new: vma反向映射

This commit is contained in:
fslongjin
2022-08-15 01:42:34 +08:00
parent f3cd2b7777
commit 1dd9195d69
20 changed files with 486 additions and 245 deletions

View File

@ -1,6 +1,7 @@
#pragma once
#include <process/process.h>
#include <arch/x86_64/current.h>
#include "proc-types.h"
/**
* @brief 增加自旋锁计数变量

131
kernel/process/proc-types.h Normal file
View File

@ -0,0 +1,131 @@
#pragma once
#include <common/wait_queue.h>
// 进程最大可拥有的文件描述符数量
#define PROC_MAX_FD_NUM 16
// 进程的内核栈大小 32K
#define STACK_SIZE 32768
// 进程的运行状态
// 正在运行
#define PROC_RUNNING (1 << 0)
// 可被中断
#define PROC_INTERRUPTIBLE (1 << 1)
// 不可被中断
#define PROC_UNINTERRUPTIBLE (1 << 2)
// 挂起
#define PROC_ZOMBIE (1 << 3)
// 已停止
#define PROC_STOPPED (1 << 4)
// 内核代码段基地址
#define KERNEL_CS (0x08)
// 内核数据段基地址
#define KERNEL_DS (0x10)
// 用户代码段基地址
#define USER_CS (0x28)
// 用户数据段基地址
#define USER_DS (0x30)
// 进程初始化时的数据拷贝标志位
#define CLONE_FS (1 << 0) // 在进程间共享打开的文件
#define CLONE_SIGNAL (1 << 1)
#define CLONE_VM (1 << 2) // 在进程间共享虚拟内存空间
struct thread_struct
{
// 内核层栈基指针
ul rbp; // in tss rsp0
// 内核层代码指针
ul rip;
// 内核层栈指针
ul rsp;
ul fs, gs;
ul cr2;
// 异常号
ul trap_num;
// 错误码
ul err_code;
};
// ========= pcb->flags =========
// 进程标志位
#define PF_KTHREAD (1UL << 0) // 内核线程
#define PF_NEED_SCHED (1UL << 1) // 进程需要被调度
#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享
#define PF_KFORK (1UL << 3) // 标志在内核态下调用fork临时标记do_fork()结束后会将其复位)
/**
* @brief 进程控制块
*
*/
struct process_control_block
{
// 进程的状态
volatile long state;
// 进程标志:进程、线程、内核线程
unsigned long flags;
int64_t preempt_count; // 持有的自旋锁的数量
long signal;
long cpu_id; // 当前进程在哪个CPU核心上运行
// 内存空间分布结构体, 记录内存页表和程序段信息
struct mm_struct *mm;
// 进程切换时保存的状态信息
struct thread_struct *thread;
// 连接各个pcb的双向链表
struct List list;
// 地址空间范围
// 用户空间: 0x0000 0000 0000 0000 ~ 0x0000 7fff ffff ffff
// 内核空间: 0xffff 8000 0000 0000 ~ 0xffff ffff ffff ffff
uint64_t addr_limit;
long pid;
long priority; // 优先级
int64_t virtual_runtime; // 虚拟运行时间
// 进程拥有的文件描述符的指针数组
// todo: 改用动态指针数组
struct vfs_file_t *fds[PROC_MAX_FD_NUM];
// 链表中的下一个pcb
struct process_control_block *next_pcb;
// 父进程的pcb
struct process_control_block *parent_pcb;
int32_t exit_code; // 进程退出时的返回码
wait_queue_node_t wait_child_proc_exit; // 子进程退出等待队列
};
// 将进程的pcb和内核栈融合到一起,8字节对齐
union proc_union
{
struct process_control_block pcb;
ul stack[STACK_SIZE / sizeof(ul)];
} __attribute__((aligned(8)));
struct tss_struct
{
unsigned int reserved0;
ul rsp0;
ul rsp1;
ul rsp2;
ul reserved1;
ul ist1;
ul ist2;
ul ist3;
ul ist4;
ul ist5;
ul ist6;
ul ist7;
ul reserved2;
unsigned short reserved3;
// io位图基地址
unsigned short io_map_base_addr;
} __attribute__((packed)); // 使用packed表明是紧凑结构编译器不会对成员变量进行字节对齐。

