mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-09 11:16:47 +00:00
signal的发送(暂时父子进程之间共享信号及相应的结构体) (#89)
* 解决由于spinlock.h中包含preempt_enable()带来的循环include问题 * new: 初步实现signal的数据结构 * new:signal相关数据结构 * fix: 解决bindings.rs报一堆警告的问题 * new: rust下的kdebug kinfo kwarn kBUG kerror宏 * 移动asm.h和cmpxchg.h * new: signal的发送(暂时只支持父子进程共享信号及处理函数)
This commit is contained in:
parent
3d729e2069
commit
66f67c6a95
3
kernel/src/arch/mod.rs
Normal file
3
kernel/src/arch/mod.rs
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#[cfg(target_arch="x86_64")]
|
||||||
|
#[macro_use]
|
||||||
|
pub mod x86_64;
|
18
kernel/src/arch/x86_64/asm/current.rs
Normal file
18
kernel/src/arch/x86_64/asm/current.rs
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
use crate::include::bindings::bindings::process_control_block;
|
||||||
|
|
||||||
|
use core::{arch::asm, sync::atomic::compiler_fence};
|
||||||
|
|
||||||
|
/// @brief 获取指向当前进程的pcb的可变引用
|
||||||
|
#[inline]
|
||||||
|
pub fn current_pcb() -> &'static mut process_control_block {
|
||||||
|
let ret: Option<&mut process_control_block>;
|
||||||
|
unsafe {
|
||||||
|
let mut tmp: u64 = !(32767u64);
|
||||||
|
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||||
|
asm!("and {0}, rsp", inout(reg)(tmp),);
|
||||||
|
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||||
|
ret = (tmp as *mut process_control_block).as_mut();
|
||||||
|
}
|
||||||
|
|
||||||
|
ret.unwrap()
|
||||||
|
}
|
24
kernel/src/arch/x86_64/asm/irqflags.rs
Normal file
24
kernel/src/arch/x86_64/asm/irqflags.rs
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
use core::arch::asm;
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn local_irq_save(flags: &mut u64) {
|
||||||
|
unsafe {
|
||||||
|
asm!(
|
||||||
|
"pushfq",
|
||||||
|
"pop rax",
|
||||||
|
"mov rax, {0}",
|
||||||
|
"cli",
|
||||||
|
out(reg)(*flags),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn local_irq_restore(flags: &u64) {
|
||||||
|
let x = *flags;
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
asm!("push r15",
|
||||||
|
"popfq", in("r15")(x));
|
||||||
|
}
|
||||||
|
}
|
3
kernel/src/arch/x86_64/asm/mod.rs
Normal file
3
kernel/src/arch/x86_64/asm/mod.rs
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
pub mod irqflags;
|
||||||
|
#[macro_use]
|
||||||
|
pub mod current;
|
16
kernel/src/arch/x86_64/cpu.rs
Normal file
16
kernel/src/arch/x86_64/cpu.rs
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
use core::arch::asm;
|
||||||
|
|
||||||
|
/// @brief 获取当前cpu的apic id
|
||||||
|
#[inline]
|
||||||
|
pub fn arch_current_apic_id() -> u8 {
|
||||||
|
let cpuid_res: u32;
|
||||||
|
unsafe {
|
||||||
|
asm!(
|
||||||
|
"mov eax, 1",
|
||||||
|
"cpuid",
|
||||||
|
"mov r15, ebx",
|
||||||
|
lateout("r15") cpuid_res
|
||||||
|
);
|
||||||
|
}
|
||||||
|
return (cpuid_res >> 24) as u8;
|
||||||
|
}
|
@ -1,6 +1,6 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
#include <common/compiler.h>
|
#include <common/compiler.h>
|
||||||
#include <arch/x86_64/asm/asm.h>
|
#include <asm/asm.h>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 通过extern不存在的函数,来让编译器报错。以防止不符合要求的代码的产生。
|
* @brief 通过extern不存在的函数,来让编译器报错。以防止不符合要求的代码的产生。
|
@ -1,5 +1,5 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
#include <asm/asm.h>
|
||||||
// 保存当前rflags的值到变量x内并关闭中断
|
// 保存当前rflags的值到变量x内并关闭中断
|
||||||
#define local_irq_save(x) __asm__ __volatile__("pushfq ; popq %0 ; cli" \
|
#define local_irq_save(x) __asm__ __volatile__("pushfq ; popq %0 ; cli" \
|
||||||
: "=g"(x)::"memory")
|
: "=g"(x)::"memory")
|
||||||
|
3
kernel/src/arch/x86_64/mod.rs
Normal file
3
kernel/src/arch/x86_64/mod.rs
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#[macro_use]
|
||||||
|
pub mod asm;
|
||||||
|
pub mod cpu;
|
@ -13,11 +13,8 @@
|
|||||||
#include <common/compiler.h>
|
#include <common/compiler.h>
|
||||||
#include <common/list.h>
|
#include <common/list.h>
|
||||||
|
|
||||||
#if ARCH(I386) || ARCH(X86_64)
|
|
||||||
#include <arch/x86_64/asm/asm.h>
|
#include <asm/asm.h>
|
||||||
#else
|
|
||||||
#error Arch not supported.
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 根据结构体变量内某个成员变量member的基地址,计算出该结构体变量的基地址
|
* @brief 根据结构体变量内某个成员变量member的基地址,计算出该结构体变量的基地址
|
||||||
|
@ -1,11 +1,7 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
#include <common/stddef.h>
|
#include <common/stddef.h>
|
||||||
|
|
||||||
#if ARCH(I386) || ARCH(X86_64)
|
#include <asm/asm.h>
|
||||||
#include <arch/x86_64/asm/asm.h>
|
|
||||||
#else
|
|
||||||
#error Arch not supported.
|
|
||||||
#endif
|
|
||||||
|
|
||||||
//链表数据结构
|
//链表数据结构
|
||||||
struct List
|
struct List
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
#include <common/atomic.h>
|
#include <common/atomic.h>
|
||||||
|
|
||||||
|
// 该结构体需要与libs/refcount.rs的保持一致,且以rust版本为准
|
||||||
typedef struct refcount_struct {
|
typedef struct refcount_struct {
|
||||||
atomic_t refs;
|
atomic_t refs;
|
||||||
} refcount_t;
|
} refcount_t;
|
@ -14,6 +14,46 @@ typedef __signalfn_t *__sighandler_t;
|
|||||||
|
|
||||||
typedef uint64_t sigset_t;
|
typedef uint64_t sigset_t;
|
||||||
|
|
||||||
|
#define SIGHUP 1
|
||||||
|
#define SIGINT 2
|
||||||
|
#define SIGQUIT 3
|
||||||
|
#define SIGILL 4
|
||||||
|
#define SIGTRAP 5
|
||||||
|
#define SIGABRT 6
|
||||||
|
#define SIGIOT 6
|
||||||
|
#define SIGBUS 7
|
||||||
|
#define SIGFPE 8
|
||||||
|
#define SIGKILL 9
|
||||||
|
#define SIGUSR1 10
|
||||||
|
#define SIGSEGV 11
|
||||||
|
#define SIGUSR2 12
|
||||||
|
#define SIGPIPE 13
|
||||||
|
#define SIGALRM 14
|
||||||
|
#define SIGTERM 15
|
||||||
|
#define SIGSTKFLT 16
|
||||||
|
#define SIGCHLD 17
|
||||||
|
#define SIGCONT 18
|
||||||
|
#define SIGSTOP 19
|
||||||
|
#define SIGTSTP 20
|
||||||
|
#define SIGTTIN 21
|
||||||
|
#define SIGTTOU 22
|
||||||
|
#define SIGURG 23
|
||||||
|
#define SIGXCPU 24
|
||||||
|
#define SIGXFSZ 25
|
||||||
|
#define SIGVTALRM 26
|
||||||
|
#define SIGPROF 27
|
||||||
|
#define SIGWINCH 28
|
||||||
|
#define SIGIO 29
|
||||||
|
#define SIGPOLL SIGIO
|
||||||
|
|
||||||
|
#define SIGPWR 30
|
||||||
|
#define SIGSYS 31
|
||||||
|
|
||||||
|
/* These should not be considered constants from userland. */
|
||||||
|
#define SIGRTMIN 32
|
||||||
|
#define SIGRTMAX MAX_SIG_NUM
|
||||||
|
|
||||||
|
// 注意,该结构体最大16字节
|
||||||
union __sifields {
|
union __sifields {
|
||||||
/* kill() */
|
/* kill() */
|
||||||
struct
|
struct
|
||||||
@ -27,8 +67,9 @@ union __sifields {
|
|||||||
struct \
|
struct \
|
||||||
{ \
|
{ \
|
||||||
int32_t si_signo; /* signal number */ \
|
int32_t si_signo; /* signal number */ \
|
||||||
int32_t code; \
|
int32_t si_code; \
|
||||||
int32_t si_errno; \
|
int32_t si_errno; \
|
||||||
|
uint32_t reserved; /* 保留备用 */ \
|
||||||
union __sifields _sifields; \
|
union __sifields _sifields; \
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -80,7 +121,6 @@ struct sighand_struct
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 正在等待的信号的标志位
|
* @brief 正在等待的信号的标志位
|
||||||
*
|
|
||||||
*/
|
*/
|
||||||
struct sigpending
|
struct sigpending
|
||||||
{
|
{
|
||||||
|
@ -3,14 +3,21 @@
|
|||||||
|
|
||||||
// todo: 将这里更换为手动编写的ffi绑定
|
// todo: 将这里更换为手动编写的ffi绑定
|
||||||
use crate::include::bindings::bindings::atomic_t;
|
use crate::include::bindings::bindings::atomic_t;
|
||||||
use crate::include::bindings::bindings::refcount_t;
|
|
||||||
use crate::include::bindings::bindings::spinlock_t;
|
use crate::include::bindings::bindings::spinlock_t;
|
||||||
use crate::include::bindings::bindings::wait_queue_head_t;
|
use crate::include::bindings::bindings::wait_queue_head_t;
|
||||||
|
use crate::libs::ffi_convert::FFIBind2Rust;
|
||||||
|
use crate::libs::ffi_convert::__convert_mut;
|
||||||
|
use crate::libs::ffi_convert::__convert_ref;
|
||||||
|
use crate::libs::refcount::RefCount;
|
||||||
|
|
||||||
|
/// 请注意,sigset_t这个bitmap, 第0位表示sig=1的信号。也就是说,SignalNumber-1才是sigset_t中对应的位
|
||||||
pub type sigset_t = u64;
|
pub type sigset_t = u64;
|
||||||
pub type __signalfn_t = ::core::option::Option<unsafe extern "C" fn(arg1: ::core::ffi::c_int)>;
|
pub type __signalfn_t = ::core::option::Option<unsafe extern "C" fn(arg1: ::core::ffi::c_int)>;
|
||||||
pub type __sighandler_t = __signalfn_t;
|
pub type __sighandler_t = __signalfn_t;
|
||||||
|
|
||||||
|
// 最大的信号数量(改动这个值的时候请同步到signal.h)
|
||||||
|
pub const MAX_SIG_NUM: i32 = 64;
|
||||||
|
|
||||||
/// 由于signal_struct总是和sighand_struct一起使用,并且信号处理的过程中必定会对sighand加锁
|
/// 由于signal_struct总是和sighand_struct一起使用,并且信号处理的过程中必定会对sighand加锁
|
||||||
/// 因此signal_struct不用加锁
|
/// 因此signal_struct不用加锁
|
||||||
/// **请将该结构体与`include/DragonOS/signal.h`中的保持同步**
|
/// **请将该结构体与`include/DragonOS/signal.h`中的保持同步**
|
||||||
@ -37,11 +44,17 @@ pub union sigaction__union_u {
|
|||||||
>,
|
>,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl core::fmt::Debug for sigaction__union_u{
|
||||||
|
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||||
|
f.write_str("sigaction__union_u")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 信号处理结构体
|
* @brief 信号处理结构体
|
||||||
*/
|
*/
|
||||||
#[repr(C)]
|
#[repr(C)]
|
||||||
#[derive(Copy, Clone)]
|
#[derive(Debug, Copy, Clone)]
|
||||||
pub struct sigaction {
|
pub struct sigaction {
|
||||||
pub _u: sigaction__union_u,
|
pub _u: sigaction__union_u,
|
||||||
pub sa_flags: u64,
|
pub sa_flags: u64,
|
||||||
@ -49,6 +62,7 @@ pub struct sigaction {
|
|||||||
pub sa_restorer: ::core::option::Option<unsafe extern "C" fn()>, // 暂时未实现该函数
|
pub sa_restorer: ::core::option::Option<unsafe extern "C" fn()>, // 暂时未实现该函数
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* 信号消息的结构体,作为参数传入sigaction结构体中指向的处理函数
|
* 信号消息的结构体,作为参数传入sigaction结构体中指向的处理函数
|
||||||
*/
|
*/
|
||||||
@ -68,13 +82,15 @@ pub union __siginfo_union {
|
|||||||
#[derive(Copy, Clone)]
|
#[derive(Copy, Clone)]
|
||||||
pub struct __siginfo_union_data {
|
pub struct __siginfo_union_data {
|
||||||
pub si_signo: i32,
|
pub si_signo: i32,
|
||||||
pub code: i32,
|
pub si_code: i32,
|
||||||
pub si_errno: i32,
|
pub si_errno: i32,
|
||||||
|
pub reserved: u32,
|
||||||
pub _sifields: __sifields,
|
pub _sifields: __sifields,
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* siginfo中,根据signal的来源不同,该union中对应了不同的数据
|
* siginfo中,根据signal的来源不同,该union中对应了不同的数据./=
|
||||||
|
* 请注意,该union最大占用16字节
|
||||||
*/
|
*/
|
||||||
#[repr(C)]
|
#[repr(C)]
|
||||||
#[derive(Copy, Clone)]
|
#[derive(Copy, Clone)]
|
||||||
@ -95,12 +111,12 @@ pub struct __sifields__kill {
|
|||||||
* @brief 信号处理结构体,位于pcb之中
|
* @brief 信号处理结构体,位于pcb之中
|
||||||
*/
|
*/
|
||||||
#[repr(C)]
|
#[repr(C)]
|
||||||
#[derive(Copy, Clone)]
|
#[derive(Debug, Copy, Clone)]
|
||||||
pub struct sighand_struct {
|
pub struct sighand_struct {
|
||||||
pub siglock: spinlock_t,
|
pub siglock: spinlock_t,
|
||||||
pub count: refcount_t,
|
pub count: RefCount,
|
||||||
pub signal_fd_wqh: wait_queue_head_t,
|
pub signal_fd_wqh: wait_queue_head_t,
|
||||||
pub action: [sigaction; 64usize],
|
pub action: [sigaction; MAX_SIG_NUM as usize],
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -111,3 +127,196 @@ pub struct sighand_struct {
|
|||||||
pub struct sigpending {
|
pub struct sigpending {
|
||||||
pub signal: sigset_t,
|
pub signal: sigset_t,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
|
#[repr(i32)]
|
||||||
|
pub enum si_code_val {
|
||||||
|
/// sent by kill, sigsend, raise
|
