Patch isolate sched_cfs (#62)

* 独立cfs到新的文件

* update

* bugfix: 解决调度器卡住的问题

Co-authored-by: longjin <longjin@RinGoTek.cn>
This commit is contained in:
kong 2022-10-17 18:04:41 +08:00 committed by GitHub
parent 39e32a8035
commit 34205659b5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 219 additions and 208 deletions

View File

@ -146,7 +146,8 @@
"lockref.h": "c",
"compiler_attributes.h": "c",
"timer.h": "c",
"hid.h": "c"
"hid.h": "c",
"cfs.h": "c"
},
"C_Cpp.errorSquiggles": "Enabled",
"esbonio.sphinx.confDir": ""

View File

@ -127,10 +127,10 @@ uint32_t kfifo_out_peek(struct kfifo_t *fifo, void *to, uint32_t size);
* @param lock
* @return uint32_t
*/
uint32_t __always_inline kfifo_in_lockd(struct kfifo_t *fifo, const void *from, uint32_t size, spinlock_t *lock)
uint32_t __always_inline kfifo_in_locked(struct kfifo_t *fifo, const void *from, uint32_t size, spinlock_t *lock)
{
spin_lock(lock);
uint32_t retval = kfifo_in(&fifo, &from, size);
uint32_t retval = kfifo_in(fifo, from, size);
spin_unlock(lock);
return retval;
}
@ -144,10 +144,10 @@ uint32_t __always_inline kfifo_in_lockd(struct kfifo_t *fifo, const void *from,
* @param lock
* @return uint32_t
*/
uint32_t __always_inline kfifo_out_lockd(struct kfifo_t *fifo, void *to, uint32_t size, spinlock_t *lock)
uint32_t __always_inline kfifo_out_locked(struct kfifo_t *fifo, void *to, uint32_t size, spinlock_t *lock)
{
spin_lock(lock);
uint32_t retval = kfifo_out(&fifo, &to, size);
uint32_t retval = kfifo_out(fifo, to, size);
spin_unlock(lock);
return retval;
}

View File

@ -2,7 +2,12 @@
CFLAGS += -I .
all: sched.o
all: sched.o cfs.o
cfs.o: cfs.c
$(CC) $(CFLAGS) -c cfs.c -o cfs.o
sched.o: sched.c
$(CC) $(CFLAGS) -c sched.c -o sched.o
clean:
echo "Done."

154
kernel/sched/cfs.c Normal file
View File

@ -0,0 +1,154 @@
#include "cfs.h"
#include <common/kprint.h>
#include <driver/video/video.h>
#include <common/spinlock.h>
struct sched_queue_t sched_cfs_ready_queue[MAX_CPU_NUM]; // 就绪队列
/**
* @brief PCB
*
* @return struct process_control_block*
*/
struct process_control_block *sched_cfs_dequeue()
{
if (list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list))
{
// kdebug("list empty, count=%d", sched_cfs_ready_queue[proc_current_cpu_id].count);
return &initial_proc_union.pcb;
}
struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
list_del(&proc->list);
--sched_cfs_ready_queue[proc_current_cpu_id].count;
return proc;
}
/**
* @brief PCB加入就绪队列
*
* @param pcb
*/
void sched_cfs_enqueue(struct process_control_block *pcb)
{
if (pcb == initial_proc[proc_current_cpu_id])
return;
struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
if ((list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list)) == 0)
{
while (proc->virtual_runtime < pcb->virtual_runtime)
{
proc = container_of(list_next(&proc->list), struct process_control_block, list);
}
}
list_append(&proc->list, &pcb->list);
++sched_cfs_ready_queue[proc_current_cpu_id].count;
}
/**
* @brief
*
*/
void sched_cfs()
{
cli();
current_pcb->flags &= ~PF_NEED_SCHED;
// kdebug("current_pcb pid= %d", current_pcb->pid);
struct process_control_block *proc = sched_cfs_dequeue();
// kdebug("sched_cfs_ready_queue[proc_current_cpu_id].count = %d", sched_cfs_ready_queue[proc_current_cpu_id].count);
if (current_pcb->virtual_runtime >= proc->virtual_runtime || !(current_pcb->state & PROC_RUNNING)) // 当前进程运行时间大于了下一进程的运行时间,进行切换
{
// kdebug("current_pcb->virtual_runtime = %d,proc->vt= %d", current_pcb->virtual_runtime, proc->virtual_runtime);
if (current_pcb->state & PROC_RUNNING) // 本次切换由于时间片到期引发,则再次加入就绪队列,否则交由其它功能模块进行管理
sched_cfs_enqueue(current_pcb);
// kdebug("proc->pid=%d, count=%d", proc->pid, sched_cfs_ready_queue[proc_current_cpu_id].count);
if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
{
switch (proc->priority)
{
case 0:
case 1:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
break;
case 2:
default:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
break;
}
}
process_switch_mm(proc);
switch_proc(current_pcb, proc);
}
else // 不进行切换
{
// kdebug("not switch.");
sched_cfs_enqueue(proc);
if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
{
switch (proc->priority)
{
case 0:
case 1:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
break;
case 2:
default:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
break;
}
}
}
sti();
}
/**
* @brief
*
*/
void sched_update_jiffies()
{
switch (current_pcb->priority)
{
case 0:
case 1:
--sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies;
++current_pcb->virtual_runtime;
break;
case 2:
default:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies -= 2;
current_pcb->virtual_runtime += 2;
break;
}
// 时间片耗尽,标记可调度
if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
current_pcb->flags |= PF_NEED_SCHED;
}
/**
* @brief CFS调度器
*
*/
void sched_cfs_init()
{
memset(&sched_cfs_ready_queue, 0, sizeof(struct sched_queue_t) * MAX_CPU_NUM);
for (int i = 0; i < MAX_CPU_NUM; ++i)
{
list_init(&sched_cfs_ready_queue[i].proc_queue.list);
sched_cfs_ready_queue[i].count = 1; // 因为存在IDLE进程因此为1
sched_cfs_ready_queue[i].cpu_exec_proc_jiffies = 5;
sched_cfs_ready_queue[i].proc_queue.virtual_runtime = 0x7fffffffffffffff;
}
}

