4
1
mirror of https://github.com/DragonOS-Community/DragonOS.git synced 2025-06-19 13:16:31 +00:00

调整user下libs的libc目录结构 (#103)

* 调整user下libs的libc目录结构

* 修正.gitignore文件的问题

* 修复无法编译的问题

Co-authored-by: longjin <longjin@RinGoTek.cn>
This commit is contained in:
wwc-15172310230
2022-12-11 22:22:10 +08:00
committed by GitHub
parent 2291ffdece
commit 237e95c6dd
57 changed files with 229 additions and 124 deletions

392
user/libs/libc/src/malloc.c Normal file

@ -0,0 +1,392 @@
#include <libc/src/stdlib.h>
#include <libsystem/syscall.h>
#include <libc/src/stddef.h>
#include <libc/src/unistd.h>
#include <libc/src/errno.h>
#include <libc/src/stdio.h>
#define PAGE_4K_SHIFT 12
#define PAGE_2M_SHIFT 21
#define PAGE_1G_SHIFT 30
#define PAGE_GDT_SHIFT 39
// 不同大小的页的容量
#define PAGE_4K_SIZE (1UL << PAGE_4K_SHIFT)
#define PAGE_2M_SIZE (1UL << PAGE_2M_SHIFT)
#define PAGE_1G_SIZE (1UL << PAGE_1G_SHIFT)
// 屏蔽低于x的数值
#define PAGE_4K_MASK (~(PAGE_4K_SIZE - 1))
#define PAGE_2M_MASK (~(PAGE_2M_SIZE - 1))
// 将addr按照x的上边界对齐
#define PAGE_4K_ALIGN(addr) (((unsigned long)(addr) + PAGE_4K_SIZE - 1) & PAGE_4K_MASK)
#define PAGE_2M_ALIGN(addr) (((unsigned long)(addr) + PAGE_2M_SIZE - 1) & PAGE_2M_MASK)
/**
* @brief 显式链表的结点
*
*/
typedef struct malloc_mem_chunk_t
{
uint64_t length; // 整个块所占用的内存区域的大小
struct malloc_mem_chunk_t *prev; // 上一个结点的指针
struct malloc_mem_chunk_t *next; // 下一个结点的指针
} malloc_mem_chunk_t;
static uint64_t brk_base_addr = 0; // 堆区域的内存基地址
static uint64_t brk_max_addr = 0; // 堆区域的内存最大地址
static uint64_t brk_managed_addr = 0; // 堆区域已经被管理的地址
// 空闲链表
// 按start_addr升序排序
static malloc_mem_chunk_t *malloc_free_list = NULL;
static malloc_mem_chunk_t *malloc_free_list_end = NULL; // 空闲链表的末尾结点
static uint64_t count_last_free_size = 0; // 统计距离上一次回收内存已经free了多少内存
/**
* @brief 将块插入空闲链表
*
* @param ck 待插入的块
*/
static void malloc_insert_free_list(malloc_mem_chunk_t *ck);
/**
* @brief 当堆顶空闲空间大于2个页的空间的时候释放1个页
*
*/
static void release_brk();
/**
* @brief 在链表中检索符合要求的空闲块best fit
*
* @param size 块的大小
* @return malloc_mem_chunk_t*
*/
static malloc_mem_chunk_t *malloc_query_free_chunk_bf(uint64_t size)
{
// 在满足best fit的前提下尽可能的使分配的内存在低地址
// 使得总的堆内存可以更快被释放
if (malloc_free_list == NULL)
{
return NULL;
}
malloc_mem_chunk_t *ptr = malloc_free_list;
malloc_mem_chunk_t *best = NULL;
// printf("query size=%d", size);
while (ptr != NULL)
{
// printf("ptr->length=%#010lx\n", ptr->length);
if (ptr->length == size)
{
best = ptr;
break;
}
if (ptr->length > size)
{
if (best == NULL)
best = ptr;
else if (best->length > ptr->length)
best = ptr;
}
ptr = ptr->next;
}
return best;
}
/**
* @brief 在链表中检索符合要求的空闲块first fit
*
* @param size
* @return malloc_mem_chunk_t*
*/
static malloc_mem_chunk_t *malloc_query_free_chunk_ff(uint64_t size)
{
if (malloc_free_list == NULL)
return NULL;
malloc_mem_chunk_t *ptr = malloc_free_list;
while (ptr)
{
if (ptr->length >= size)