||||||
|
SI_USER = 0,
|
||||||
|
/// sent by kernel from somewhere
|
||||||
|
SI_KERNEL = 0x80,
|
||||||
|
/// 通过sigqueue发送
|
||||||
|
SI_QUEUE = -1,
|
||||||
|
/// 定时器过期时发送
|
||||||
|
SI_TIMER = -2,
|
||||||
|
/// 当实时消息队列的状态发生改变时发送
|
||||||
|
SI_MESGQ = -3,
|
||||||
|
/// 当异步IO完成时发送
|
||||||
|
SI_ASYNCIO = -4,
|
||||||
|
/// sent by queued SIGIO
|
||||||
|
SI_SIGIO = -5,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl si_code_val {
|
||||||
|
/// 为si_code_val这个枚举类型实现从i32转换到枚举类型的转换函数
|
||||||
|
#[allow(dead_code)]
|
||||||
|
pub fn from_i32(x: i32) -> si_code_val {
|
||||||
|
match x {
|
||||||
|
0 => Self::SI_USER,
|
||||||
|
0x80 => Self::SI_KERNEL,
|
||||||
|
-1 => Self::SI_QUEUE,
|
||||||
|
-2 => Self::SI_TIMER,
|
||||||
|
-3 => Self::SI_MESGQ,
|
||||||
|
-4 => Self::SI_ASYNCIO,
|
||||||
|
-5 => Self::SI_SIGIO,
|
||||||
|
_ => panic!("si code not valid"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
#[repr(i32)]
|
||||||
|
pub enum SignalNumber {
|
||||||
|
SIGHUP = 1,
|
||||||
|
SIGINT,
|
||||||
|
SIGQUIT,
|
||||||
|
SIGILL,
|
||||||
|
SIGTRAP,
|
||||||
|
/// SIGABRT和SIGIOT共用这个号码
|
||||||
|
SIGABRT_OR_IOT,
|
||||||
|
SIGBUS,
|
||||||
|
SIGFPE,
|
||||||
|
SIGKILL,
|
||||||
|
SIGUSR1,
|
||||||
|
|
||||||
|
SIGSEGV = 11,
|
||||||
|
SIGUSR2,
|
||||||
|
SIGPIPE,
|
||||||
|
SIGALRM,
|
||||||
|
SIGTERM,
|
||||||
|
SIGSTKFLT,
|
||||||
|
SIGCHLD,
|
||||||
|
SIGCONT,
|
||||||
|
SIGSTOP,
|
||||||
|
SIGTSTP,
|
||||||
|
|
||||||
|
SIGTTIN = 21,
|
||||||
|
SIGTTOU,
|
||||||
|
SIGURG,
|
||||||
|
SIGXCPU,
|
||||||
|
SIGXFSZ,
|
||||||
|
SIGVTALRM,
|
||||||
|
SIGPROF,
|
||||||
|
SIGWINCH,
|
||||||
|
/// SIGIO和SIGPOLL共用这个号码
|
||||||
|
SIGIO_OR_POLL,
|
||||||
|
SIGPWR,
|
||||||
|
|
||||||
|
SIGSYS = 31,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// 为SignalNumber实现判断相等的trait
|
||||||
|
impl PartialEq for SignalNumber {
|
||||||
|
fn eq(&self, other: &SignalNumber) -> bool {
|
||||||
|
*self as i32 == *other as i32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl SignalNumber {
|
||||||
|
/// @brief 从i32转换为SignalNumber枚举类型,如果传入的x不符合要求,则返回None
|
||||||
|
#[allow(dead_code)]
|
||||||
|
pub fn from_i32(x: i32) -> Option<SignalNumber> {
|
||||||
|
if Self::valid_signal_number(x) {
|
||||||
|
let ret: SignalNumber = unsafe { core::mem::transmute(x) };
|
||||||
|
return Some(ret);
|
||||||
|
}
|
||||||
|
|
||||||
|
return None;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// 判断一个数字是否为可用的信号
|
||||||
|
fn valid_signal_number(x: i32) -> bool {
|
||||||
|
if x > 0 && x < MAX_SIG_NUM {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
|
pub const SIGRTMIN: i32 = 32;
|
||||||
|
#[allow(dead_code)]
|
||||||
|
pub const SIGRTMAX: i32 = MAX_SIG_NUM;
|
||||||
|
|
||||||
|
/// @brief 将给定的signal_struct解析为Rust的signal.rs中定义的signal_struct的引用
|
||||||
|
///
|
||||||
|
/// 这么做的主要原因在于,由于PCB是通过bindgen生成的FFI,因此pcb中的结构体类型都是bindgen自动生成的
|
||||||
|
impl FFIBind2Rust<crate::include::bindings::bindings::signal_struct> for signal_struct {
|
||||||
|
fn convert_mut<'a>(
|
||||||
|
src: *mut crate::include::bindings::bindings::signal_struct,
|
||||||
|
) -> Option<&'a mut Self> {
|
||||||
|
return __convert_mut(src);
|
||||||
|
}
|
||||||
|
fn convert_ref<'a>(
|
||||||
|
src: *const crate::include::bindings::bindings::signal_struct,
|
||||||
|
) -> Option<&'a Self> {
|
||||||
|
return __convert_ref(src);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 将给定的siginfo解析为Rust的signal.rs中定义的siginfo的引用
|
||||||
|
///
|
||||||
|
/// 这么做的主要原因在于,由于PCB是通过bindgen生成的FFI,因此pcb中的结构体类型都是bindgen自动生成的
|
||||||
|
impl FFIBind2Rust<crate::include::bindings::bindings::siginfo> for siginfo {
|
||||||
|
fn convert_mut<'a>(
|
||||||
|
src: *mut crate::include::bindings::bindings::siginfo,
|
||||||
|
) -> Option<&'a mut Self> {
|
||||||
|
return __convert_mut(src);
|
||||||
|
}
|
||||||
|
fn convert_ref<'a>(
|
||||||
|
src: *const crate::include::bindings::bindings::siginfo,
|
||||||
|
) -> Option<&'a Self> {
|
||||||
|
return __convert_ref(src)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// @brief 将给定的sigset_t解析为Rust的signal.rs中定义的sigset_t的引用
|
||||||
|
///
|
||||||
|
/// 这么做的主要原因在于,由于PCB是通过bindgen生成的FFI,因此pcb中的结构体类型都是bindgen自动生成的
|
||||||
|
impl FFIBind2Rust<crate::include::bindings::bindings::sigset_t> for sigset_t {
|
||||||
|
fn convert_mut<'a>(
|
||||||
|
src: *mut crate::include::bindings::bindings::sigset_t,
|
||||||
|
) -> Option<&'a mut Self> {
|
||||||
|
return __convert_mut(src);
|
||||||
|
}
|
||||||
|
fn convert_ref<'a>(
|
||||||
|
src: *const crate::include::bindings::bindings::sigset_t,
|
||||||
|
) -> Option<&'a Self> {
|
||||||
|
return __convert_ref(src)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 将给定的sigpending解析为Rust的signal.rs中定义的sigpending的引用
|
||||||
|
///
|
||||||
|
/// 这么做的主要原因在于,由于PCB是通过bindgen生成的FFI,因此pcb中的结构体类型都是bindgen自动生成的
|
||||||
|
impl FFIBind2Rust<crate::include::bindings::bindings::sigpending> for sigpending {
|
||||||
|
fn convert_mut<'a>(
|
||||||
|
src: *mut crate::include::bindings::bindings::sigpending,
|
||||||
|
) -> Option<&'a mut Self> {
|
||||||
|
return __convert_mut(src);
|
||||||
|
}
|
||||||
|
fn convert_ref<'a>(
|
||||||
|
src: *const crate::include::bindings::bindings::sigpending,
|
||||||
|
) -> Option<&'a Self> {
|
||||||
|
return __convert_ref(src)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 将给定的来自bindgen的sighand_struct解析为Rust的signal.rs中定义的sighand_struct的引用
|
||||||
|
///
|
||||||
|
/// 这么做的主要原因在于,由于PCB是通过bindgen生成的FFI,因此pcb中的结构体类型都是bindgen自动生成的,会导致无法自定义功能的问题。
|
||||||
|
impl FFIBind2Rust<crate::include::bindings::bindings::sighand_struct> for sighand_struct{
|
||||||
|
fn convert_mut<'a>(
|
||||||
|
src: *mut crate::include::bindings::bindings::sighand_struct,
|
||||||
|
) -> Option<&'a mut Self> {
|
||||||
|
return __convert_mut(src);
|
||||||
|
}
|
||||||
|
fn convert_ref<'a>(
|
||||||
|
src: *const crate::include::bindings::bindings::sighand_struct,
|
||||||
|
) -> Option<&'a Self> {
|
||||||
|
return __convert_ref(src)
|
||||||
|
}
|
||||||
|
}
|
@ -27,5 +27,6 @@
|
|||||||
#include <include/DragonOS/signal.h>
|
#include <include/DragonOS/signal.h>
|
||||||
#include <mm/mm.h>
|
#include <mm/mm.h>
|
||||||
#include <mm/slab.h>
|
#include <mm/slab.h>
|
||||||
|
#include <process/process.h>
|
||||||
#include <sched/cfs.h>
|
#include <sched/cfs.h>
|
||||||
#include <sched/sched.h>
|
#include <sched/sched.h>
|
@ -0,0 +1,402 @@
|
|||||||
|
use core::ptr::read_volatile;
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
include::{
|
||||||
|
bindings::bindings::{
|
||||||
|
pid_t, process_control_block, process_find_pcb_by_pid, pt_regs, spinlock_t, EINVAL,
|
||||||
|
ENOTSUP, ESRCH, PF_EXITING, PF_KTHREAD, PF_WAKEKILL, PROC_INTERRUPTIBLE,
|
||||||
|
},
|
||||||
|
DragonOS::signal::{
|
||||||
|
si_code_val, sighand_struct, siginfo, signal_struct, sigpending, sigset_t,
|
||||||
|
SignalNumber, MAX_SIG_NUM, sigaction, sigaction__union_u,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
kBUG, kdebug, kwarn,
|
||||||
|
libs::{
|
||||||
|
ffi_convert::FFIBind2Rust,
|
||||||
|
spinlock::{spin_is_locked, spin_lock_irqsave, spin_unlock_irqrestore},
|
||||||
|
},
|
||||||
|
println,
|
||||||
|
process::{
|
||||||
|
pid::PidType,
|
||||||
|
process::{process_is_stopped, process_kick, process_wake_up_state},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
use crate::include::DragonOS::signal::{__siginfo_union, __siginfo_union_data};
|
||||||
|
|
||||||
|
/// 默认信号处理程序占位符(用于在sighand结构体中的action数组中占位)
|
||||||
|
pub static DEFAULT_SIGACTION: sigaction = sigaction{
|
||||||
|
_u: sigaction__union_u{
|
||||||
|
_sa_handler: None,
|
||||||
|
},
|
||||||
|
sa_flags:0,
|
||||||
|
sa_mask:0,
|
||||||
|
sa_restorer:None
|
||||||
|
};
|
||||||
|
|
||||||
|
/// @brief kill系统调用,向指定的进程发送信号
|
||||||
|
/// @param regs->r8 pid 要接收信号的进程id
|
||||||
|
/// @param regs->r9 sig 信号
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn sys_kill(regs: &pt_regs) -> u64 {
|
||||||
|
println!(
|
||||||
|
"sys kill, target pid={}, file={}, line={}",
|
||||||
|
regs.r8,
|
||||||
|
file!(),
|
||||||
|
line!()
|
||||||
|
);
|
||||||
|
|
||||||
|
let pid: pid_t = regs.r8 as pid_t;
|
||||||
|
let sig: Option<SignalNumber> = SignalNumber::from_i32(regs.r9 as i32);
|
||||||
|
if sig.is_none() {
|
||||||
|
// 传入的signal数值不合法
|
||||||
|
kwarn!("Not a valid signal number");
|
||||||
|
return (-(EINVAL as i64)) as u64;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 初始化signal info
|
||||||
|
let mut info = siginfo {
|
||||||
|
_sinfo: __siginfo_union {
|
||||||
|
data: __siginfo_union_data {
|
||||||
|
si_signo: sig.unwrap() as i32,
|
||||||
|
si_code: si_code_val::SI_USER as i32,
|
||||||
|
si_errno: 0,
|
||||||
|
reserved: 0,
|
||||||
|
_sifields: crate::include::DragonOS::signal::__sifields {
|
||||||
|
_kill: crate::include::DragonOS::signal::__sifields__kill { _pid: pid },
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
return signal_kill_something_info(sig.unwrap(), Some(&mut info), pid) as u64;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// 通过kill的方式向目标进程发送信号
|
||||||
|
/// @param sig 要发送的信号
|
||||||
|
/// @param info 要发送的信息
|
||||||
|
/// @param pid 进程id(目前只支持pid>0)
|
||||||
|
fn signal_kill_something_info(sig: SignalNumber, info: Option<&mut siginfo>, pid: pid_t) -> i32 {
|
||||||
|
// 暂时不支持特殊的kill操作
|
||||||
|
if pid <= 0 {
|
||||||
|
kwarn!("Kill operation not support: pid={}", pid);
|
||||||
|
return -(ENOTSUP as i32);
|
||||||
|
}
|
||||||
|
|
||||||
|
// kill单个进程
|
||||||
|
return signal_kill_proc_info(sig, info, pid);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn signal_kill_proc_info(sig: SignalNumber, info: Option<&mut siginfo>, pid: pid_t) -> i32 {
|
||||||
|
let mut retval: i32 = -(ESRCH as i32);
|
||||||
|
|
||||||
|
// step1: 当进程管理模块拥有pcblist_lock之后,对其加锁
|
||||||
|
|
||||||
|
// step2: 根据pid找到pcb
|
||||||
|
let pcb = unsafe { process_find_pcb_by_pid(pid).as_mut() };
|
||||||
|
|
||||||
|
if pcb.is_none() {
|
||||||
|
kwarn!("No such process.");
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
println!("Target pcb = {:?}", pcb.as_ref().unwrap());
|
||||||
|
|
||||||
|
// step3: 调用signal_send_sig_info函数,发送信息
|
||||||
|
retval = signal_send_sig_info(sig, info, pcb.unwrap());
|
||||||
|
// step4: 解锁
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 验证信号的值是否在范围内
|
||||||
|
#[inline]
|
||||||
|
fn verify_signal(sig: SignalNumber) -> bool {
|
||||||
|
return if (sig as i32) <= MAX_SIG_NUM {
|
||||||
|
true
|
||||||
|
} else {
|
||||||
|
false
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 在发送信号给指定的进程前,做一些权限检查. 检查是否有权限发送
|
||||||
|
/// @param sig 要发送的信号
|
||||||
|
/// @param info 要发送的信息
|
||||||
|
/// @param target_pcb 信号的接收者
|
||||||
|
fn signal_send_sig_info(
|
||||||
|
sig: SignalNumber,
|
||||||
|
info: Option<&mut siginfo>,
|
||||||
|
target_pcb: &mut process_control_block,
|
||||||
|
) -> i32 {
|
||||||
|
kdebug!("signal_send_sig_info");
|
||||||
|
// 检查sig是否符合要求,如果不符合要求,则退出。
|
||||||
|
if !verify_signal(sig) {
|
||||||
|
return -(EINVAL as i32);
|
||||||
|
}
|
||||||
|
|
||||||
|
// 信号符合要求,可以发送
|
||||||
|
|
||||||
|
let mut retval = -(ESRCH as i32);
|
||||||
|
let mut flags: u64 = 0;
|
||||||
|
// 如果上锁成功,则发送信号
|
||||||
|
if !lock_process_sighand(target_pcb, &mut flags).is_none() {
|
||||||
|
// 发送信号
|
||||||
|
retval = send_signal_locked(sig, info, target_pcb, PidType::PID);
