From 23fa42827497c334b93025b34a966efb019e61dd Mon Sep 17 00:00:00 2001 From: fslongjin Date: Mon, 1 Aug 2022 23:27:41 +0800 Subject: [PATCH] =?UTF-8?q?fix:=20init=5Fmm=E4=B8=AD=E6=9C=AA=E5=8A=A0mfen?= =?UTF-8?q?ce=E5=AF=BC=E8=87=B4O3=E5=87=BA=E9=94=99=E7=9A=84=E9=97=AE?= =?UTF-8?q?=E9=A2=98?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Makefile | 2 +- kernel/common/cpu.c | 2 +- kernel/mm/mm.c | 49 +++++++++++++++++++++------------------------ 3 files changed, 25 insertions(+), 28 deletions(-) diff --git a/Makefile b/Makefile index 1a87b4c1..a941c7fc 100644 --- a/Makefile +++ b/Makefile @@ -7,7 +7,7 @@ export ARCH=__x86_64__ export ROOT_PATH=$(shell pwd) export DEBUG=DEBUG -export GLOBAL_CFLAGS := -mcmodel=large -fno-builtin -m64 -fno-stack-protector -D $(ARCH) -O1 +export GLOBAL_CFLAGS := -mcmodel=large -fno-builtin -m64 -fno-stack-protector -D $(ARCH) ifeq ($(DEBUG), DEBUG) GLOBAL_CFLAGS += -g diff --git a/kernel/common/cpu.c b/kernel/common/cpu.c index 5e45b2a7..4596a844 100644 --- a/kernel/common/cpu.c +++ b/kernel/common/cpu.c @@ -1,7 +1,7 @@ #include "cpu.h" #include "kprint.h" #include "printk.h" -#pragma GCC optimize("O0") +// #pragma GCC optimize("O0") // cpu支持的最大cpuid指令的基础主功能号 uint Cpu_cpuid_max_Basic_mop; // cpu支持的最大cpuid指令的扩展主功能号 diff --git a/kernel/mm/mm.c b/kernel/mm/mm.c index 78dc9bde..15f57652 100644 --- a/kernel/mm/mm.c +++ b/kernel/mm/mm.c @@ -11,8 +11,8 @@ static ul Total_Memory = 0; static ul total_2M_pages = 0; static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址 -#pragma GCC push_options -#pragma GCC optimize("O0") +// #pragma GCC push_options +// #pragma GCC optimize("O3") struct memory_desc memory_management_struct = {{0}, 0}; /** @@ -85,9 +85,10 @@ void mm_init() int count; multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count); - + io_mfence(); for (int i = 0; i < count; ++i) { + io_mfence(); //可用的内存 if (mb2_mem_info->type == 1) Total_Memory += mb2_mem_info->len; @@ -106,12 +107,12 @@ void mm_init() printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory); // 计算有效内存页数 - + io_mfence(); for (int i = 0; i < memory_management_struct.len_e820; ++i) { if (memory_management_struct.e820[i].type != 1) continue; - + io_mfence(); // 将内存段的起始物理地址按照2M进行对齐 ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr); // 将内存段的终止物理地址的低2M区域清空,以实现对齐 @@ -120,7 +121,7 @@ void mm_init() // 内存段不可用 if (addr_end <= addr_start) continue; - + io_mfence(); total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT); } kinfo("Total amounts of 2M pages : %ld.", total_2M_pages); @@ -129,16 +130,18 @@ void mm_init() ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length; // 初始化mms的bitmap // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据) + io_mfence(); memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数 memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成 + io_mfence(); // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。 memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len); - + io_mfence(); + kdebug("1212112"); // 初始化内存页结构 // 将页结构映射于bmp之后 - memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT; @@ -146,18 +149,25 @@ void mm_init() // 将pages_struct全部清空,以备后续初始化 memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory + kdebug("ffff"); + io_mfence(); // 初始化内存区域 memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK); + io_mfence(); // 由于暂时无法计算zone结构体的数量,因此先将其设为0 memory_management_struct.count_zones = 0; + io_mfence(); // zones-struct 成员变量暂时按照5个来计算 memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1)); + io_mfence(); memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len); // ==== 遍历e820数组,完成成员变量初始化工作 === + kdebug("ddd"); for (int i = 0; i < memory_management_struct.len_e820; ++i) { + io_mfence(); if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存 continue; ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr); @@ -203,7 +213,7 @@ void mm_init() // 初始化0~2MB的物理页 // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。 - + io_mfence(); memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct; memory_management_struct.pages_struct->addr_phys = 0UL; set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL); @@ -219,27 +229,13 @@ void mm_init() ZONE_NORMAL_INDEX = 0; ZONE_UNMAPPED_INDEX = 0; - /* - for (int i = 0; i < memory_management_struct.count_zones; ++i) - { - struct Zone *z = memory_management_struct.zones_struct + i; - // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n", - // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages); - - // 1GB以上的内存空间不做映射 - // if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX)) - // ZONE_UNMAPPED_INDEX = i; - } - */ + // kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX); // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。 memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1)); - // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n", - // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct); - + // 初始化内存管理单元结构所占的物理页的结构体 - ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页 // kdebug("mms_max_page=%ld", mms_max_page); @@ -248,6 +244,7 @@ void mm_init() // 第0个page已经在上方配置 for (ul j = 1; j <= mms_max_page; ++j) { + barrier(); tmp_page = memory_management_struct.pages_struct + j; page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT); page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT; @@ -981,4 +978,4 @@ int8_t mm_is_2M_page(uint64_t paddr) return 1; else return 0; } -#pragma GCC pop_options \ No newline at end of file +// #pragma GCC pop_options \ No newline at end of file