View File

@ -262,10 +262,13 @@ static int process_load_elf_file(struct pt_regs *regs, char *path)
{
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
int ret = mm_map_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa, VM_USER | VM_ACCESS_FLAGS, NULL);
struct vm_area_struct *vma = NULL;
int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
// 防止内存泄露
if (ret == -EEXIST)
free_pages(Phy_to_2M_Page(pa), 1);
else
mm_map_vma(vma, pa);
memset((void *)virt_base, 0, PAGE_2M_SIZE);
map_size = PAGE_2M_SIZE;
}
@ -278,9 +281,12 @@ static int process_load_elf_file(struct pt_regs *regs, char *path)
{
uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
int val = mm_map_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr, VM_USER | VM_ACCESS_FLAGS, NULL);
struct vm_area_struct *vma = NULL;
int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
if (val == -EEXIST)
kfree(phys_2_virt(paddr));
else
mm_map_vma(vma, paddr);
memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
}
}
@ -307,10 +313,13 @@ static int process_load_elf_file(struct pt_regs *regs, char *path)
regs->rbp = current_pcb->mm->stack_start;
{
struct vm_area_struct *vma = NULL;
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
int val = mm_map_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, pa, VM_USER | VM_ACCESS_FLAGS, NULL);
int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
if (val == -EEXIST)
free_pages(Phy_to_2M_Page(pa), 1);
else
mm_map_vma(vma, pa);
}
// 清空栈空间
@ -928,8 +937,14 @@ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb
{
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
mm_map_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, pa, vma->vm_flags, vma->vm_ops);
// kdebug("phys_2_virt(pa)=%#018lx, vaddr=%#018lx", phys_2_virt(pa), vma->vm_start + i * PAGE_2M_SIZE);
struct vm_area_struct *new_vma = NULL;
int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
// 防止内存泄露
if (unlikely(ret == -EEXIST))
free_pages(Phy_to_2M_Page(pa), 1);
else
mm_map_vma(new_vma, pa);
memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
vma_size -= PAGE_2M_SIZE;
}
@ -938,7 +953,15 @@ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb
{
uint64_t map_size = PAGE_4K_ALIGN(vma_size);
uint64_t va = (uint64_t)kmalloc(map_size, 0);
mm_map_vma(new_mms, vma->vm_start, map_size, virt_2_phys(va), vma->vm_flags, vma->vm_ops);
struct vm_area_struct *new_vma = NULL;
int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
// 防止内存泄露
if (unlikely(ret == -EEXIST))
kfree((void *)va);
else
mm_map_vma(new_vma, virt_2_phys(va));
memcpy((void *)va, (void *)vma->vm_start, vma_size);
}
vma = vma->vm_next;