|
||||||
|
|
||||||
|
kdebug!("flags=0x{:016x}", flags);
|
||||||
|
// 对sighand放锁
|
||||||
|
unlock_process_sighand(target_pcb, &flags);
|
||||||
|
}
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 对pcb的sighand结构体中的siglock进行加锁,并关闭中断
|
||||||
|
/// @param pcb 目标pcb
|
||||||
|
/// @param flags 用来保存rflags的变量
|
||||||
|
/// @return 指向sighand_struct的可变引用
|
||||||
|
fn lock_process_sighand<'a>(
|
||||||
|
pcb: &'a mut process_control_block,
|
||||||
|
flags: &mut u64,
|
||||||
|
) -> Option<&'a mut sighand_struct> {
|
||||||
|
kdebug!("lock_process_sighand");
|
||||||
|
let x = unsafe { &mut *pcb.sighand };
|
||||||
|
|
||||||
|
let sighand_ptr = sighand_struct::convert_mut(unsafe { &mut *pcb.sighand });
|
||||||
|
// kdebug!("sighand_ptr={:?}", &sighand_ptr);
|
||||||
|
if !sighand_ptr.is_some() {
|
||||||
|
kBUG!("Sighand ptr of process {pid} is NULL!", pid = pcb.pid);
|
||||||
|
return None;
|
||||||
|
}else{
|
||||||
|
|
||||||
|
kdebug!("7777");
|
||||||
|
}
|
||||||
|
let lock = {&mut sighand_ptr.unwrap().siglock};
|
||||||
|
kdebug!("123");
|
||||||
|
kdebug!("lock={}", unsafe{*(lock as *mut spinlock_t as *mut i8)});
|
||||||
|
spin_lock_irqsave(lock, flags);
|
||||||
|
kdebug!("lock={}", unsafe{*(lock as *mut spinlock_t as *mut i8)});
|
||||||
|
kdebug!("locked");
|
||||||
|
let ret = unsafe { ((*pcb).sighand as *mut sighand_struct).as_mut() };
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 对pcb的sighand结构体中的siglock进行放锁,并恢复之前存储的rflags
|
||||||
|
/// @param pcb 目标pcb
|
||||||
|
/// @param flags 用来保存rflags的变量,将这个值恢复到rflags寄存器中
|
||||||
|
fn unlock_process_sighand(pcb: &mut process_control_block, flags: &u64) {
|
||||||
|
kdebug!("unlock_process_sighand");
|
||||||
|
let lock = unsafe{&mut (*pcb.sighand).siglock};
|
||||||
|
kdebug!("lock={:?}", lock);
|
||||||
|
spin_unlock_irqrestore(lock, flags);
|
||||||
|
kdebug!("lock={}", unsafe{*(lock as *mut spinlock_t as *mut i8)});
|
||||||
|
kdebug!("123443");
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 判断是否需要强制发送信号,然后发送信号
|
||||||
|
/// 注意,进入该函数前,我们应当对pcb.sighand.siglock加锁。
|
||||||
|
///
|
||||||
|
/// @return i32 错误码
|
||||||
|
fn send_signal_locked(
|
||||||
|
sig: SignalNumber,
|
||||||
|
info: Option<&mut siginfo>,
|
||||||
|
pcb: &mut process_control_block,
|
||||||
|
pt: PidType,
|
||||||
|
) -> i32 {
|
||||||
|
kdebug!("send_signal_locked");
|
||||||
|
// 是否强制发送信号
|
||||||
|
let mut force_send = false;
|
||||||
|
// signal的信息为空
|
||||||
|
if info.is_none() {
|
||||||
|
// todo: 判断signal是否来自于一个祖先进程的namespace,如果是,则强制发送信号
|
||||||
|
} else {
|
||||||
|
force_send = unsafe { info.as_ref().unwrap()._sinfo.data }.si_code
|
||||||
|
== (si_code_val::SI_KERNEL as i32);
|
||||||
|
}
|
||||||
|
|
||||||
|
kdebug!("force send={}", force_send);
|
||||||
|
|
||||||
|
return __send_signal_locked(sig, info, pcb, pt, force_send);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 发送信号
|
||||||
|
/// 注意,进入该函数前,我们应当对pcb.sighand.siglock加锁。
|
||||||
|
///
|
||||||
|
/// @param sig 信号
|
||||||
|
/// @param _info 信号携带的信息
|
||||||
|
/// @param pcb 目标进程的pcb
|
||||||
|
/// @param pt siginfo结构体中,pid字段代表的含义
|
||||||
|
/// @return i32 错误码
|
||||||
|
fn __send_signal_locked(
|
||||||
|
sig: SignalNumber,
|
||||||
|
_info: Option<&mut siginfo>,
|
||||||
|
pcb: &mut process_control_block,
|
||||||
|
pt: PidType,
|
||||||
|
_force_send: bool,
|
||||||
|
) -> i32 {
|
||||||
|
kdebug!("__send_signal_locked");
|
||||||
|
let mut retval = 0;
|
||||||
|
|
||||||
|
// 判断该进入该函数时,是否已经持有了锁
|
||||||
|
println!("locked={}",spin_is_locked(unsafe { &(*pcb.sighand).siglock }));
|
||||||
|
kdebug!("1234");
|
||||||
|
let _pending: Option<&mut sigpending> = sigpending::convert_mut(&mut pcb.sig_pending);
|
||||||
|
kdebug!("567");
|
||||||
|
|
||||||
|
// 如果是kill或者目标pcb是内核线程,则无需获取sigqueue,直接发送信号即可
|
||||||
|
if sig == SignalNumber::SIGKILL || (pcb.flags & (PF_KTHREAD as u64)) != 0 {
|
||||||
|
complete_signal(sig, pcb, pt);
|
||||||
|
} else {
|
||||||
|
// todo: 如果是其他信号,则加入到sigqueue内,然后complete_signal
|
||||||
|
retval = -(ENOTSUP as i32);
|
||||||
|
}
|
||||||
|
kdebug!("12342");
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 将信号添加到目标进程的sig_pending。在引入进程组后,本函数还将负责把信号传递给整个进程组。
|
||||||
|
///
|
||||||
|
/// @param sig 信号
|
||||||
|
/// @param pcb 目标pcb
|
||||||
|
/// @param pt siginfo结构体中,pid字段代表的含义
|
||||||
|
fn complete_signal(sig: SignalNumber, pcb: &mut process_control_block, pt: PidType) {
|
||||||
|
// todo: 将信号产生的消息通知到正在监听这个信号的进程(引入signalfd之后,在这里调用signalfd_notify)
|
||||||
|
kdebug!("complete_signal");
|
||||||
|
// 将这个信号加到目标进程的sig_pending中
|
||||||
|
sigset_add(
|
||||||
|
sigset_t::convert_mut(&mut pcb.sig_pending.signal).unwrap(),
|
||||||
|
sig,
|
||||||
|
);
|
||||||
|
|
||||||
|
// ===== 寻找需要wakeup的目标进程 =====
|
||||||
|
// 备注:由于当前没有进程组的概念,每个进程只有1个对应的线程,因此不需要通知进程组内的每个进程。
|
||||||
|
// todo: 当引入进程组的概念后,需要完善这里,使得它能寻找一个目标进程来唤醒,接着执行信号处理的操作。
|
||||||
|
|
||||||
|
let _signal: Option<&mut signal_struct> = signal_struct::convert_mut(pcb.signal);
|
||||||
|
|
||||||
|
let mut _target: Option<&mut process_control_block> = None;
|
||||||
|
|
||||||
|
// 判断目标进程是否想接收这个信号
|
||||||
|
if wants_signal(sig, pcb) {
|
||||||
|
_target = Some(pcb);
|
||||||
|
} else if pt == PidType::PID {
|
||||||
|
/*
|
||||||
|
* There is just one thread and it does not need to be woken.
|
||||||
|
* It will dequeue unblocked signals before it runs again.
|
||||||
|
*/
|
||||||
|
return;
|
||||||
|
} else {
|
||||||
|
/*
|
||||||
|
* Otherwise try to find a suitable thread.
|
||||||
|
* 由于目前每个进程只有1个线程,因此当前情况可以返回。信号队列的dequeue操作不需要考虑同步阻塞的问题。
|
||||||
|
*/
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// todo:引入进程组后,在这里挑选一个进程来唤醒,让它执行相应的操作。
|
||||||
|
// todo!();
|
||||||
|
|
||||||
|
// todo: 到这里,信号已经被放置在共享的pending队列中,我们在这里把目标进程唤醒。
|
||||||
|
if _target.is_some() {
|
||||||
|
signal_wake_up(pcb, sig == SignalNumber::SIGKILL);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 本函数用于检测指定的进程是否想要接收SIG这个信号。
|
||||||
|
/// 当我们对于进程组中的所有进程都运行了这个检查之后,我们将可以找到组内愿意接收信号的进程。
|
||||||
|
/// 这么做是为了防止我们把信号发送给了一个正在或已经退出的进程,或者是不响应该信号的进程。
|
||||||
|
#[inline]
|
||||||
|
fn wants_signal(sig: SignalNumber, pcb: &process_control_block) -> bool {
|
||||||
|
// 如果改进程屏蔽了这个signal,则不能接收
|
||||||
|
if sig_is_member(sigset_t::convert_ref(&pcb.sig_blocked).unwrap(), sig) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 如果进程正在退出,则不能接收信号
|
||||||
|
if (pcb.flags & (PF_EXITING as u64)) > 0 {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if sig == SignalNumber::SIGKILL {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if process_is_stopped(pcb) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// todo: 检查目标进程是否正在一个cpu上执行,如果是,则返回true,否则继续检查下一项
|
||||||
|
|
||||||
|
// 检查目标进程是否有信号正在等待处理,如果是,则返回false,否则返回true
|
||||||
|
return !has_sig_pending(pcb);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 判断指定的信号在sigset中的对应位是否被置位
|
||||||
|
/// @return true: 给定的信号在sigset中被置位
|
||||||
|
/// @return false: 给定的信号在sigset中没有被置位
|
||||||
|
#[inline]
|
||||||
|
fn sig_is_member(set: &sigset_t, _sig: SignalNumber) -> bool {
|
||||||
|
return if 1 & (set >> ((_sig as u32) - 1)) != 0 {
|
||||||
|
true
|
||||||
|
} else {
|
||||||
|
false
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 将指定的信号在sigset中的对应bit进行置位
|
||||||
|
#[inline]
|
||||||
|
fn sigset_add(set: &mut sigset_t, _sig: SignalNumber) {
|
||||||
|
*set |= 1 << ((_sig as u32) - 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 判断signal的处理是否可能使得整个进程组退出
|
||||||
|
/// @return true 可能会导致退出(不一定)
|
||||||
|
#[allow(dead_code)]
|
||||||
|
#[inline]
|
||||||
|
fn sig_fatal(pcb: &process_control_block, sig: SignalNumber) -> bool {
|
||||||
|
let handler = unsafe {
|
||||||
|
sighand_struct::convert_ref(pcb.sighand).unwrap().action[(sig as usize) - 1]
|
||||||
|
._u
|
||||||
|
._sa_handler
|
||||||
|
};
|
||||||
|
|
||||||
|
// 如果handler是空,采用默认函数,signal处理可能会导致进程退出。
|
||||||
|
if handler.is_none() {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// todo: 参照linux的sig_fatal实现完整功能
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 判断某个进程是否有信号正在等待处理
|
||||||
|
#[inline]
|
||||||
|
fn has_sig_pending(pcb: &process_control_block) -> bool {
|
||||||
|
let ptr = &sigpending::convert_ref(&(*pcb).sig_pending).unwrap().signal;
|
||||||
|
if unsafe { read_volatile(ptr) } != 0 {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
fn signal_wake_up(pcb: &mut process_control_block, fatal: bool) {
|
||||||
|
let mut state: u64 = 0;
|
||||||
|
if fatal {
|
||||||
|
state = PF_WAKEKILL as u64;
|
||||||
|
}
|
||||||
|
signal_wake_up_state(pcb, state);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn signal_wake_up_state(pcb: &mut process_control_block, state: u64) {
|
||||||
|
assert!(spin_is_locked(&unsafe { *pcb.sighand }.siglock));
|
||||||
|
// todo: 设置线程结构体的标志位为TIF_SIGPENDING
|
||||||
|
|
||||||
|
// 如果目标进程已经在运行,则发起一个ipi,使得它陷入内核
|
||||||
|
if !process_wake_up_state(pcb, state | (PROC_INTERRUPTIBLE as u64)) {
|
||||||
|
process_kick(pcb);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -2,27 +2,32 @@
|
|||||||
#![no_main] // <1>
|
#![no_main] // <1>
|
||||||
#![feature(core_intrinsics)] // <2>
|
#![feature(core_intrinsics)] // <2>
|
||||||
#![feature(alloc_error_handler)]
|
#![feature(alloc_error_handler)]
|
||||||
|
#![feature(panic_info_message)]
|
||||||
|
|
||||||
#[allow(non_upper_case_globals)]
|
#[allow(non_upper_case_globals)]
|
||||||
#[allow(non_camel_case_types)]
|
#[allow(non_camel_case_types)]
|
||||||
#[allow(non_snake_case)]
|
#[allow(non_snake_case)]
|
||||||
|
|
||||||
use core::intrinsics; // <2>
|
|
||||||
use core::panic::PanicInfo;
|
use core::panic::PanicInfo;
|
||||||
|
|
||||||
|
#[macro_use]
|
||||||
|
mod arch;
|
||||||
|
#[macro_use]
|
||||||
|
mod include;
|
||||||
|
mod ipc;
|
||||||
|
|
||||||
#[macro_use]
|
#[macro_use]
|
||||||
mod mm;
|
|
||||||
mod include;
|
|
||||||
mod libs;
|
mod libs;
|
||||||
mod ipc;
|
mod mm;
|
||||||
|
mod process;
|
||||||
|
mod sched;
|
||||||
|
mod smp;
|
||||||
|
|
||||||
extern crate alloc;
|
extern crate alloc;
|
||||||
|
|
||||||
use mm::allocator::KernelAllocator;
|
use mm::allocator::KernelAllocator;
|
||||||
|
|
||||||
// <3>
|
// <3>
|
||||||
use crate::include::bindings::bindings::{BLACK, GREEN};
|
use crate::{include::bindings::bindings::{process_do_exit, BLACK, GREEN}, arch::x86_64::asm::current::current_pcb};
|
||||||
|
|
||||||
// 声明全局的slab分配器
|
// 声明全局的slab分配器
|
||||||
#[cfg_attr(not(test), global_allocator)]
|
#[cfg_attr(not(test), global_allocator)]
|
||||||
@ -31,14 +36,44 @@ pub static KERNEL_ALLOCATOR: KernelAllocator = KernelAllocator {};
|
|||||||
/// 全局的panic处理函数
|
/// 全局的panic处理函数
|
||||||
#[panic_handler]
|
#[panic_handler]
|
||||||
#[no_mangle]
|
#[no_mangle]
|
||||||
pub fn panic(_info: &PanicInfo) -> ! {
|
pub fn panic(info: &PanicInfo) -> ! {
|
||||||
intrinsics::abort(); // <4>
|
kerror!("Kernel Panic Occurred.");
|
||||||
|
|
||||||
|
match info.location() {
|
||||||
|
Some(loc) => {
|
||||||
|
println!(
|
||||||
|
"Location:\n\tFile: {}\n\tLine: {}, Column: {}",
|
||||||
|
loc.file(),
|
||||||
|
loc.line(),
|
||||||
|
loc.column()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
None => {
|
||||||
|
println!("No location info");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
match info.message() {
|
||||||
|
Some(msg) => {
|
||||||
|