{
return ptr;
}
ptr = ptr->next;
}
return NULL;
}
/**
* @brief 扩容malloc管理的内存区域
*
* @param size 扩大的内存大小
*/
static int malloc_enlarge(int64_t size)
{
if (brk_base_addr == 0) // 第一次调用,需要初始化
{
brk_base_addr = brk(-1);
// printf("brk_base_addr=%#018lx\n", brk_base_addr);
brk_managed_addr = brk_base_addr;
brk_max_addr = brk(-2);
}
int64_t free_space = brk_max_addr - brk_managed_addr;
// printf("size=%ld\tfree_space=%ld\n", size, free_space);
if (free_space < size) // 现有堆空间不足
{
if (sbrk(size - free_space) != (void *)(-1))
brk_max_addr = brk((-2));
else
{
put_string("malloc_enlarge(): no_mem\n", COLOR_YELLOW, COLOR_BLACK);
return -ENOMEM;
}
// printf("brk max addr = %#018lx\n", brk_max_addr);
}
// 扩展管理的堆空间
// 在新分配的内存的底部放置header
// printf("managed addr = %#018lx\n", brk_managed_addr);
malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)brk_managed_addr;
new_ck->length = brk_max_addr - brk_managed_addr;
// printf("new_ck->start_addr=%#018lx\tbrk_max_addr=%#018lx\tbrk_managed_addr=%#018lx\n", (uint64_t)new_ck, brk_max_addr, brk_managed_addr);
new_ck->prev = NULL;
new_ck->next = NULL;
brk_managed_addr = brk_max_addr;
malloc_insert_free_list(new_ck);
return 0;
}
/**
* @brief 合并空闲块
*
*/
static void malloc_merge_free_chunk()
{
if (malloc_free_list == NULL)
return;
malloc_mem_chunk_t *ptr = malloc_free_list->next;
while (ptr != NULL)
{
// 内存块连续
if (((uint64_t)(ptr->prev) + ptr->prev->length == (uint64_t)ptr))
{
// printf("merged %#018lx and %#018lx\n", (uint64_t)ptr, (uint64_t)(ptr->prev));
// 将ptr与前面的空闲块合并
ptr->prev->length += ptr->length;
ptr->prev->next = ptr->next;
if (ptr->next == NULL)
malloc_free_list_end = ptr->prev;
else
ptr->next->prev = ptr->prev;
// 由于内存组成结构的原因不需要free掉header
ptr = ptr->prev;
}
ptr = ptr->next;
}
}
/**
* @brief 将块插入空闲链表
*
* @param ck 待插入的块
*/
static void malloc_insert_free_list(malloc_mem_chunk_t *ck)
{
if (malloc_free_list == NULL) // 空闲链表为空
{
malloc_free_list = ck;
malloc_free_list_end = ck;
ck->prev = ck->next = NULL;
return;
}
else
{
malloc_mem_chunk_t *ptr = malloc_free_list;
while (ptr != NULL)
{
if ((uint64_t)ptr < (uint64_t)ck)
{
if (ptr->next == NULL) // 当前是最后一个项
{
ptr->next = ck;
ck->next = NULL;
ck->prev = ptr;
malloc_free_list_end = ck;
break;
}
else if ((uint64_t)(ptr->next) > (uint64_t)ck)
{
ck->prev = ptr;
ck->next = ptr->next;
ptr->next = ck;
ck->next->prev = ck;
break;
}
}
else // 在ptr之前插入
{
if (ptr->prev == NULL) // 是第一个项
{
malloc_free_list = ck;
ck->prev = NULL;
ck->next = ptr;
ptr->prev = ck;
break;
}
else
{
ck->prev = ptr->prev;
ck->next = ptr;
ck->prev->next = ck;
ptr->prev = ck;
break;
}
}
ptr = ptr->next;
}
}
}
/**
* @brief 获取一块堆内存
*
* @param size 内存大小
* @return void* 内存空间的指针
*
* 分配内存的时候结点的prev next指针所占用的空间被当做空闲空间分配出去
*/
void *malloc(ssize_t size)
{
// printf("malloc\n");
// 计算需要分配的块的大小
if (size + sizeof(uint64_t) <= sizeof(malloc_mem_chunk_t))