45
kernel/sched/cfs.h Normal file
View File

@ -0,0 +1,45 @@
#pragma once
#include <common/glib.h>
#include <process/process.h>
// @todo: 用红黑树重写cfs的队列
struct sched_queue_t
{
long count; // 当前队列中的数量
long cpu_exec_proc_jiffies; // 进程可执行的时间片数量
struct process_control_block proc_queue;
};
extern struct sched_queue_t sched_cfs_ready_queue[MAX_CPU_NUM]; // 就绪队列
/**
* @brief
*
*/
void sched_cfs();
/**
* @brief PCB加入就绪队列
*
* @param pcb
*/
void sched_cfs_enqueue(struct process_control_block *pcb);
/**
* @brief PCB
*
* @return struct process_control_block*
*/
struct process_control_block *sched_cfs_dequeue();
/**
* @brief CFS进程调度器
*
*/
void sched_cfs_init();
/**
* @brief
*
*/
void sched_update_jiffies();

View File

@ -2,54 +2,11 @@
#include <common/kprint.h>
#include <driver/video/video.h>
#include <common/spinlock.h>
struct sched_queue_t sched_cfs_ready_queue[MAX_CPU_NUM]; // 就绪队列
/**
* @brief PCB
*
* @return struct process_control_block*
*/
struct process_control_block *sched_cfs_dequeue()
{
if (list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list))
{
// kdebug("list empty, count=%d", sched_cfs_ready_queue[proc_current_cpu_id].count);
return &initial_proc_union.pcb;
}
struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
list_del(&proc->list);
--sched_cfs_ready_queue[proc_current_cpu_id].count;
return proc;
}
/**
* @brief PCB加入就绪队列
*
* @param pcb
*/
void sched_cfs_enqueue(struct process_control_block *pcb)
{
if (pcb == initial_proc[proc_current_cpu_id])
return;
struct process_control_block *proc = container_of(list_next(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list), struct process_control_block, list);
if ((list_empty(&sched_cfs_ready_queue[proc_current_cpu_id].proc_queue.list)) == 0)
{
while (proc->virtual_runtime < pcb->virtual_runtime)
{
proc = container_of(list_next(&proc->list), struct process_control_block, list);
}
}
list_append(&proc->list, &pcb->list);
++sched_cfs_ready_queue[proc_current_cpu_id].count;
}
#include <sched/cfs.h>
/**
* @brief shced_cfs_enqueue(),PCB加入就绪队列
*
*
* @param pcb
*/
void sched_enqueue(struct process_control_block *pcb)
@ -57,124 +14,16 @@ void sched_enqueue(struct process_control_block *pcb)
sched_cfs_enqueue(pcb);
}
/**
* @brief
*
*/
void sched_cfs()
{
cli();
current_pcb->flags &= ~PF_NEED_SCHED;
struct process_control_block *proc = sched_cfs_dequeue();
// kdebug("sched_cfs_ready_queue[proc_current_cpu_id].count = %d", sched_cfs_ready_queue[proc_current_cpu_id].count);
if (current_pcb->virtual_runtime >= proc->virtual_runtime || !(current_pcb->state & PROC_RUNNING)) // 当前进程运行时间大于了下一进程的运行时间,进行切换
{
if (current_pcb->state & PROC_RUNNING) // 本次切换由于时间片到期引发,则再次加入就绪队列,否则交由其它功能模块进行管理
sched_cfs_enqueue(current_pcb);
// kdebug("proc->pid=%d, count=%d", proc->pid, sched_cfs_ready_queue[proc_current_cpu_id].count);
if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