println!("Message:\n\t{}", msg);
|
||||||
|
}
|
||||||
|
None => {
|
||||||
|
println!("No panic message.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
println!("Current PCB:\n\t{:?}", current_pcb());
|
||||||
|
unsafe {
|
||||||
|
process_do_exit(u64::MAX);
|
||||||
|
};
|
||||||
|
loop {
|
||||||
|
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// 该函数用作测试,在process.c的initial_kernel_thread()中调用了此函数
|
/// 该函数用作测试,在process.c的initial_kernel_thread()中调用了此函数
|
||||||
#[no_mangle]
|
#[no_mangle]
|
||||||
pub extern "C" fn __rust_demo_func() -> i32 {
|
pub extern "C" fn __rust_demo_func() -> i32 {
|
||||||
|
|
||||||
printk_color!(GREEN, BLACK, "__rust_demo_func()\n");
|
printk_color!(GREEN, BLACK, "__rust_demo_func()\n");
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
11
kernel/src/libs/atomic.rs
Normal file
11
kernel/src/libs/atomic.rs
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
use core::ptr::read_volatile;
|
||||||
|
|
||||||
|
use crate::include::bindings::bindings::atomic_t;
|
||||||
|
|
||||||
|
/// @brief 原子的读取指定的原子变量的值
|
||||||
|
#[inline]
|
||||||
|
pub fn atomic_read(ato:*const atomic_t)-> i64{
|
||||||
|
unsafe{
|
||||||
|
return read_volatile(&(*ato).value);
|
||||||
|
}
|
||||||
|
}
|
29
kernel/src/libs/ffi_convert.rs
Normal file
29
kernel/src/libs/ffi_convert.rs
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
/// @brief 由bindgen生成的结构体转换成rust原生定义的结构体的特性
|
||||||
|
pub trait FFIBind2Rust<T> {
|
||||||
|
/// 转换为不可变引用
|
||||||
|
fn convert_ref<'a>(src: *const T) -> Option<&'a Self>;
|
||||||
|
/// 转换为可变引用
|
||||||
|
fn convert_mut<'a>(src: *mut T) -> Option<&'a mut Self>;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
pub fn __convert_mut<'a, S, D>(src:*mut S) ->Option<&'a mut D>{
|
||||||
|
return unsafe {
|
||||||
|
core::mem::transmute::<
|
||||||
|
*mut S,
|
||||||
|
*mut D,
|
||||||
|
>(src)
|
||||||
|
.as_mut()
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn __convert_ref<'a, S, D>(src:*const S) ->Option<&'a D>{
|
||||||
|
return unsafe {
|
||||||
|
core::mem::transmute::<
|
||||||
|
*const S,
|
||||||
|
*const D,
|
||||||
|
>(src)
|
||||||
|
.as_ref()
|
||||||
|
};
|
||||||
|
}
|
@ -2,7 +2,7 @@
|
|||||||
#include <common/compiler.h>
|
#include <common/compiler.h>
|
||||||
|
|
||||||
#ifdef __LOCKREF_ENABLE_CMPXCHG__
|
#ifdef __LOCKREF_ENABLE_CMPXCHG__
|
||||||
#include <arch/x86_64/asm/cmpxchg.h>
|
#include <asm/cmpxchg.h>
|
||||||
|
|
||||||
#define CMPXCHG_LOOP(__lock_ref, CODE, SUCCESS) \
|
#define CMPXCHG_LOOP(__lock_ref, CODE, SUCCESS) \
|
||||||
{ \
|
{ \
|
||||||
|
@ -1 +1,6 @@
|
|||||||
pub mod printk;
|
pub mod printk;
|
||||||
|
pub mod spinlock;
|
||||||
|
pub mod ffi_convert;
|
||||||
|
#[macro_use]
|
||||||
|
pub mod refcount;
|
||||||
|
pub mod atomic;
|
54
kernel/src/libs/refcount.rs
Normal file
54
kernel/src/libs/refcount.rs
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
use crate::{include::bindings::bindings::{atomic_inc, atomic_t, atomic_dec}, kwarn};
|
||||||
|
|
||||||
|
use super::{ffi_convert::{FFIBind2Rust, __convert_mut, __convert_ref}, atomic::atomic_read};
|
||||||
|
|
||||||
|
#[derive(Debug, Copy, Clone)]
|
||||||
|
pub struct RefCount {
|
||||||
|
pub refs: atomic_t,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 将给定的来自bindgen的refcount_t解析为Rust的RefCount的引用
|
||||||
|
impl FFIBind2Rust<crate::include::bindings::bindings::refcount_struct> for RefCount{
|
||||||
|
fn convert_mut<'a>(
|
||||||
|
src: *mut crate::include::bindings::bindings::refcount_struct,
|
||||||
|
) -> Option<&'a mut Self> {
|
||||||
|
return __convert_mut(src);
|
||||||
|
}
|
||||||
|
fn convert_ref<'a>(
|
||||||
|
src: *const crate::include::bindings::bindings::refcount_struct,
|
||||||
|
) -> Option<&'a Self> {
|
||||||
|
return __convert_ref(src)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! REFCOUNT_INIT {
|
||||||
|
($x:expr) => {
|
||||||
|
$crate::libs::refcount::RefCount {
|
||||||
|
refs: atomic_t { value: 0 },
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 引用计数自增1
|
||||||
|
#[allow(dead_code)]
|
||||||
|
#[inline]
|
||||||
|
pub fn refcount_inc(r: &mut RefCount) {
|
||||||
|
if atomic_read(&r.refs) == 0{
|
||||||
|
kwarn!("Refcount increased from 0, may be use-after free");
|
||||||
|
}
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
atomic_inc(&mut r.refs);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 引用计数自减1
|
||||||
|
#[allow(dead_code)]
|
||||||
|
#[inline]
|
||||||
|
pub fn refcount_dec(r: &mut RefCount){
|
||||||
|
unsafe{
|
||||||
|
atomic_dec(&mut r.refs);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
30
kernel/src/libs/spinlock.rs
Normal file
30
kernel/src/libs/spinlock.rs
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
#![allow(dead_code)]
|
||||||
|
use core::ptr::read_volatile;
|
||||||
|
|
||||||
|
use crate::arch::x86_64::asm::irqflags::{local_irq_restore, local_irq_save};
|
||||||
|
use crate::include::bindings::bindings::{spin_lock, spin_unlock, spinlock_t};
|
||||||
|
|
||||||
|
/// @brief 保存中断状态到flags中,关闭中断,并对自旋锁加锁
|
||||||
|
pub fn spin_lock_irqsave(lock: *mut spinlock_t, flags: &mut u64) {
|
||||||
|
local_irq_save(flags);
|
||||||
|
unsafe {
|
||||||
|
spin_lock(lock);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 恢复rflags以及中断状态并解锁自旋锁
|
||||||
|
#[no_mangle]
|
||||||
|
pub fn spin_unlock_irqrestore(lock: *mut spinlock_t, flags: &u64) {
|
||||||
|
unsafe {
|
||||||
|
spin_unlock(lock);
|
||||||
|
}
|
||||||
|
// kdebug!("123");
|
||||||
|
local_irq_restore(flags);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// 判断一个自旋锁是否已经被加锁
|
||||||
|
pub fn spin_is_locked(lock: &spinlock_t) -> bool {
|
||||||
|
let val = unsafe { read_volatile(&lock.lock as *const i8) };
|
||||||
|
|
||||||
|
return if val == 0 { true } else { false };
|
||||||
|
}
|
391
kernel/src/process/fork.c
Normal file
391
kernel/src/process/fork.c
Normal file
@ -0,0 +1,391 @@
|
|||||||
|
#include "process.h"
|
||||||
|
#include <common/err.h>
|
||||||
|
#include <common/kthread.h>
|
||||||
|
#include <common/spinlock.h>
|
||||||
|
|
||||||
|
extern spinlock_t process_global_pid_write_lock;
|
||||||
|
extern long process_global_pid;
|
||||||
|
|
||||||
|
extern void kernel_thread_func(void);
|
||||||
|
|
||||||
|
int process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
|
||||||
|
int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
|
||||||
|
int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
|
||||||
|
int process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
|
||||||
|
uint64_t stack_size, struct pt_regs *current_regs);
|
||||||
|
|
||||||
|
extern int process_copy_sighand(uint64_t clone_flags, struct process_control_block * pcb);
|
||||||
|
extern int process_copy_signal(uint64_t clone_flags, struct process_control_block * pcb);
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief fork当前进程
|
||||||
|
*
|
||||||
|
* @param regs 新的寄存器值
|
||||||
|
* @param clone_flags 克隆标志
|
||||||
|
* @param stack_start 堆栈开始地址
|
||||||
|
* @param stack_size 堆栈大小
|
||||||
|
* @return unsigned long
|
||||||
|
*/
|
||||||
|
unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start,
|
||||||
|
unsigned long stack_size)
|
||||||
|
{
|
||||||
|
int retval = 0;
|
||||||
|
struct process_control_block *tsk = NULL;
|
||||||
|
|
||||||
|
// 为新的进程分配栈空间,并将pcb放置在底部
|
||||||
|
tsk = (struct process_control_block *)kzalloc(STACK_SIZE, 0);
|
||||||
|
barrier();
|
||||||
|
|
||||||
|
if (tsk == NULL)
|
||||||
|
{
|
||||||
|
retval = -ENOMEM;
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
barrier();
|
||||||
|
memset(tsk, 0, sizeof(struct process_control_block));
|
||||||
|
io_mfence();
|
||||||
|
// 将当前进程的pcb复制到新的pcb内
|
||||||
|
memcpy(tsk, current_pcb, sizeof(struct process_control_block));
|
||||||
|
tsk->worker_private = NULL;
|
||||||
|
io_mfence();
|
||||||
|
|
||||||
|
// 初始化进程的循环链表结点
|
||||||
|
list_init(&tsk->list);
|
||||||
|
|
||||||
|
io_mfence();
|
||||||
|
// 判断是否为内核态调用fork
|
||||||
|
if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
|
||||||
|
tsk->flags |= PF_KFORK;
|
||||||
|
|
||||||
|
if (tsk->flags & PF_KTHREAD)
|
||||||
|
{
|
||||||
|
// 对于内核线程,设置其worker私有信息
|
||||||
|
retval = kthread_set_worker_private(tsk);
|
||||||
|
if (IS_ERR_VALUE(retval))
|
||||||
|
goto copy_flags_failed;
|
||||||
|
tsk->virtual_runtime = 0;
|
||||||
|
}
|
||||||
|
tsk->priority = 2;
|
||||||
|
tsk->preempt_count = 0;
|
||||||
|
|
||||||
|
// 增加全局的pid并赋值给新进程的pid
|
||||||
|
spin_lock(&process_global_pid_write_lock);
|
||||||
|
tsk->pid = process_global_pid++;
|
||||||
|
barrier();
|
||||||
|
// 加入到进程链表中
|
||||||
|
// todo: 对pcb_list_lock加锁
|
||||||
|
tsk->prev_pcb = &initial_proc_union.pcb;
|
||||||
|
barrier();
|
||||||
|
tsk->next_pcb = initial_proc_union.pcb.next_pcb;
|
||||||
|
barrier();
|
||||||
|
initial_proc_union.pcb.next_pcb = tsk;
|
||||||
|
barrier();
|
||||||
|
tsk->parent_pcb = current_pcb;
|
||||||
|
barrier();
|
||||||
|
|
||||||
|
spin_unlock(&process_global_pid_write_lock);
|
||||||
|
|
||||||
|
tsk->cpu_id = proc_current_cpu_id;
|
||||||
|
tsk->state = PROC_UNINTERRUPTIBLE;
|
||||||
|
|
||||||
|
tsk->parent_pcb = current_pcb;
|
||||||
|
wait_queue_init(&tsk->wait_child_proc_exit, NULL);
|
||||||
|
barrier();
|
||||||
|
list_init(&tsk->list);
|
||||||
|
|
||||||
|
retval = -ENOMEM;
|
||||||
|
|
||||||
|
// 拷贝标志位
|
||||||
|
retval = process_copy_flags(clone_flags, tsk);
|
||||||
|
if (retval)
|
||||||
|
goto copy_flags_failed;
|
||||||
|
|
||||||
|
// 拷贝内存空间分布结构体
|
||||||
|
retval = process_copy_mm(clone_flags, tsk);
|
||||||
|
if (retval)
|
||||||
|
goto copy_mm_failed;
|
||||||
|
|
||||||
|
// 拷贝文件
|
||||||
|
retval = process_copy_files(clone_flags, tsk);
|
||||||
|
if (retval)
|
||||||
|
goto copy_files_failed;
|
||||||
|
|
||||||
|
// 拷贝信号处理函数
|
||||||
|
retval = process_copy_sighand(clone_flags, tsk);
|
||||||
|
if(retval)
|
||||||
|
goto copy_sighand_failed;
|
||||||
|
|
||||||
|
retval = process_copy_signal(clone_flags, tsk);
|
||||||
|
if(retval)
|
||||||
|
goto copy_signal_failed;
|
||||||
|
|
||||||
|
// 拷贝线程结构体
|
||||||
|
retval = process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs);
|
||||||
|
if (retval)
|
||||||
|
goto copy_thread_failed;
|
||||||
|
|
||||||
|
// 拷贝成功
|
||||||
|
retval = tsk->pid;
|
||||||
|
|
||||||
|
tsk->flags &= ~PF_KFORK;
|
||||||
|
|
||||||
|
// 唤醒进程
|
||||||
|
process_wakeup(tsk);
|
||||||
|
|
||||||
|
return retval;
|
||||||
|
|
||||||
|
copy_thread_failed:;
|
||||||
|
// 回收线程
|
||||||
|
process_exit_thread(tsk);
|
||||||
|
copy_files_failed:;
|
||||||
|
// 回收文件
|
||||||
|
process_exit_files(tsk);
|
||||||
|
copy_sighand_failed:;
|
||||||
|
process_exit_sighand(tsk);
|
||||||
|
copy_signal_failed:;
|
||||||
|
process_exit_signal(tsk);
|
||||||
|
copy_mm_failed:;
|
||||||
|
// 回收内存空间分布结构体
|
||||||
|
process_exit_mm(tsk);
|
||||||
|
copy_flags_failed:;
|
||||||
|
kfree(tsk);
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 拷贝当前进程的标志位
|
||||||
|
*
|
||||||
|
* @param clone_flags 克隆标志位
|
||||||
|
* @param pcb 新的进程的pcb
|
||||||
|
* @return uint64_t
|
||||||
|
*/
|
||||||
|
int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
|
||||||
|
{
|
||||||
|
if (clone_flags & CLONE_VM)
|
||||||
|
pcb->flags |= PF_VFORK;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 拷贝当前进程的文件描述符等信息
|
||||||
|
*
|
||||||
|
* @param clone_flags 克隆标志位
|
||||||
