new: 引入vmarea

This commit is contained in:
fslongjin
2022-08-12 18:27:34 +08:00
parent aa1046afae
commit 642fa1def8
5 changed files with 235 additions and 130 deletions

View File

@ -252,18 +252,39 @@ static int process_load_elf_file(struct pt_regs *regs, char *path)
pos = phdr->p_offset;
uint64_t virt_base = phdr->p_vaddr;
// kdebug("virt_base = %#018lx, &memory_management_struct=%#018lx", virt_base, &memory_management_struct);
while (remain_mem_size > 0)
{
// kdebug("loading...");
int64_t map_size = 0;
// todo: 改用slab分配4K大小内存块并映射到4K页
if (!mm_check_mapped((uint64_t)current_pcb->mm->pgd, virt_base)) // 未映射,则新增物理页
if (remain_mem_size > PAGE_2M_SIZE / 2)
{
mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, virt_base, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
int ret = mm_map_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa, VM_USER | VM_ACCESS_FLAGS, NULL);
// 防止内存泄露
if (ret == -EEXIST)
free_pages(Phy_to_2M_Page(pa), 1);
memset((void *)virt_base, 0, PAGE_2M_SIZE);
map_size = PAGE_2M_SIZE;
}
else
{
// todo: 使用4K、8K、32K大小内存块混合进行分配提高空间利用率减少了bmp的大小
map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
// 循环分配4K大小内存块
for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
{
uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
int val = mm_map_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr, VM_USER | VM_ACCESS_FLAGS, NULL);
if (val == -EEXIST)
kfree(phys_2_virt(paddr));
memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
}
}
pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
int64_t val = 0;
if (remain_file_size != 0)
@ -275,9 +296,9 @@ static int process_load_elf_file(struct pt_regs *regs, char *path)
if (val < 0)
goto load_elf_failed;
remain_mem_size -= PAGE_2M_SIZE;
remain_mem_size -= map_size;
remain_file_size -= val;
virt_base += PAGE_2M_SIZE;
virt_base += map_size;
}
}
@ -285,9 +306,12 @@ static int process_load_elf_file(struct pt_regs *regs, char *path)
regs->rsp = current_pcb->mm->stack_start;
regs->rbp = current_pcb->mm->stack_start;
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, current_pcb->mm->stack_start - PAGE_2M_SIZE, pa, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true, false);
{
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
int val = mm_map_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, pa, VM_USER | VM_ACCESS_FLAGS, NULL);
if (val == -EEXIST)
free_pages(Phy_to_2M_Page(pa), 1);
}
// 清空栈空间
memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
@ -870,7 +894,7 @@ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb
memset(new_mms, 0, sizeof(struct mm_struct));
memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
new_mms->vmas = NULL;
pcb->mm = new_mms;
// 分配顶层页表, 并设置顶层页表的物理地址
@ -884,55 +908,40 @@ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb
uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
// 迭代地拷贝用户空间
for (int i = 0; i <= 255; ++i)
// 拷贝用户空间的vma
struct vm_area_struct *vma = current_pcb->mm->vmas;
while (vma != NULL)
{
// 当前页表项为空
if ((*(uint64_t *)(current_pgd + i)) == 0)
continue;
// 分配新的二级页表
uint64_t *new_pdpt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
memset(new_pdpt, 0, PAGE_4K_SIZE);
// 在新的一级页表中设置新的二级页表表项
set_pml4t(new_pml4t + i, mk_pml4t(virt_2_phys(new_pdpt), (*(current_pgd + i)) & 0xfffUL));
uint64_t *current_pdpt = (uint64_t *)phys_2_virt((*(uint64_t *)(current_pgd + i)) & (~0xfffUL));
// kdebug("current_pdpt=%#018lx, current_pid=%d", current_pdpt, current_pcb->pid);
for (int j = 0; j < 512; ++j)
