feat: 添加对内核引导协议的抽象 (#913)

* 添加multiboot header

* head.S传参增加bootloader类型

* feat: 添加引导加载协议的抽象,并为multiboot2实现这个抽象.

* 把framebuffer的映射地址改为从early ioremap和mmio pool分配

* riscv64能运行
This commit is contained in:
LoGin
2024-09-05 21:12:20 +08:00
committed by GitHub
parent cf7f801e1d
commit 2b7818e80e
42 changed files with 826 additions and 1327 deletions

View File

@ -6,15 +6,13 @@ pub mod pkru;
use alloc::sync::Arc;
use alloc::vec::Vec;
use hashbrown::HashSet;
use log::{debug, info, warn};
use log::{debug, info};
use x86::time::rdtsc;
use x86_64::registers::model_specific::EferFlags;
use crate::driver::serial::serial8250::send_to_default_serial8250_port;
use crate::include::bindings::bindings::{
multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
multiboot_tag_load_base_addr_t,
};
use crate::init::boot::boot_callbacks;
use crate::libs::align::page_align_up;
use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
use crate::libs::spinlock::SpinLock;
@ -34,9 +32,7 @@ use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr, VmFlags
use system_error::SystemError;
use core::arch::asm;
use core::ffi::c_void;
use core::fmt::Debug;
use core::mem::{self};
use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
@ -63,6 +59,12 @@ pub struct X86_64MMBootstrapInfo {
pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
pub(super) fn x86_64_set_kernel_load_base_paddr(paddr: PhysAddr) {
unsafe {
BOOTSTRAP_MM_INFO.as_mut().unwrap().kernel_load_base_paddr = paddr.data();
}
}
/// @brief X86_64的内存管理架构结构体
#[derive(Debug, Clone, Copy, Hash)]
pub struct X86_64MMArch;
@ -125,8 +127,8 @@ impl MemoryManagementArch for X86_64MMArch {
const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
/// 设置FIXMAP区域大小为1M
const FIXMAP_SIZE: usize = 256 * 4096;
/// 设置FIXMAP区域大小为16M
const FIXMAP_SIZE: usize = 256 * 4096 * 16;
const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000);
const MMIO_SIZE: usize = 1 << PAGE_1G_SHIFT;
@ -142,10 +144,9 @@ impl MemoryManagementArch for X86_64MMArch {
}
Self::init_xd_rsvd();
let load_base_paddr = Self::get_load_base_paddr();
let bootstrap_info = X86_64MMBootstrapInfo {
kernel_load_base_paddr: load_base_paddr.data(),
kernel_load_base_paddr: 0,
kernel_code_start: _text as usize,
kernel_code_end: _etext as usize,
kernel_data_end: _edata as usize,
@ -157,8 +158,10 @@ impl MemoryManagementArch for X86_64MMArch {
BOOTSTRAP_MM_INFO = Some(bootstrap_info);
}
// 初始化物理内存区域(从multiboot2中获取)
Self::init_memory_area_from_multiboot2().expect("init memory area failed");
// 初始化物理内存区域
boot_callbacks()
.early_init_memory_blocks()
.expect("init memory area failed");
debug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
debug!("phys[0]=virt[0x{:x}]", unsafe {
@ -168,7 +171,7 @@ impl MemoryManagementArch for X86_64MMArch {
// 初始化内存管理器
unsafe { allocator_init() };
send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes());
send_to_default_serial8250_port("x86 64 mm init done\n\0".as_bytes());
}
/// @brief 刷新TLB中关于指定虚拟地址的条目
@ -416,73 +419,6 @@ const fn protection_map() -> [EntryFlags<MMArch>; 16] {
}
impl X86_64MMArch {
unsafe fn get_load_base_paddr() -> PhysAddr {
let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
let mut mb2_count: u32 = 0;
multiboot2_iter(
Some(multiboot2_get_load_base),
&mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
&mut mb2_count,
);
if mb2_count == 0 {
send_to_default_serial8250_port(
"get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
);
return PhysAddr::new(0x100000);
}
let phys = mb2_lb_info[0].load_base_addr as usize;
return PhysAddr::new(phys);
}
unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
// 这个数组用来存放内存区域的信息从C获取
let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
let mut mb2_count: u32 = 0;
multiboot2_iter(
Some(multiboot2_get_memory),
&mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
&mut mb2_count,
);
send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
let mb2_count = mb2_count as usize;
let mut areas_count = 0usize;
let mut total_mem_size = 0usize;
for info_entry in mb2_mem_info.iter().take(mb2_count) {
// Only use the memory area if its type is 1 (RAM)
if info_entry.type_ == 1 {
// Skip the memory area if its len is 0
if info_entry.len == 0 {
continue;
}
total_mem_size += info_entry.len as usize;
mem_block_manager()
.add_block(
PhysAddr::new(info_entry.addr as usize),
info_entry.len as usize,
)
.unwrap_or_else(|e| {
warn!(
"Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
info_entry.addr, info_entry.len, e
);
});
areas_count += 1;
}
}
send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
info!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
return Ok(areas_count);
}
fn init_xd_rsvd() {
// 读取ia32-EFER寄存器的值
let efer: EferFlags = x86_64::registers::model_specific::Efer::read();