|
* @param pcb 新的进程的pcb
|
||||||
|
* @return uint64_t
|
||||||
|
*/
|
||||||
|
int process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
|
||||||
|
{
|
||||||
|
int retval = 0;
|
||||||
|
// 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
|
||||||
|
// 文件描述符已经在复制pcb时被拷贝
|
||||||
|
if (clone_flags & CLONE_FS)
|
||||||
|
return retval;
|
||||||
|
|
||||||
|
// 为新进程拷贝新的文件描述符
|
||||||
|
for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
|
||||||
|
{
|
||||||
|
if (current_pcb->fds[i] == NULL)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
|
||||||
|
memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
|
||||||
|
}
|
||||||
|
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 拷贝当前进程的内存空间分布结构体信息
|
||||||
|
*
|
||||||
|
* @param clone_flags 克隆标志位
|
||||||
|
* @param pcb 新的进程的pcb
|
||||||
|
* @return uint64_t
|
||||||
|
*/
|
||||||
|
int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
|
||||||
|
{
|
||||||
|
int retval = 0;
|
||||||
|
// 与父进程共享内存空间
|
||||||
|
if (clone_flags & CLONE_VM)
|
||||||
|
{
|
||||||
|
pcb->mm = current_pcb->mm;
|
||||||
|
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 分配新的内存空间分布结构体
|
||||||
|
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
||||||
|
memset(new_mms, 0, sizeof(struct mm_struct));
|
||||||
|
|
||||||
|
memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
|
||||||
|
new_mms->vmas = NULL;
|
||||||
|
pcb->mm = new_mms;
|
||||||
|
|
||||||
|
// 分配顶层页表, 并设置顶层页表的物理地址
|
||||||
|
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
||||||
|
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
||||||
|
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
||||||
|
|
||||||
|
// 拷贝内核空间的页表指针
|
||||||
|
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256,
|
||||||
|
PAGE_4K_SIZE / 2);
|
||||||
|
|
||||||
|
uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
|
||||||
|
|
||||||
|
uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
|
||||||
|
|
||||||
|
// 拷贝用户空间的vma
|
||||||
|
struct vm_area_struct *vma = current_pcb->mm->vmas;
|
||||||
|
while (vma != NULL)
|
||||||
|
{
|
||||||
|
if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
|
||||||
|
{
|
||||||
|
vma = vma->vm_next;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t vma_size = vma->vm_end - vma->vm_start;
|
||||||
|
// kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
|
||||||
|
if (vma_size > PAGE_2M_SIZE / 2)
|
||||||
|
{
|
||||||
|
int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
|
||||||
|
for (int i = 0; i < page_to_alloc; ++i)
|
||||||
|
{
|
||||||
|
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||||||
|
|
||||||
|
struct vm_area_struct *new_vma = NULL;
|
||||||
|
int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags,
|
||||||
|
vma->vm_ops, &new_vma);
|
||||||
|
// 防止内存泄露
|
||||||
|
if (unlikely(ret == -EEXIST))
|
||||||
|
free_pages(Phy_to_2M_Page(pa), 1);
|
||||||
|
else
|
||||||
|
mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
|
||||||
|
|
||||||
|
memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE),
|
||||||
|
(vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
|
||||||
|
vma_size -= PAGE_2M_SIZE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
uint64_t map_size = PAGE_4K_ALIGN(vma_size);
|
||||||
|
uint64_t va = (uint64_t)kmalloc(map_size, 0);
|
||||||
|
|
||||||
|
struct vm_area_struct *new_vma = NULL;
|
||||||
|
int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
|
||||||
|
// 防止内存泄露
|
||||||
|
if (unlikely(ret == -EEXIST))
|
||||||
|
kfree((void *)va);
|
||||||
|
else
|
||||||
|
mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
|
||||||
|
|
||||||
|
memcpy((void *)va, (void *)vma->vm_start, vma_size);
|
||||||
|
}
|
||||||
|
vma = vma->vm_next;
|
||||||
|
}
|
||||||
|
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 重写内核栈中的rbp地址
|
||||||
|
*
|
||||||
|
* @param new_regs 子进程的reg
|
||||||
|
* @param new_pcb 子进程的pcb
|
||||||
|
* @return int
|
||||||
|
*/
|
||||||
|
static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
|
||||||
|
{
|
||||||
|
|
||||||
|
uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
|
||||||
|
uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
|
||||||
|
|
||||||
|
uint64_t *rbp = &new_regs->rbp;
|
||||||
|
uint64_t *tmp = rbp;
|
||||||
|
|
||||||
|
// 超出内核栈范围
|
||||||
|
if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
while (1)
|
||||||
|
{
|
||||||
|
// 计算delta
|
||||||
|
uint64_t delta = old_top - *rbp;
|
||||||
|
// 计算新的rbp值
|
||||||
|
uint64_t newVal = new_top - delta;
|
||||||
|
|
||||||
|
// 新的值不合法
|
||||||
|
if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
|
||||||
|
break;
|
||||||
|
// 将新的值写入对应位置
|
||||||
|
*rbp = newVal;
|
||||||
|
// 跳转栈帧
|
||||||
|
rbp = (uint64_t *)*rbp;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
|
||||||
|
new_regs->rsp = new_top - (old_top - new_regs->rsp);
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 拷贝当前进程的线程结构体
|
||||||
|
*
|
||||||
|
* @param clone_flags 克隆标志位
|
||||||
|
* @param pcb 新的进程的pcb
|
||||||
|
* @return uint64_t
|
||||||
|
*/
|
||||||
|
int process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
|
||||||
|
uint64_t stack_size, struct pt_regs *current_regs)
|
||||||
|
{
|
||||||
|
// 将线程结构体放置在pcb后方
|
||||||
|
struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
|
||||||
|
memset(thd, 0, sizeof(struct thread_struct));
|
||||||
|
pcb->thread = thd;
|
||||||
|
|
||||||
|
struct pt_regs *child_regs = NULL;
|
||||||
|
// 拷贝栈空间
|
||||||
|
if (pcb->flags & PF_KFORK) // 内核态下的fork
|
||||||
|
{
|
||||||
|
// 内核态下则拷贝整个内核栈
|
||||||
|
uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
|
||||||
|
|
||||||
|
child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
|
||||||
|
memcpy(child_regs, (void *)current_regs, size);
|
||||||
|
barrier();
|
||||||
|
// 然后重写新的栈中,每个栈帧的rbp值
|
||||||
|
process_rewrite_rbp(child_regs, pcb);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
|
||||||
|
memcpy(child_regs, current_regs, sizeof(struct pt_regs));
|
||||||
|
barrier();
|
||||||
|
child_regs->rsp = stack_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 设置子进程的返回值为0
|
||||||
|
child_regs->rax = 0;
|
||||||
|
if (pcb->flags & PF_KFORK)
|
||||||
|
thd->rbp =
|
||||||
|
(uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
|
||||||
|
else
|
||||||
|
thd->rbp = (uint64_t)pcb + STACK_SIZE;
|
||||||
|
|
||||||
|
// 设置新的内核线程开始执行的时候的rsp
|
||||||
|
thd->rsp = (uint64_t)child_regs;
|
||||||
|
thd->fs = current_pcb->thread->fs;
|
||||||
|
thd->gs = current_pcb->thread->gs;
|
||||||
|
|
||||||
|
// 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
|
||||||
|
if (pcb->flags & PF_KFORK)
|
||||||
|
thd->rip = (uint64_t)ret_from_system_call;
|
||||||
|
else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
|
||||||
|
thd->rip = (uint64_t)kernel_thread_func;
|
||||||
|
else
|
||||||
|
thd->rip = (uint64_t)ret_from_system_call;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
27
kernel/src/process/fork.rs
Normal file
27
kernel/src/process/fork.rs
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
use crate::{include::bindings::bindings::{process_control_block, CLONE_SIGHAND}, kdebug, libs::{refcount::{refcount_inc, RefCount}, ffi_convert::FFIBind2Rust}, arch::x86_64::asm::current::current_pcb};
|
||||||
|
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_copy_sighand(clone_flags: u64, pcb: *mut process_control_block) -> i32 {
|
||||||
|
kdebug!("process_copy_sighand");
|
||||||
|
if(clone_flags & (CLONE_SIGHAND as u64)) != 0{
|
||||||
|
let r = RefCount::convert_mut(unsafe{&mut (*((current_pcb().sighand))).count}).unwrap();
|
||||||
|
refcount_inc(r);
|
||||||
|
}
|
||||||
|
0
|
||||||
|
}
|
||||||
|
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_copy_signal(clone_flags: u64, pcb: *mut process_control_block) -> i32 {
|
||||||
|
kdebug!("process_copy_signal");
|
||||||
|
0
|
||||||
|
}
|
||||||
|
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_exit_signal(pcb: *mut process_control_block){
|
||||||
|
// todo: 回收进程的信号结构体
|
||||||
|
}
|
||||||
|
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_exit_sighand(pcb: *mut process_control_block){
|
||||||
|
// todo: 回收进程的sighand结构体
|
||||||
|
}
|
26
kernel/src/process/initial_proc.rs
Normal file
26
kernel/src/process/initial_proc.rs
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
use crate::{
|
||||||
|
include::{
|
||||||
|
bindings::bindings::{atomic_t, spinlock_t, wait_queue_head_t, List},
|
||||||
|
DragonOS::signal::{sighand_struct, signal_struct, MAX_SIG_NUM},
|
||||||
|
},
|
||||||
|
ipc::signal::DEFAULT_SIGACTION,
|
||||||
|
};
|
||||||
|
|
||||||
|
#[no_mangle]
|
||||||
|
pub static INITIAL_SIGNALS: signal_struct = signal_struct {
|
||||||
|
sig_cnt: atomic_t { value: 0 },
|
||||||
|
};
|
||||||
|
|
||||||
|
#[no_mangle]
|
||||||
|
pub static mut INITIAL_SIGHAND: sighand_struct = sighand_struct {
|
||||||
|
count: REFCOUNT_INIT!(1),
|
||||||
|
siglock: spinlock_t { lock: 1 },
|
||||||
|
signal_fd_wqh: wait_queue_head_t {
|
||||||
|
lock: spinlock_t { lock: 1 },
|
||||||
|
wait_list: List {
|
||||||
|
prev: unsafe { &INITIAL_SIGHAND.signal_fd_wqh.wait_list as *const List } as *mut List,
|
||||||
|
next: unsafe { &INITIAL_SIGHAND.signal_fd_wqh.wait_list as *const List } as *mut List,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
action: [DEFAULT_SIGACTION; MAX_SIG_NUM as usize],
|
||||||
|
};
|
5
kernel/src/process/mod.rs
Normal file
5
kernel/src/process/mod.rs
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
pub mod pid;
|
||||||
|
pub mod process;
|
||||||
|
pub mod preempt;
|
||||||
|
pub mod initial_proc;
|
||||||
|
pub mod fork;
|
18
kernel/src/process/pid.rs
Normal file
18
kernel/src/process/pid.rs
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
#[allow(dead_code)]
|
||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
#[repr(u8)]
|
||||||
|
pub enum PidType {
|
||||||
|
/// pid类型是进程id
|
||||||
|
PID = 1,
|
||||||
|
TGID = 2,
|
||||||
|
PGID = 3,
|
||||||
|
SID = 4,
|
||||||
|
MAX = 5,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// 为PidType实现判断相等的trait
|
||||||
|
impl PartialEq for PidType {
|
||||||
|
fn eq(&self, other: &PidType) -> bool {
|
||||||
|
*self as u8 == *other as u8
|
||||||
|
}
|
||||||
|
}
|
13
kernel/src/process/preempt.rs
Normal file
13
kernel/src/process/preempt.rs
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
use crate::arch::x86_64::asm::current::current_pcb;
|
||||||
|
|
||||||
|
/// @brief 增加进程的锁持有计数
|
||||||
|
#[inline]
|
||||||
|
pub fn preempt_disable() {
|
||||||
|
current_pcb().preempt_count += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 减少进程的锁持有计数
|
||||||
|
#[inline]
|
||||||
|
pub fn preempt_enable() {
|
||||||
|
current_pcb().preempt_count -= 1;
|
||||||
|
}
|
@ -1,7 +1,8 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <common/wait_queue.h>
|
#include <stdint.h>
|
||||||
#include <DragonOS/signal.h>
|
#include <DragonOS/signal.h>
|
||||||
|
#include <common/wait_queue.h>
|
||||||
|
|
||||||
// 进程最大可拥有的文件描述符数量
|
// 进程最大可拥有的文件描述符数量
|
||||||
#define PROC_MAX_FD_NUM 16
|
#define PROC_MAX_FD_NUM 16
|
||||||
@ -12,9 +13,9 @@
|
|||||||
// 进程的运行状态
|
// 进程的运行状态
|
||||||
// 正在运行
|
// 正在运行
|
||||||
#define PROC_RUNNING (1 << 0)
|
#define PROC_RUNNING (1 << 0)
|
||||||
// 可被中断
|
// 可被信号打断
|
||||||
#define PROC_INTERRUPTIBLE (1 << 1)