if (vma->vm_end > USER_MAX_LINEAR_ADDR)
{
if (*(current_pdpt + j) == 0)
continue;
vma = vma->vm_next;
continue;
}
// 分配新的三级页表
uint64_t *new_pdt = (uint64_t *)kmalloc(PAGE_4K_SIZE, 0);
memset(new_pdt, 0, PAGE_4K_SIZE);
// 在二级页表中填写新的三级页表
// 在新的二级页表中设置三级页表的表项
set_pdpt((uint64_t *)(new_pdpt + j), mk_pdpt(virt_2_phys(new_pdt), (*(current_pdpt + j)) & 0xfffUL));
uint64_t *current_pdt = (uint64_t *)phys_2_virt((*(current_pdpt + j)) & (~0xfffUL));
// kdebug("current_pdt=%#018lx", current_pdt);
// 循环拷贝三级页表
for (int k = 0; k < 512; ++k)
int64_t vma_size = vma->vm_end - vma->vm_start;
// kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
if (vma_size > PAGE_2M_SIZE / 2)
{
int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
for (int i = 0; i < page_to_alloc; ++i)
{
if (*(current_pdt + k) == 0)
continue;
// 获取新的物理页
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
memset((void *)phys_2_virt(pa), 0, PAGE_2M_SIZE);
set_pdt((uint64_t *)(new_pdt + k), mk_pdt(pa, *(current_pdt + k) & 0x1ffUL));
// 拷贝数据
memcpy(phys_2_virt(pa), phys_2_virt((*(current_pdt + k)) & (~0x1ffUL)), PAGE_2M_SIZE);
mm_map_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, pa, vma->vm_flags, vma->vm_ops);
// kdebug("phys_2_virt(pa)=%#018lx, vaddr=%#018lx", phys_2_virt(pa), vma->vm_start + i * PAGE_2M_SIZE);
memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
vma_size -= PAGE_2M_SIZE;
}
}
else
{
uint64_t map_size = PAGE_4K_ALIGN(vma_size);
uint64_t va = (uint64_t)kmalloc(map_size, 0);
mm_map_vma(new_mms, vma->vm_start, map_size, virt_2_phys(va), vma->vm_flags, vma->vm_ops);
memcpy((void *)va, (void *)vma->vm_start, vma_size);
}
vma = vma->vm_next;
}
return retval;
@ -958,64 +967,43 @@ uint64_t process_exit_mm(struct process_control_block *pcb)
kdebug("pcb->mm->pgd==NULL");
return 0;
}
// 获取顶层页表
// // 获取顶层页表
pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
// 迭代地释放用户空间
for (int i = 0; i <= 255; ++i)
// 循环释放VMA中的内存
struct vm_area_struct *vma = pcb->mm->vmas;
while (vma != NULL)
{
// 当前页表项为空
if ((current_pgd + i)->pml4t == 0)
continue;
struct vm_area_struct *cur_vma = vma;
vma = cur_vma->vm_next;
// 二级页表entry
pdpt_t *current_pdpt = (pdpt_t *)phys_2_virt((current_pgd + i)->pml4t & (~0xfffUL));
// 遍历二级页表
for (int j = 0; j < 512; ++j)
uint64_t pa;
mm_umap_vma(pcb->mm, cur_vma, &pa);
uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
// 释放内存
switch (size)
{
if ((current_pdpt + j)->pdpt == 0)
continue;
// 三级页表的entry
pdt_t *current_pdt = (pdt_t *)phys_2_virt((current_pdpt + j)->pdpt & (~0xfffUL));
// 释放三级页表的内存页
for (int k = 0; k < 512; ++k)
{
if ((current_pdt + k)->pdt == 0)
continue;
// 存在4级页表
if (unlikely(((current_pdt + k)->pdt & (1 << 7)) == 0))
{
// 存在4K页
uint64_t *pt_ptr = (uint64_t *)phys_2_virt((current_pdt + k)->pdt & (~0x1fffUL));
uint64_t *pte_ptr = pt_ptr;
// 循环处理4K页表, 直接清空
// todo: 当支持使用slab分配4K内存作为进程的4K页之后在这里需要释放这些4K对象
for (int16_t g = 0; g < 512; ++g, ++pte_ptr)
*pte_ptr = 0;
// 4级页表已经空了释放页表
if (unlikely(mm_check_page_table(pt_ptr)) == 0)
kfree(pt_ptr);
}
else
{
// 释放内存页
if (mm_is_2M_page((current_pdt + k)->pdt & (~0x1fffUL))) // 校验是否为内存中的物理页
free_pages(Phy_to_2M_Page((current_pdt + k)->pdt & (~0x1fffUL)), 1);
}
}
// 释放三级页表
kfree(current_pdt);
case PAGE_2M_SIZE:
free_pages(Phy_to_2M_Page(pa), 1);
break;
case PAGE_4K_SIZE:
kfree(phys_2_virt(pa));
break;
default:
break;
}
// 释放二级页表
kfree(current_pdpt);
vm_area_del(cur_vma);
kfree(cur_vma);
}
// 释放顶层页表
kfree(current_pgd);
if (unlikely(pcb->mm->vmas != NULL))
{
kwarn("pcb.mm.vmas!=NULL");
}
// 释放内存空间分布结构体
kfree(pcb->mm);