size = sizeof(malloc_mem_chunk_t);
else
size += sizeof(uint64_t);
// 采用best fit
malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
if (ck == NULL) // 没有空闲块
{
// printf("no free blocks\n");
// 尝试合并空闲块
malloc_merge_free_chunk();
ck = malloc_query_free_chunk_bf(size);
// 找到了合适的块
if (ck)
goto found;
// printf("before enlarge\n");
// 找不到合适的块,扩容堆区域
if (malloc_enlarge(size) == -ENOMEM)
return (void *)-ENOMEM; // 内存不足
malloc_merge_free_chunk(); // 扩容后运行合并,否则会导致碎片
// 扩容后再次尝试获取
ck = malloc_query_free_chunk_bf(size);
}
found:;
// printf("ck = %#018lx\n", (uint64_t)ck);
if (ck == NULL)
return (void *)-ENOMEM;
// printf("ck->prev=%#018lx ck->next=%#018lx\n", ck->prev, ck->next);
// 分配空闲块
// 从空闲链表取出
if (ck->prev == NULL) // 当前是链表的第一个块
{
malloc_free_list = ck->next;
}
else
ck->prev->next = ck->next;
if (ck->next != NULL) // 当前不是最后一个块
ck->next->prev = ck->prev;
else
malloc_free_list_end = ck->prev;
// 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
if ((int64_t)(ck->length) - size > sizeof(malloc_mem_chunk_t))
{
// printf("seperate\n");
malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)(((uint64_t)ck) + size);
new_ck->length = ck->length - size;
new_ck->prev = new_ck->next = NULL;
// printf("new_ck=%#018lx, new_ck->length=%#010lx\n", (uint64_t)new_ck, new_ck->length);
ck->length = size;
malloc_insert_free_list(new_ck);
}
// printf("malloc done: %#018lx, length=%#018lx\n", ((uint64_t)ck + sizeof(uint64_t)), ck->length);
// 此时链表结点的指针的空间被分配出去
return (void *)((uint64_t)ck + sizeof(uint64_t));
}
/**
* @brief 当堆顶空闲空间大于2个页的空间的时候释放1个页
*
*/
static void release_brk()
{
// 先检测最顶上的块
// 由于块按照开始地址排列,因此找最后一个块
if (malloc_free_list_end == NULL)
{
printf("release(): free list end is null. \n");
return;
}
if ((uint64_t)malloc_free_list_end + malloc_free_list_end->length == brk_max_addr && (uint64_t)malloc_free_list_end <= brk_max_addr - (PAGE_2M_SIZE << 1))
{
int64_t delta = ((brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK) - PAGE_2M_SIZE;
// printf("(brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK);
// printf("PAGE_2M_SIZE=%#018lx\n", PAGE_2M_SIZE);
// printf("tdfghgbdfggkmfn=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK - PAGE_2M_SIZE);
// printf("delta=%#018lx\n ", delta);
if (delta <= 0) // 不用释放内存
return;
sbrk(-delta);
brk_max_addr = brk(-2);
brk_managed_addr = brk_max_addr;
malloc_free_list_end->length = brk_max_addr - (uint64_t)malloc_free_list_end;
}
}
/**
* @brief 释放一块堆内存
*
* @param ptr 堆内存的指针
*/
void free(void *ptr)
{
// 找到结点此时prev和next都处于未初始化的状态
malloc_mem_chunk_t *ck = (malloc_mem_chunk_t *)((uint64_t)ptr - sizeof(uint64_t));
// printf("free(): addr = %#018lx\t len=%#018lx\n", (uint64_t)ck, ck->length);
count_last_free_size += ck->length;
malloc_insert_free_list(ck);
if (count_last_free_size > PAGE_2M_SIZE)
{
count_last_free_size = 0;
malloc_merge_free_chunk();
release_brk();
}
}