|
#define PROC_INTERRUPTIBLE (1 << 1)
|
||||||
// 不可被中断
|
// 不可被信号打断
|
||||||
#define PROC_UNINTERRUPTIBLE (1 << 2)
|
#define PROC_UNINTERRUPTIBLE (1 << 2)
|
||||||
// 挂起
|
// 挂起
|
||||||
#define PROC_ZOMBIE (1 << 3)
|
#define PROC_ZOMBIE (1 << 3)
|
||||||
@ -32,8 +33,9 @@
|
|||||||
|
|
||||||
// 进程初始化时的数据拷贝标志位
|
// 进程初始化时的数据拷贝标志位
|
||||||
#define CLONE_FS (1UL << 0) // 在进程间共享打开的文件
|
#define CLONE_FS (1UL << 0) // 在进程间共享打开的文件
|
||||||
#define CLONE_SIGNAL (1UL << 1)
|
#define CLONE_SIGNAL (1UL << 1) // 克隆时,与父进程共享信号结构体
|
||||||
#define CLONE_VM (1UL << 2) // 在进程间共享虚拟内存空间
|
#define CLONE_VM (1UL << 2) // 在进程间共享虚拟内存空间
|
||||||
|
#define CLONE_SIGHAND (1UL << 3) // 克隆时,与父进程共享信号处理结构体
|
||||||
|
|
||||||
#define PCB_NAME_LEN 16
|
#define PCB_NAME_LEN 16
|
||||||
|
|
||||||
@ -62,7 +64,8 @@ struct thread_struct
|
|||||||
#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享
|
#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享
|
||||||
#define PF_KFORK (1UL << 3) // 标志在内核态下调用fork(临时标记,do_fork()结束后会将其复位)
|
#define PF_KFORK (1UL << 3) // 标志在内核态下调用fork(临时标记,do_fork()结束后会将其复位)
|
||||||
#define PF_NOFREEZE (1UL << 4) // 当前进程不能被冻结
|
#define PF_NOFREEZE (1UL << 4) // 当前进程不能被冻结
|
||||||
|
#define PF_EXITING (1UL << 5) // 进程正在退出
|
||||||
|
#define PF_WAKEKILL (1UL << 6) // 进程由于接收到终止信号唤醒
|
||||||
/**
|
/**
|
||||||
* @brief 进程控制块
|
* @brief 进程控制块
|
||||||
*
|
*
|
||||||
@ -70,12 +73,12 @@ struct thread_struct
|
|||||||
struct process_control_block
|
struct process_control_block
|
||||||
{
|
{
|
||||||
// 进程的状态
|
// 进程的状态
|
||||||
volatile long state;
|
volatile uint64_t state;
|
||||||
// 进程标志:进程、线程、内核线程
|
// 进程标志:进程、线程、内核线程
|
||||||
unsigned long flags;
|
uint64_t flags;
|
||||||
int64_t preempt_count; // 持有的自旋锁的数量
|
int32_t preempt_count; // 持有的自旋锁的数量
|
||||||
|
|
||||||
long cpu_id; // 当前进程在哪个CPU核心上运行
|
uint32_t cpu_id; // 当前进程在哪个CPU核心上运行
|
||||||
char name[PCB_NAME_LEN];
|
char name[PCB_NAME_LEN];
|
||||||
|
|
||||||
// 内存空间分布结构体, 记录内存页表和程序段信息
|
// 内存空间分布结构体, 记录内存页表和程序段信息
|
||||||
@ -119,16 +122,14 @@ struct process_control_block
|
|||||||
// ==== 信号处理相关 =====
|
// ==== 信号处理相关 =====
|
||||||
struct signal_struct *signal;
|
struct signal_struct *signal;
|
||||||
struct sighand_struct *sighand;
|
struct sighand_struct *sighand;
|
||||||
// 一个bitmap,表示被阻塞的信号
|
// 一个bitmap,表示当前进程被禁用的信号
|
||||||
sigset_t blocked;
|
sigset_t sig_blocked;
|
||||||
// 正在等待的信号的标志位,表示某个信号正在等待处理
|
// 正在等待的信号的标志位,表示某个信号正在等待处理
|
||||||
struct sigpending sig_pending;
|
struct sigpending sig_pending;
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// 将进程的pcb和内核栈融合到一起,8字节对齐
|
// 将进程的pcb和内核栈融合到一起,8字节对齐
|
||||||
union proc_union
|
union proc_union {
|
||||||
{
|
|
||||||
struct process_control_block pcb;
|
struct process_control_block pcb;
|
||||||
ul stack[STACK_SIZE / sizeof(ul)];
|
ul stack[STACK_SIZE / sizeof(ul)];
|
||||||
} __attribute__((aligned(8)));
|
} __attribute__((aligned(8)));
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#include "process.h"
|
#include "process.h"
|
||||||
|
|
||||||
|
#include <DragonOS/signal.h>
|
||||||
#include <common/compiler.h>
|
#include <common/compiler.h>
|
||||||
#include <common/completion.h>
|
#include <common/completion.h>
|
||||||
#include <common/elf.h>
|
#include <common/elf.h>
|
||||||
@ -21,13 +22,12 @@
|
|||||||
#include <filesystem/devfs/devfs.h>
|
#include <filesystem/devfs/devfs.h>
|
||||||
#include <filesystem/fat32/fat32.h>
|
#include <filesystem/fat32/fat32.h>
|
||||||
#include <filesystem/rootfs/rootfs.h>
|
#include <filesystem/rootfs/rootfs.h>
|
||||||
|
#include <ktest/ktest.h>
|
||||||
#include <mm/slab.h>
|
#include <mm/slab.h>
|
||||||
#include <sched/sched.h>
|
#include <sched/sched.h>
|
||||||
#include <syscall/syscall.h>
|
#include <syscall/syscall.h>
|
||||||
#include <syscall/syscall_num.h>
|
#include <syscall/syscall_num.h>
|
||||||
|
|
||||||
#include <ktest/ktest.h>
|
|
||||||
|
|
||||||
#include <mm/mmio.h>
|
#include <mm/mmio.h>
|
||||||
|
|
||||||
#include <common/lz4.h>
|
#include <common/lz4.h>
|
||||||
@ -43,6 +43,19 @@ extern void kernel_thread_func(void);
|
|||||||
|
|
||||||
ul _stack_start; // initial proc的栈基地址(虚拟地址)
|
ul _stack_start; // initial proc的栈基地址(虚拟地址)
|
||||||
extern struct mm_struct initial_mm;
|
extern struct mm_struct initial_mm;
|
||||||
|
extern struct signal_struct INITIAL_SIGNALS;
|
||||||
|
extern struct sighand_struct INITIAL_SIGHAND;
|
||||||
|
|
||||||
|
// 设置初始进程的PCB
|
||||||
|
#define INITIAL_PROC(proc) \
|
||||||
|
{ \
|
||||||
|
.state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \
|
||||||
|
.mm = &initial_mm, .thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \
|
||||||
|
.virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \
|
||||||
|
.wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL, .sig_blocked = 0, \
|
||||||
|
.signal = &INITIAL_SIGNALS, .sighand = &INITIAL_SIGHAND, \
|
||||||
|
}
|
||||||
|
|
||||||
struct thread_struct initial_thread = {
|
struct thread_struct initial_thread = {
|
||||||
.rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
.rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
||||||
.rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
.rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
||||||
@ -62,24 +75,6 @@ struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.p
|
|||||||
// 为每个核心初始化初始进程的tss
|
// 为每个核心初始化初始进程的tss
|
||||||
struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
|
struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的标志位
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的文件描述符等信息
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 回收进程的所有文件描述符
|
* @brief 回收进程的所有文件描述符
|
||||||
*
|
*
|
||||||
@ -88,15 +83,6 @@ uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *
|
|||||||
*/
|
*/
|
||||||
uint64_t process_exit_files(struct process_control_block *pcb);
|
uint64_t process_exit_files(struct process_control_block *pcb);
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的内存空间分布结构体信息
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 释放进程的页表
|
* @brief 释放进程的页表
|
||||||
*
|
*
|
||||||
@ -105,17 +91,7 @@ uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb
|
|||||||
*/
|
*/
|
||||||
uint64_t process_exit_mm(struct process_control_block *pcb);
|
uint64_t process_exit_mm(struct process_control_block *pcb);
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的线程结构体
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
|
|
||||||
uint64_t stack_size, struct pt_regs *current_regs);
|
|
||||||
|
|
||||||
void process_exit_thread(struct process_control_block *pcb);
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 切换进程
|
* @brief 切换进程
|
||||||
@ -644,6 +620,7 @@ void process_init()
|
|||||||
|
|
||||||
// 初始化进程的循环链表
|
// 初始化进程的循环链表
|
||||||
list_init(&initial_proc_union.pcb.list);
|
list_init(&initial_proc_union.pcb.list);
|
||||||
|
wait_queue_init(&initial_proc_union.pcb.wait_child_proc_exit, NULL);
|
||||||
|
|
||||||
// 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
|
// 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
|
||||||
current_pcb->virtual_runtime = 0;
|
current_pcb->virtual_runtime = 0;
|
||||||
@ -660,130 +637,9 @@ void process_init()
|
|||||||
current_pcb->virtual_runtime = (1UL << 60);
|
current_pcb->virtual_runtime = (1UL << 60);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief fork当前进程
|
|
||||||
*
|
|
||||||
* @param regs 新的寄存器值
|
|
||||||
* @param clone_flags 克隆标志
|
|
||||||
* @param stack_start 堆栈开始地址
|
|
||||||
* @param stack_size 堆栈大小
|
|
||||||
* @return unsigned long
|
|
||||||
*/
|
|
||||||
unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start,
|
|
||||||
unsigned long stack_size)
|
|
||||||
{
|
|
||||||
int retval = 0;
|
|
||||||
struct process_control_block *tsk = NULL;
|
|
||||||
|
|
||||||
// 为新的进程分配栈空间,并将pcb放置在底部
|
|
||||||
tsk = (struct process_control_block *)kzalloc(STACK_SIZE, 0);
|
|
||||||
barrier();
|
|
||||||
|
|
||||||
if (tsk == NULL)
|
|
||||||
{
|
|
||||||
retval = -ENOMEM;
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
barrier();
|
|
||||||
memset(tsk, 0, sizeof(struct process_control_block));
|
|
||||||
io_mfence();
|
|
||||||
// 将当前进程的pcb复制到新的pcb内
|
|
||||||
memcpy(tsk, current_pcb, sizeof(struct process_control_block));
|
|
||||||
tsk->worker_private = NULL;
|
|
||||||
io_mfence();
|
|
||||||
|
|
||||||
// 初始化进程的循环链表结点
|
|
||||||
list_init(&tsk->list);
|
|
||||||
|
|
||||||
io_mfence();
|
|
||||||
// 判断是否为内核态调用fork
|
|
||||||
if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
|
|
||||||
tsk->flags |= PF_KFORK;
|
|
||||||
|
|
||||||
if (tsk->flags & PF_KTHREAD)
|
|
||||||
{
|
|
||||||
// 对于内核线程,设置其worker私有信息
|
|
||||||
retval = kthread_set_worker_private(tsk);
|
|
||||||
if (IS_ERR_VALUE(retval))
|
|
||||||
goto copy_flags_failed;
|
|
||||||
tsk->virtual_runtime = 0;
|
|
||||||
}
|
|
||||||
tsk->priority = 2;
|
|
||||||
tsk->preempt_count = 0;
|
|
||||||
|
|
||||||
// 增加全局的pid并赋值给新进程的pid
|
|
||||||
spin_lock(&process_global_pid_write_lock);
|
|
||||||
tsk->pid = process_global_pid++;
|
|
||||||
barrier();
|
|
||||||
// 加入到进程链表中
|
|
||||||
// todo: 对pcb_list_lock加锁
|
|
||||||
tsk->prev_pcb = &initial_proc_union.pcb;
|
|
||||||
barrier();
|
|
||||||
tsk->next_pcb = initial_proc_union.pcb.next_pcb;
|
|
||||||
barrier();
|
|
||||||
initial_proc_union.pcb.next_pcb = tsk;
|
|
||||||
barrier();
|
|
||||||
tsk->parent_pcb = current_pcb;
|
|
||||||
barrier();
|
|
||||||
|
|
||||||
spin_unlock(&process_global_pid_write_lock);
|
|
||||||
|
|
||||||
tsk->cpu_id = proc_current_cpu_id;
|
|
||||||
tsk->state = PROC_UNINTERRUPTIBLE;
|
|
||||||
|
|
||||||
tsk->parent_pcb = current_pcb;
|
|
||||||
wait_queue_init(&tsk->wait_child_proc_exit, NULL);
|
|
||||||
barrier();
|
|
||||||
list_init(&tsk->list);
|
|
||||||
|
|
||||||
retval = -ENOMEM;
|
|
||||||
|
|
||||||
// 拷贝标志位
|
|
||||||
if (process_copy_flags(clone_flags, tsk))
|
|
||||||
goto copy_flags_failed;
|
|
||||||
|
|
||||||
// 拷贝内存空间分布结构体
|
|
||||||
if (process_copy_mm(clone_flags, tsk))
|
|
||||||
goto copy_mm_failed;
|
|
||||||
|
|
||||||
// 拷贝文件
|
|
||||||
if (process_copy_files(clone_flags, tsk))
|
|
||||||
goto copy_files_failed;
|
|
||||||
|
|
||||||
// 拷贝线程结构体
|
|
||||||
if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
|
|
||||||
goto copy_thread_failed;
|
|
||||||
|
|
||||||
// 拷贝成功
|
|
||||||
retval = tsk->pid;
|
|
||||||
|
|
||||||
tsk->flags &= ~PF_KFORK;
|
|
||||||
|
|
||||||
// 唤醒进程
|
|
||||||
process_wakeup(tsk);
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
|
|
||||||
copy_thread_failed:;
|
|
||||||
// 回收线程
|
|
||||||
process_exit_thread(tsk);
|
|
||||||
copy_files_failed:;
|
|
||||||
// 回收文件
|
|
||||||
process_exit_files(tsk);
|
|
||||||
copy_mm_failed:;
|
|
||||||
// 回收内存空间分布结构体
|
|
||||||
process_exit_mm(tsk);
|
|
||||||
copy_flags_failed:;
|
|
||||||
kfree(tsk);
|
|
||||||
return retval;
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
|
* @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
|
||||||
*
|
* 当进程管理模块拥有pcblist_lock之后,调用本函数之前,应当对其加锁
|
||||||
* @param pid
|
* @param pid
|
||||||
* @return struct process_control_block*
|
* @return struct process_control_block*
|
||||||
*/
|
*/
|
||||||
@ -803,16 +659,19 @@ struct process_control_block *process_find_pcb_by_pid(pid_t pid)
|
|||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 将进程加入到调度器的就绪队列中
|
* @brief 将进程加入到调度器的就绪队列中.