{
switch (proc->priority)
{
case 0:
case 1:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
break;
case 2:
default:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
break;
}
}
// if (proc->pid == 0)
// {
// kdebug("switch to pid0, current pid%ld, vrt=%ld pid0 vrt=%ld", current_pcb->pid, current_pcb->virtual_runtime, proc->virtual_runtime);
// if(current_pcb->state != PROC_RUNNING)
// kdebug("current_pcb->state!=PROC_RUNNING");
// }
process_switch_mm(proc);
switch_proc(current_pcb, proc);
}
else // 不进行切换
{
// kdebug("not switch.");
sched_cfs_enqueue(proc);
if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
{
switch (proc->priority)
{
case 0:
case 1:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = 4 / sched_cfs_ready_queue[proc_current_cpu_id].count;
// sched_cfs_ready_queue.cpu_exec_proc_jiffies = 5;
break;
case 2:
default:
// sched_cfs_ready_queue.cpu_exec_proc_jiffies = 5;
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies = (4 / sched_cfs_ready_queue[proc_current_cpu_id].count) << 2;
break;
}
}
}
sti();
}
/**
* @brief sched_cfs(),
*
*
*/
void sched()
{
sched_cfs();
}
/**
* @brief
*
*/
void sched_update_jiffies()
{
switch (current_pcb->priority)
{
case 0:
case 1:
--sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies;
++current_pcb->virtual_runtime;
break;
case 2:
default:
sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies -= 2;
current_pcb->virtual_runtime += 2;
break;
}
// 时间片耗尽,标记可调度
if (sched_cfs_ready_queue[proc_current_cpu_id].cpu_exec_proc_jiffies <= 0)
current_pcb->flags |= PF_NEED_SCHED;
}
/**
* @brief
*
*/
void sched_init()
{
memset(&sched_cfs_ready_queue, 0, sizeof(struct sched_queue_t) * MAX_CPU_NUM);
for (int i = 0; i < MAX_CPU_NUM; ++i)
{
list_init(&sched_cfs_ready_queue[i].proc_queue.list);
sched_cfs_ready_queue[i].count = 1; // 因为存在IDLE进程因此为1
sched_cfs_ready_queue[i].cpu_exec_proc_jiffies = 5;
sched_cfs_ready_queue[i].proc_queue.virtual_runtime = 0x7fffffffffffffff;
}
sched_cfs_init();
}

View File

@ -2,60 +2,17 @@
#include <common/glib.h>
#include <process/process.h>
// @todo: 用红黑树重写cfs的队列
struct sched_queue_t
{
long count; // 当前队列中的数量
long cpu_exec_proc_jiffies; // 进程可执行的时间片数量
struct process_control_block proc_queue;
};
extern struct sched_queue_t sched_cfs_ready_queue[MAX_CPU_NUM]; // 就绪队列
/**
* @brief
*
*/
void sched_cfs();
/**
* @brief sched_cfs()
*
*/
void sched();
/**
* @brief PCB加入就绪队列
*
* @param pcb
*/
void sched_cfs_enqueue(struct process_control_block *pcb);
/**
* @brief sched_enqueue(),PCB加入就绪队列
*
*
* @param pcb
*/
void sched_enqueue(struct process_control_block *pcb);
/**
* @brief PCB
* @brief sched_cfs()
*
* @return struct process_control_block*
*/
struct process_control_block *sched_cfs_dequeue();
void sched();
/**
* @brief
*
*/
void sched_init();
/**
* @brief
*
*/
void sched_update_jiffies();
void sched_init();