View File

@ -17,114 +17,8 @@
#include <filesystem/VFS/VFS.h>
#include <common/wait_queue.h>
#include <mm/mm-types.h>
// 进程最大可拥有的文件描述符数量
#define PROC_MAX_FD_NUM 16
// 进程的内核栈大小 32K
#define STACK_SIZE 32768
// 进程的运行状态
// 正在运行
#define PROC_RUNNING (1 << 0)
// 可被中断
#define PROC_INTERRUPTIBLE (1 << 1)
// 不可被中断
#define PROC_UNINTERRUPTIBLE (1 << 2)
// 挂起
#define PROC_ZOMBIE (1 << 3)
// 已停止
#define PROC_STOPPED (1 << 4)
// 内核代码段基地址
#define KERNEL_CS (0x08)
// 内核数据段基地址
#define KERNEL_DS (0x10)
// 用户代码段基地址
#define USER_CS (0x28)
// 用户数据段基地址
#define USER_DS (0x30)
// 进程初始化时的数据拷贝标志位
#define CLONE_FS (1 << 0) // 在进程间共享打开的文件
#define CLONE_SIGNAL (1 << 1)
#define CLONE_VM (1 << 2) // 在进程间共享虚拟内存空间
struct thread_struct
{
// 内核层栈基指针
ul rbp; // in tss rsp0
// 内核层代码指针
ul rip;
// 内核层栈指针
ul rsp;
ul fs, gs;
ul cr2;
// 异常号
ul trap_num;
// 错误码
ul err_code;
};
// ========= pcb->flags =========
// 进程标志位
#define PF_KTHREAD (1UL << 0) // 内核线程
#define PF_NEED_SCHED (1UL << 1) // 进程需要被调度
#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享
#define PF_KFORK (1UL << 3) // 标志在内核态下调用fork临时标记do_fork()结束后会将其复位)
/**
* @brief 进程控制块
*
*/
struct process_control_block
{
// 进程的状态
volatile long state;
// 进程标志:进程、线程、内核线程
unsigned long flags;
int64_t preempt_count; // 持有的自旋锁的数量
long signal;
long cpu_id; // 当前进程在哪个CPU核心上运行
// 内存空间分布结构体, 记录内存页表和程序段信息
struct mm_struct *mm;
// 进程切换时保存的状态信息
struct thread_struct *thread;
// 连接各个pcb的双向链表
struct List list;
// 地址空间范围
// 用户空间: 0x0000 0000 0000 0000 ~ 0x0000 7fff ffff ffff
// 内核空间: 0xffff 8000 0000 0000 ~ 0xffff ffff ffff ffff
uint64_t addr_limit;
long pid;
long priority; // 优先级
int64_t virtual_runtime; // 虚拟运行时间
// 进程拥有的文件描述符的指针数组
// todo: 改用动态指针数组
struct vfs_file_t *fds[PROC_MAX_FD_NUM];
// 链表中的下一个pcb
struct process_control_block *next_pcb;
// 父进程的pcb
struct process_control_block *parent_pcb;
int32_t exit_code; // 进程退出时的返回码
wait_queue_node_t wait_child_proc_exit; // 子进程退出等待队列
};
// 将进程的pcb和内核栈融合到一起,8字节对齐
union proc_union
{
struct process_control_block pcb;
ul stack[STACK_SIZE / sizeof(ul)];
} __attribute__((aligned(8)));
#include <arch/x86_64/current.h>
#include "proc-types.h"
// 设置初始进程的PCB
#define INITIAL_PROC(proc) \
@ -151,25 +45,7 @@ union proc_union
* @brief 任务状态段结构体
*
*/
struct tss_struct
{
unsigned int reserved0;
ul rsp0;
ul rsp1;
ul rsp2;
ul reserved1;
ul ist1;
ul ist2;
ul ist3;
ul ist4;
ul ist5;
ul ist6;
ul ist7;
ul reserved2;
unsigned short reserved3;
// io位图基地址
unsigned short io_map_base_addr;
} __attribute__((packed)); // 使用packed表明是紧凑结构编译器不会对成员变量进行字节对齐。
// 设置初始进程的tss
#define INITIAL_TSS \
@ -191,22 +67,7 @@ struct tss_struct
.io_map_base_addr = 0 \
}
#pragma GCC push_options
#pragma GCC optimize("O0")
// 获取当前的pcb
struct process_control_block *get_current_pcb()
{
struct process_control_block *current = NULL;
// 利用了当前pcb和栈空间总大小为32k大小对齐将rsp低15位清空即可获得pcb的起始地址
barrier();
__asm__ __volatile__("andq %%rsp, %0 \n\t"
: "=r"(current)
: "0"(~32767UL));
barrier();
return current;
};
#pragma GCC pop_options
#define current_pcb get_current_pcb()
#define GET_CURRENT_PCB \
"movq %rsp, %rbx \n\t" \