|
||||||
*
|
*
|
||||||
* @param pcb 进程的pcb
|
* @param pcb 进程的pcb
|
||||||
|
*
|
||||||
|
* @return true 成功加入调度队列
|
||||||
|
* @return false 进程已经在运行
|
||||||
*/
|
*/
|
||||||
int process_wakeup(struct process_control_block *pcb)
|
int process_wakeup(struct process_control_block *pcb)
|
||||||
{
|
{
|
||||||
// kdebug("pcb pid = %#018lx", pcb->pid);
|
// kdebug("pcb pid = %#018lx", pcb->pid);
|
||||||
|
|
||||||
BUG_ON(pcb == NULL);
|
BUG_ON(pcb == NULL);
|
||||||
if (pcb == current_pcb || pcb == NULL)
|
if (pcb == NULL)
|
||||||
return -EINVAL;
|
return -EINVAL;
|
||||||
// 如果pcb正在调度队列中,则不重复加入调度队列
|
// 如果pcb正在调度队列中,则不重复加入调度队列
|
||||||
if (pcb->state & PROC_RUNNING)
|
if (pcb->state & PROC_RUNNING)
|
||||||
@ -820,7 +679,7 @@ int process_wakeup(struct process_control_block *pcb)
|
|||||||
|
|
||||||
pcb->state |= PROC_RUNNING;
|
pcb->state |= PROC_RUNNING;
|
||||||
sched_enqueue(pcb);
|
sched_enqueue(pcb);
|
||||||
return 0;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -838,47 +697,6 @@ int process_wakeup_immediately(struct process_control_block *pcb)
|
|||||||
// 将当前进程标志为需要调度,缩短新进程被wakeup的时间
|
// 将当前进程标志为需要调度,缩短新进程被wakeup的时间
|
||||||
current_pcb->flags |= PF_NEED_SCHED;
|
current_pcb->flags |= PF_NEED_SCHED;
|
||||||
}
|
}
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的标志位
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
|
|
||||||
{
|
|
||||||
if (clone_flags & CLONE_VM)
|
|
||||||
pcb->flags |= PF_VFORK;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的文件描述符等信息
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
|
|
||||||
{
|
|
||||||
int retval = 0;
|
|
||||||
// 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
|
|
||||||
// 文件描述符已经在复制pcb时被拷贝
|
|
||||||
if (clone_flags & CLONE_FS)
|
|
||||||
return retval;
|
|
||||||
|
|
||||||
// 为新进程拷贝新的文件描述符
|
|
||||||
for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
|
|
||||||
{
|
|
||||||
if (current_pcb->fds[i] == NULL)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
|
|
||||||
memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 回收进程的所有文件描述符
|
* @brief 回收进程的所有文件描述符
|
||||||
@ -903,99 +721,6 @@ uint64_t process_exit_files(struct process_control_block *pcb)
|
|||||||
memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
|
memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的内存空间分布结构体信息
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
|
|
||||||
{
|
|
||||||
int retval = 0;
|
|
||||||
// 与父进程共享内存空间
|
|
||||||
if (clone_flags & CLONE_VM)
|
|
||||||
{
|
|
||||||
pcb->mm = current_pcb->mm;
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
// 分配新的内存空间分布结构体
|
|
||||||
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
|
||||||
memset(new_mms, 0, sizeof(struct mm_struct));
|
|
||||||
|
|
||||||
memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
|
|
||||||
new_mms->vmas = NULL;
|
|
||||||
pcb->mm = new_mms;
|
|
||||||
|
|
||||||
// 分配顶层页表, 并设置顶层页表的物理地址
|
|
||||||
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
|
||||||
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
|
||||||
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
|
||||||
|
|
||||||
// 拷贝内核空间的页表指针
|
|
||||||
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256,
|
|
||||||
PAGE_4K_SIZE / 2);
|
|
||||||
|
|
||||||
uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
|
|
||||||
|
|
||||||
uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
|
|
||||||
|
|
||||||
// 拷贝用户空间的vma
|
|
||||||
struct vm_area_struct *vma = current_pcb->mm->vmas;
|
|
||||||
while (vma != NULL)
|
|
||||||
{
|
|
||||||
if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
|
|
||||||
{
|
|
||||||
vma = vma->vm_next;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
int64_t vma_size = vma->vm_end - vma->vm_start;
|
|
||||||
// kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
|
|
||||||
if (vma_size > PAGE_2M_SIZE / 2)
|
|
||||||
{
|
|
||||||
int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
|
|
||||||
for (int i = 0; i < page_to_alloc; ++i)
|
|
||||||
{
|
|
||||||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
|
||||||
|
|
||||||
struct vm_area_struct *new_vma = NULL;
|
|
||||||
int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags,
|
|
||||||
vma->vm_ops, &new_vma);
|
|
||||||
// 防止内存泄露
|
|
||||||
if (unlikely(ret == -EEXIST))
|
|
||||||
free_pages(Phy_to_2M_Page(pa), 1);
|
|
||||||
else
|
|
||||||
mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
|
|
||||||
|
|
||||||
memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE),
|
|
||||||
(vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
|
|
||||||
vma_size -= PAGE_2M_SIZE;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
uint64_t map_size = PAGE_4K_ALIGN(vma_size);
|
|
||||||
uint64_t va = (uint64_t)kmalloc(map_size, 0);
|
|
||||||
|
|
||||||
struct vm_area_struct *new_vma = NULL;
|
|
||||||
int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
|
|
||||||
// 防止内存泄露
|
|
||||||
if (unlikely(ret == -EEXIST))
|
|
||||||
kfree((void *)va);
|
|
||||||
else
|
|
||||||
mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
|
|
||||||
|
|
||||||
memcpy((void *)va, (void *)vma->vm_start, vma_size);
|
|
||||||
}
|
|
||||||
vma = vma->vm_next;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 释放进程的页表
|
* @brief 释放进程的页表
|
||||||
*
|
*
|
||||||
@ -1059,106 +784,6 @@ uint64_t process_exit_mm(struct process_control_block *pcb)
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 重写内核栈中的rbp地址
|
|
||||||
*
|
|
||||||
* @param new_regs 子进程的reg
|
|
||||||
* @param new_pcb 子进程的pcb
|
|
||||||
* @return int
|
|
||||||
*/
|
|
||||||
static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
|
|
||||||
{
|
|
||||||
|
|
||||||
uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
|
|
||||||
uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
|
|
||||||
|
|
||||||
uint64_t *rbp = &new_regs->rbp;
|
|
||||||
uint64_t *tmp = rbp;
|
|
||||||
|
|
||||||
// 超出内核栈范围
|
|
||||||
if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
while (1)
|
|
||||||
{
|
|
||||||
// 计算delta
|
|
||||||
uint64_t delta = old_top - *rbp;
|
|
||||||
// 计算新的rbp值
|
|
||||||
uint64_t newVal = new_top - delta;
|
|
||||||
|
|
||||||
// 新的值不合法
|
|
||||||
if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
|
|
||||||
break;
|
|
||||||
// 将新的值写入对应位置
|
|
||||||
*rbp = newVal;
|
|
||||||
// 跳转栈帧
|
|
||||||
rbp = (uint64_t *)*rbp;
|
|
||||||
}
|
|
||||||
|
|
||||||
// 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
|
|
||||||
new_regs->rsp = new_top - (old_top - new_regs->rsp);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @brief 拷贝当前进程的线程结构体
|
|
||||||
*
|
|
||||||
* @param clone_flags 克隆标志位
|
|
||||||
* @param pcb 新的进程的pcb
|
|
||||||
* @return uint64_t
|
|
||||||
*/
|
|
||||||
uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start,
|
|
||||||
uint64_t stack_size, struct pt_regs *current_regs)
|
|
||||||
{
|
|
||||||
// 将线程结构体放置在pcb后方
|
|
||||||
struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
|
|
||||||
memset(thd, 0, sizeof(struct thread_struct));
|
|
||||||
pcb->thread = thd;
|
|
||||||
|
|
||||||
struct pt_regs *child_regs = NULL;
|
|
||||||
// 拷贝栈空间
|
|
||||||
if (pcb->flags & PF_KFORK) // 内核态下的fork
|
|
||||||
{
|
|
||||||
// 内核态下则拷贝整个内核栈
|
|
||||||
uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
|
|
||||||
|
|
||||||
child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
|
|
||||||
memcpy(child_regs, (void *)current_regs, size);
|
|
||||||
barrier();
|
|
||||||
// 然后重写新的栈中,每个栈帧的rbp值
|
|
||||||
process_rewrite_rbp(child_regs, pcb);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
|
|
||||||
memcpy(child_regs, current_regs, sizeof(struct pt_regs));
|
|
||||||
barrier();
|
|
||||||
child_regs->rsp = stack_start;
|
|
||||||
}
|
|
||||||
|
|
||||||
// 设置子进程的返回值为0
|
|
||||||
child_regs->rax = 0;
|
|
||||||
if (pcb->flags & PF_KFORK)
|
|
||||||
thd->rbp =
|
|
||||||
(uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
|
|
||||||
else
|
|
||||||
thd->rbp = (uint64_t)pcb + STACK_SIZE;
|
|
||||||
|
|
||||||
// 设置新的内核线程开始执行的时候的rsp
|
|
||||||
thd->rsp = (uint64_t)child_regs;
|
|
||||||
thd->fs = current_pcb->thread->fs;
|
|
||||||
thd->gs = current_pcb->thread->gs;
|
|
||||||
|
|
||||||
// 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
|
|
||||||
if (pcb->flags & PF_KFORK)
|
|
||||||
thd->rip = (uint64_t)ret_from_system_call;
|
|
||||||
else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
|
|
||||||
thd->rip = (uint64_t)kernel_thread_func;
|
|
||||||
else
|
|
||||||
thd->rip = (uint64_t)ret_from_system_call;
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief todo: 回收线程结构体
|
* @brief todo: 回收线程结构体
|
||||||
|
@ -22,14 +22,8 @@
|
|||||||
|
|
||||||
#include "proc-types.h"
|
#include "proc-types.h"
|
||||||
|
|
||||||
// 设置初始进程的PCB
|
extern void process_exit_thread(struct process_control_block *pcb);
|
||||||
#define INITIAL_PROC(proc) \
|
extern uint64_t process_exit_files(struct process_control_block *pcb);
|
||||||
{ \
|
|
||||||
.state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \
|
|
||||||
.mm = &initial_mm, .thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \
|
|
||||||
.virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \
|
|
||||||
.wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL \
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 任务状态段结构体
|
* @brief 任务状态段结构体
|
||||||
@ -96,7 +90,7 @@ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
|
* @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
|
||||||
*
|
* 当进程管理模块拥有pcblist_lock之后,调用本函数之前,应当对其加锁
|
||||||
* @param pid
|
* @param pid
|
||||||
* @return struct process_control_block*
|
* @return struct process_control_block*
|
||||||
*/
|
*/
|
||||||
@ -106,6 +100,8 @@ struct process_control_block *process_find_pcb_by_pid(pid_t pid);
|
|||||||
* @brief 将进程加入到调度器的就绪队列中
|
* @brief 将进程加入到调度器的就绪队列中
|
||||||
*
|
*
|
||||||
* @param pcb 进程的pcb
|
* @param pcb 进程的pcb
|
||||||
|
*
|
||||||
|
* @return 如果进程被成功唤醒,则返回1,如果进程正在运行,则返回0.如果pcb为NULL,则返回-EINVAL
|
||||||
*/
|
*/
|
||||||
int process_wakeup(struct process_control_block *pcb);
|
int process_wakeup(struct process_control_block *pcb);
|
||||||
|
|
||||||
@ -197,3 +193,30 @@ extern struct process_control_block *initial_proc[MAX_CPU_NUM];
|
|||||||
* @param pcb_name 保存名字的char数组
|
* @param pcb_name 保存名字的char数组
|
||||||
*/
|
*/
|
||||||
void process_set_pcb_name(struct process_control_block *pcb, const char *pcb_name);
|
void process_set_pcb_name(struct process_control_block *pcb, const char *pcb_name);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 判断进程是否已经停止
|
||||||
|
*
|
||||||
|
* hint: 本函数在rust中实现,请参考rust版本的注释
|
||||||
|
*
|
||||||
|
* @param pcb 目标pcb
|
||||||
|
* @return true
|
||||||
|
* @return false
|
||||||
|
*/
|
||||||
|
extern bool process_is_stopped(struct process_control_block *pcb);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief 尝试唤醒指定的进程。
|
||||||
|
* 本函数的行为:If (@_state & @pcb->state) @pcb->state = TASK_RUNNING.
|
||||||
|
*
|
||||||
|
* hint: 本函数在rust中实现,请参考rust版本的注释
|
||||||
|
*/
|
||||||
|
extern int process_try_to_wake_up(struct process_control_block *_pcb, uint64_t _state, int32_t _wake_flags);
|
||||||
|
|
||||||
|
/** @brief 当进程,满足 (@state & @pcb->state)时,唤醒进程,并设置: @pcb->state = TASK_RUNNING.
|
||||||
|
*
|
||||||
|
* hint: 本函数在rust中实现,请参考rust版本的注释
|
||||||
|
* @return true 唤醒成功
|
||||||
|
* @return false 唤醒失败
|
||||||
|
*/
|
||||||
|
extern int process_wake_up_state(struct process_control_block *pcb, uint64_t state);
|
103
kernel/src/process/process.rs
Normal file
103
kernel/src/process/process.rs
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
use core::ptr::{read_volatile, write_volatile};
|
||||||
|
|
||||||
|
use crate::{
|
||||||
|
arch::x86_64::asm::current::current_pcb,
|
||||||
|
include::bindings::bindings::{
|
||||||
|
process_control_block, sched_enqueue, PROC_RUNNING, PROC_STOPPED,
|
||||||
|
},
|
||||||
|
sched::core::cpu_executing,
|
||||||
|
smp::core::{smp_get_processor_id, smp_send_reschedule},
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::preempt::{preempt_disable, preempt_enable};
|
||||||
|
|
||||||
|
/// 判断进程是否已经停止
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_is_stopped(pcb: *const process_control_block) -> bool {
|
||||||
|
let state: u64 = unsafe { read_volatile(&(*pcb).state) } as u64;
|
||||||
|
if (state & (PROC_STOPPED as u64)) != 0 {
|
||||||
|
return true;
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 尝试唤醒指定的进程。
|
||||||
|
/// 本函数的行为:If (@_state & @pcb->state) @pcb->state = TASK_RUNNING.
|
||||||
|
///
|
||||||
|
/// @param _pcb 要被唤醒的进程的pcb
|
||||||
|
/// @param _state 如果pcb的state与_state匹配,则唤醒这个进程
|
||||||
|
/// @param _wake_flags 保留,暂未使用,请置为0
|
||||||
|
/// @return true: 成功唤醒
|
||||||
|
/// false: 不符合唤醒条件,无法唤醒
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_try_to_wake_up(
|
||||||
|
_pcb: *mut process_control_block,
|
||||||
|
_state: u64,
|
||||||
|
_wake_flags: i32,
|
||||||
|
) -> bool {
|
||||||
|
preempt_disable();
|
||||||
|
|
||||||
|
let mut retval = false;
|
||||||
|
// 获取对pcb的可变引用
|
||||||
|
let pcb = unsafe { _pcb.as_mut() }.unwrap();
|
||||||
|
|
||||||
|
// 如果要唤醒的就是当前的进程
|
||||||
|
if current_pcb() as *mut process_control_block as usize == _pcb as usize {
|
||||||
|
unsafe {
|
||||||
|
write_volatile(&mut pcb.state, PROC_RUNNING as u64);
|
||||||
|
}
|
||||||
|
preempt_enable();
|
||||||
|
retval = true;
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
// todo: 将来调度器引入ttwu队列之后,需要修改这里的判断条件
|
||||||
|
|
||||||
|
// todo: 为pcb引入pi_lock,然后在这里加锁
|
||||||
|
if unsafe { read_volatile(&pcb.state) } & _state != 0 {
|
||||||
|
// 可以wakeup
|
||||||
|
unsafe {
|
||||||
|
write_volatile(&mut pcb.state, PROC_RUNNING as u64);
|
||||||
|
sched_enqueue(pcb);
|
||||||
|
}
|
||||||
|
retval = true;
|
||||||
|
}
|
||||||
|
// todo: 对pcb的pi_lock放锁
|
||||||
|
preempt_enable();
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 当进程,满足 (@state & @pcb->state)时,唤醒进程,并设置: @pcb->state = TASK_RUNNING.
