,12 +3,14 @@
#include "../process/ptrace.h"
#include "../common/kprint.h"
#include <process/process.h>
#include <debug/traceback/traceback.h>
// 0 #DE 除法错误
void do_divide_error(struct pt_regs *regs, unsigned long error_code)
{
// kerror("do_divide_error(0)");
kerror("do_divide_error(0),\tError Code:%#18lx,\tRSP:%#18lx,\tRIP:%#18lx\t CPU:%d\t pid=%d\n", error_code, regs->rsp, regs->rip, proc_current_cpu_id, current_pcb->pid);
traceback(regs);
current_pcb->state = PROC_STOPPED;
while (1)
hlt();
@ -75,8 +77,8 @@ void do_bounds(struct pt_regs *regs, unsigned long error_code)
void do_undefined_opcode(struct pt_regs *regs, unsigned long error_code)
{
kerror("do_undefined_opcode(6),\tError Code:%#18lx,\tRSP:%#18lx,\tRIP:%#18lx\t CPU:%d", error_code, regs->rsp, regs->rip, proc_current_cpu_id);
kerror("do_undefined_opcode(6),\tError Code:%#18lx,\tRSP:%#18lx,\tRIP:%#18lx\t CPU:%d, pid:%ld", error_code, regs->rsp, regs->rip, proc_current_cpu_id, current_pcb->pid);
traceback(regs);
while (1)
hlt();
}
@ -98,7 +100,7 @@ void do_double_fault(struct pt_regs *regs, unsigned long error_code)
printk("[ ");
printk_color(RED, BLACK, "Terminate");
printk(" ] do_double_fault(8),\tError Code:%#18lx,\tRSP:%#18lx,\tRIP:%#18lx\t CPU:%d\n", error_code, regs->rsp, regs->rip, proc_current_cpu_id);
traceback(regs);
while (1)
hlt();
}

View File

@ -14,3 +14,6 @@ process.o: process.c
wait_queue.o: wait_queue.c
gcc $(CFLAGS) -c wait_queue.c -o wait_queue.o
clean:
echo "Done."