将具体磁盘类型与fat32文件系统进行分离

This commit is contained in:
fslongjin
2022-09-06 14:10:17 +08:00
parent 0fcba99282
commit 339053a20e
23 changed files with 307 additions and 138 deletions

View File

@ -18,7 +18,7 @@ int fat32_alloc_clusters(struct vfs_index_node_t *inode, uint32_t *clusters, int
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)inode->sb->private_sb_info;
struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)inode->private_inode_info;
struct block_device *blk = inode->sb->blk_device;
uint64_t sec_per_fat = fsbi->sec_per_FAT;
// todo: 对alloc的过程加锁
@ -32,8 +32,7 @@ int fat32_alloc_clusters(struct vfs_index_node_t *inode, uint32_t *clusters, int
if (clus_idx >= num_clusters)
goto done;
memset(buf, 0, fsbi->bytes_per_sec);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf);
// 依次检查簇是否空闲
for (int j = 0; j < ent_per_sec; ++j)
{
@ -73,7 +72,7 @@ done:;
cluster = tmp_clus;
while (true)
{
tmp_clus = fat32_read_FAT_entry(fsbi, cluster);
tmp_clus = fat32_read_FAT_entry(blk, fsbi, cluster);
if (tmp_clus <= 0x0ffffff7)
cluster = tmp_clus;
else
@ -85,10 +84,10 @@ done:;
for (int i = idx; i < num_clusters; ++i)
{
// kdebug("write cluster i=%d : cluster=%d, value= %d", i, cluster, clusters[i]);
fat32_write_FAT_entry(fsbi, cluster, clusters[i]);
fat32_write_FAT_entry(blk, fsbi, cluster, clusters[i]);
cluster = clusters[i];
}
fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8);
fat32_write_FAT_entry(blk, fsbi, cluster, 0x0ffffff8);
return 0;
}
@ -119,11 +118,12 @@ int fat32_free_clusters(struct vfs_index_node_t *inode, int32_t cluster)
/**
* @brief 读取指定簇的FAT表项
*
* @param blk 块设备结构体
* @param fsbi fat32超级块私有信息结构体
* @param cluster 指定簇
* @return uint32_t 下一个簇的簇号
*/
uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster)
uint32_t fat32_read_FAT_entry(struct block_device *blk, fat32_sb_info_t *fsbi, uint32_t cluster)
{
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
@ -133,8 +133,8 @@ uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster)
memset(buf, 0, fsbi->bytes_per_sec);
// 读取一个sector的数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf);
// 返回下一个fat表项的值也就是下一个cluster
return buf[cluster & (fat_ent_per_sec - 1)] & 0x0fffffff;
@ -143,28 +143,29 @@ uint32_t fat32_read_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster)
/**
* @brief 写入指定簇的FAT表项
*
* @param blk 块设备结构体
* @param fsbi fat32超级块私有信息结构体
* @param cluster 指定簇
* @param value 要写入该fat表项的值
* @return uint32_t errcode
*/
uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value)
uint32_t fat32_write_FAT_entry(struct block_device *blk, fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value)
{
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
uint32_t *buf = kmalloc(fsbi->bytes_per_sec, 0);
memset(buf, 0, fsbi->bytes_per_sec);
uint32_t *buf = kzalloc(fsbi->bytes_per_sec, 0);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf);
buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff);
// 向FAT1和FAT2写入数据
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)buf);
kfree(buf);
return 0;
}
@ -186,8 +187,9 @@ struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *paren
struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
uint8_t *buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(buf, 0, fsbi->bytes_per_clus);
uint8_t *buf = kzalloc(fsbi->bytes_per_clus, 0);
struct block_device *blk = parent_inode->sb->blk_device;
// 计算父目录项的起始簇号
uint32_t cluster = finode->first_clus;
@ -202,7 +204,7 @@ struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *paren
uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
// 读取父目录项的起始簇数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf);
tmp_dEntry = (struct fat32_Directory_t *)buf;
// 计数连续的空目录项
uint32_t count_continuity = 0;
@ -233,7 +235,7 @@ struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *paren
// 当前簇没有发现符合条件的空闲目录项,寻找下一个簇
uint64_t old_cluster = cluster;
cluster = fat32_read_FAT_entry(fsbi, cluster);
cluster = fat32_read_FAT_entry(blk, fsbi, cluster);
if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到符合要求的空目录项
{
@ -248,9 +250,8 @@ struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *paren
// 将这个新的簇清空
sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
void *tmp_buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(tmp_buf, 0, fsbi->bytes_per_clus);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
void *tmp_buf = kzalloc(fsbi->bytes_per_clus, 0);
blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf);
kfree(tmp_buf);
}
}