|
||||||
|
///
|
||||||
|
/// @return true 唤醒成功
|
||||||
|
/// @return false 唤醒失败
|
||||||
|
#[no_mangle]
|
||||||
|
pub extern "C" fn process_wake_up_state(pcb: *mut process_control_block, state: u64) -> bool {
|
||||||
|
return process_try_to_wake_up(pcb, state, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// @brief 让一个正在cpu上运行的进程陷入内核
|
||||||
|
pub fn process_kick(pcb: *mut process_control_block) {
|
||||||
|
preempt_disable();
|
||||||
|
let cpu = process_cpu(pcb);
|
||||||
|
// 如果给定的进程正在别的核心上执行,则立即发送请求,让它陷入内核态,以及时响应信号。
|
||||||
|
if cpu != smp_get_processor_id() && process_is_executing(pcb) {
|
||||||
|
smp_send_reschedule(cpu);
|
||||||
|
}
|
||||||
|
preempt_enable();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 获取给定的进程在哪个cpu核心上运行(使用volatile避免编译器优化)
|
||||||
|
#[inline]
|
||||||
|
pub fn process_cpu(pcb: *const process_control_block) -> u32 {
|
||||||
|
unsafe { read_volatile(&(*pcb).cpu_id) }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @brief 判断给定的进程是否正在处理器上执行
|
||||||
|
///
|
||||||
|
/// @param pcb 进程的pcb
|
||||||
|
#[inline]
|
||||||
|
pub fn process_is_executing(pcb: *const process_control_block) -> bool {
|
||||||
|
return cpu_executing(process_cpu(pcb)) == pcb;
|
||||||
|
}
|
13
kernel/src/sched/core.rs
Normal file
13
kernel/src/sched/core.rs
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
use crate::{include::bindings::bindings::process_control_block, process::process::process_cpu, arch::x86_64::asm::current::current_pcb};
|
||||||
|
|
||||||
|
/// @brief 获取指定的cpu上正在执行的进程的pcb
|
||||||
|
#[inline]
|
||||||
|
pub fn cpu_executing(cpu_id:u32) -> *const process_control_block{
|
||||||
|
// todo: 引入per_cpu之后,该函数真正执行“返回指定的cpu上正在执行的pcb”的功能
|
||||||
|
|
||||||
|
if cpu_id == process_cpu(current_pcb()){
|
||||||
|
return current_pcb();
|
||||||
|
}else {
|
||||||
|
todo!()
|
||||||
|
}
|
||||||
|
}
|
1
kernel/src/sched/mod.rs
Normal file
1
kernel/src/sched/mod.rs
Normal file
@ -0,0 +1 @@
|
|||||||
|
pub mod core;
|
@ -4,6 +4,7 @@
|
|||||||
#include <driver/video/video.h>
|
#include <driver/video/video.h>
|
||||||
#include <sched/cfs.h>
|
#include <sched/cfs.h>
|
||||||
#include <common/string.h>
|
#include <common/string.h>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief
|
* @brief
|
||||||
*
|
*
|
||||||
|
14
kernel/src/smp/core.rs
Normal file
14
kernel/src/smp/core.rs
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
/// @brief 获取当前的cpu id
|
||||||
|
#[inline]
|
||||||
|
pub fn smp_get_processor_id() -> u32 {
|
||||||
|
if cfg!(x86_64) {
|
||||||
|
return crate::arch::x86_64::cpu::arch_current_apic_id() as u32;
|
||||||
|
} else {
|
||||||
|
255
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn smp_send_reschedule(_cpu: u32) {
|
||||||
|
// todo:
|
||||||
|
}
|
1
kernel/src/smp/mod.rs
Normal file
1
kernel/src/smp/mod.rs
Normal file
@ -0,0 +1 @@
|
|||||||
|
pub mod core;
|
@ -1,6 +1,7 @@
|
|||||||
#include "syscall.h"
|
#include "syscall.h"
|
||||||
#include <common/errno.h>
|
#include <common/errno.h>
|
||||||
#include <common/fcntl.h>
|
#include <common/fcntl.h>
|
||||||
|
#include <common/kthread.h>
|
||||||
#include <common/string.h>
|
#include <common/string.h>
|
||||||
#include <driver/disk/ahci/ahci.h>
|
#include <driver/disk/ahci/ahci.h>
|
||||||
#include <exception/gate.h>
|
#include <exception/gate.h>
|
||||||
@ -10,7 +11,6 @@
|
|||||||
#include <mm/slab.h>
|
#include <mm/slab.h>
|
||||||
#include <process/process.h>
|
#include <process/process.h>
|
||||||
#include <time/sleep.h>
|
#include <time/sleep.h>
|
||||||
#include <common/kthread.h>
|
|
||||||
// 导出系统调用入口函数,定义在entry.S中
|
// 导出系统调用入口函数,定义在entry.S中
|
||||||
extern void system_call(void);
|
extern void system_call(void);
|
||||||
extern void syscall_int(void);
|
extern void syscall_int(void);
|
||||||
@ -19,6 +19,7 @@ extern uint64_t sys_clock(struct pt_regs *regs);
|
|||||||
extern uint64_t sys_mstat(struct pt_regs *regs);
|
extern uint64_t sys_mstat(struct pt_regs *regs);
|
||||||
extern uint64_t sys_open(struct pt_regs *regs);
|
extern uint64_t sys_open(struct pt_regs *regs);
|
||||||
extern uint64_t sys_unlink_at(struct pt_regs *regs);
|
extern uint64_t sys_unlink_at(struct pt_regs *regs);
|
||||||
|
extern uint64_t sys_kill(struct pt_regs *regs);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 导出系统调用处理函数的符号
|
* @brief 导出系统调用处理函数的符号
|
||||||
@ -518,7 +519,7 @@ uint64_t sys_wait4(struct pt_regs *regs)
|
|||||||
// 查找pid为指定值的进程
|
// 查找pid为指定值的进程
|
||||||
// ps: 这里判断子进程的方法没有按照posix 2008来写。
|
// ps: 这里判断子进程的方法没有按照posix 2008来写。
|
||||||
// todo: 根据进程树判断是否为当前进程的子进程
|
// todo: 根据进程树判断是否为当前进程的子进程
|
||||||
|
// todo: 当进程管理模块拥有pcblist_lock之后,调用之前,应当对其加锁
|
||||||
child_proc = process_find_pcb_by_pid(pid);
|
child_proc = process_find_pcb_by_pid(pid);
|
||||||
|
|
||||||
if (child_proc == NULL)
|
if (child_proc == NULL)
|
||||||
@ -598,7 +599,7 @@ system_call_t system_call_table[MAX_SYSTEM_CALL_NUM] = {
|
|||||||
[20] = sys_pipe,
|
[20] = sys_pipe,
|
||||||
[21] = sys_mstat,
|
[21] = sys_mstat,
|
||||||
[22] = sys_unlink_at,
|
[22] = sys_unlink_at,
|
||||||
[23 ... 254] = system_call_not_exists,
|
[23] = sys_kill,
|
||||||
|
[24 ... 254] = system_call_not_exists,
|
||||||
[255] = sys_ahci_end_req,
|
[255] = sys_ahci_end_req,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -34,5 +34,6 @@
|
|||||||
|
|
||||||
#define SYS_MSTAT 21 // 获取系统的内存状态信息
|
#define SYS_MSTAT 21 // 获取系统的内存状态信息
|
||||||
#define SYS_UNLINK_AT 22 // 删除文件夹/删除文件链接
|
#define SYS_UNLINK_AT 22 // 删除文件夹/删除文件链接
|
||||||
|
#define SYS_KILL 23 // kill一个进程(向这个进程发出信号)
|
||||||
|
|
||||||
#define SYS_AHCI_END_REQ 255 // AHCI DMA请求结束end_request的系统调用
|
#define SYS_AHCI_END_REQ 255 // AHCI DMA请求结束end_request的系统调用
|
@ -4,6 +4,7 @@
|
|||||||
#include <libc/dirent.h>
|
#include <libc/dirent.h>
|
||||||
#include <libc/errno.h>
|
#include <libc/errno.h>
|
||||||
#include <libc/fcntl.h>
|
#include <libc/fcntl.h>
|
||||||
|
#include <libc/include/signal.h>
|
||||||
#include <libc/stddef.h>
|
#include <libc/stddef.h>
|
||||||
#include <libc/stdio.h>
|
#include <libc/stdio.h>
|
||||||
#include <libc/stdlib.h>
|
#include <libc/stdlib.h>
|
||||||
@ -23,7 +24,7 @@ struct built_in_cmd_t shell_cmds[] = {
|
|||||||
{"cd", shell_cmd_cd}, {"cat", shell_cmd_cat}, {"exec", shell_cmd_exec}, {"ls", shell_cmd_ls},
|
{"cd", shell_cmd_cd}, {"cat", shell_cmd_cat}, {"exec", shell_cmd_exec}, {"ls", shell_cmd_ls},
|
||||||
{"mkdir", shell_cmd_mkdir}, {"pwd", shell_cmd_pwd}, {"rm", shell_cmd_rm}, {"rmdir", shell_cmd_rmdir},
|
{"mkdir", shell_cmd_mkdir}, {"pwd", shell_cmd_pwd}, {"rm", shell_cmd_rm}, {"rmdir", shell_cmd_rmdir},
|
||||||
{"reboot", shell_cmd_reboot}, {"touch", shell_cmd_touch}, {"about", shell_cmd_about}, {"free", shell_cmd_free},
|
{"reboot", shell_cmd_reboot}, {"touch", shell_cmd_touch}, {"about", shell_cmd_about}, {"free", shell_cmd_free},
|
||||||
{"help", shell_help}, {"pipe", shell_pipe_test},
|
{"help", shell_help}, {"pipe", shell_pipe_test}, {"kill", shell_cmd_kill},
|
||||||
|
|
||||||
};
|
};
|
||||||
// 总共的内建命令数量
|
// 总共的内建命令数量
|
||||||
@ -335,7 +336,10 @@ int shell_cmd_touch(int argc, char **argv)
|
|||||||
if (argv[1][0] == '/')
|
if (argv[1][0] == '/')
|
||||||
file_path = argv[1];
|
file_path = argv[1];
|
||||||
else
|
else
|
||||||
{file_path = get_target_filepath(argv[1], &path_len);alloc_full_path=true;}
|
{
|
||||||
|
file_path = get_target_filepath(argv[1], &path_len);
|
||||||
|
alloc_full_path = true;
|
||||||
|
}
|
||||||
|
|
||||||
// 打开文件
|
// 打开文件
|
||||||
int fd = open(file_path, O_CREAT);
|
int fd = open(file_path, O_CREAT);
|
||||||
@ -498,7 +502,24 @@ int shell_cmd_about(int argc, char **argv)
|
|||||||
|
|
||||||
parse_command(input_buffer, &aac, &aav);
|
parse_command(input_buffer, &aac, &aav);
|
||||||
|
|
||||||
shell_cmd_exec(aac, aav);
|
return shell_cmd_exec(aac, aav);
|
||||||
|
}
|
||||||
|
|
||||||
|
int shell_cmd_kill(int argc, char **argv)
|
||||||
|
{
|
||||||
|
int retval = 0;
|
||||||
|
if (argc < 2)
|
||||||
|
{
|
||||||
|
printf("Usage: Kill <pid>\n");
|
||||||
|
retval = -EINVAL;
|
||||||
|
goto out;
|
||||||
|
}
|
||||||
|
printf("argc = %d, argv[1]=%s\n", argc, argv[1]);
|
||||||
|
printf("atoi(argv[1])=%d\n", atoi(argv[1]));
|
||||||
|
retval = syscall_invoke(SYS_KILL, atoi(argv[1]), SIGKILL, 0, 0, 0, 0, 0, 0);
|
||||||
|
out:;
|
||||||
|
free(argv);
|
||||||
|
return retval;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -150,3 +150,5 @@ int shell_cmd_free(int argc, char **argv);
|
|||||||
* @return int
|
* @return int
|
||||||
*/
|
*/
|
||||||
int parse_command(char *buf, int *argc, char ***argv);
|
int parse_command(char *buf, int *argc, char ***argv);
|
||||||
|
|
||||||
|
int shell_cmd_kill(int argc, char **argv);
|
40
user/libs/libc/include/signal.h
Normal file
40
user/libs/libc/include/signal.h
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#define SIGHUP 1
|
||||||
|
#define SIGINT 2
|
||||||
|
#define SIGQUIT 3
|
||||||
|
#define SIGILL 4
|
||||||
|
#define SIGTRAP 5
|
||||||
|
#define SIGABRT 6
|
||||||
|
#define SIGIOT 6
|
||||||
|
#define SIGBUS 7
|
||||||
|
#define SIGFPE 8
|
||||||
|
#define SIGKILL 9
|
||||||
|
#define SIGUSR1 10
|
||||||
|
#define SIGSEGV 11
|
||||||
|
#define SIGUSR2 12
|
||||||
|
#define SIGPIPE 13
|
||||||
|
#define SIGALRM 14
|
||||||
|
#define SIGTERM 15
|
||||||
|
#define SIGSTKFLT 16
|
||||||
|
#define SIGCHLD 17
|
||||||
|
#define SIGCONT 18
|
||||||
|
#define SIGSTOP 19
|
||||||
|
#define SIGTSTP 20
|
||||||
|
#define SIGTTIN 21
|
||||||
|
#define SIGTTOU 22
|
||||||
|
#define SIGURG 23
|
||||||
|
#define SIGXCPU 24
|
||||||
|
#define SIGXFSZ 25
|
||||||
|
#define SIGVTALRM 26
|
||||||
|
#define SIGPROF 27
|
||||||
|
#define SIGWINCH 28
|
||||||
|
#define SIGIO 29
|
||||||
|
#define SIGPOLL SIGIO
|
||||||
|
|
||||||
|
#define SIGPWR 30
|
||||||
|
#define SIGSYS 31
|
||||||
|
|
||||||
|
/* These should not be considered constants from userland. */
|
||||||
|
#define SIGRTMIN 32
|
||||||
|
#define SIGRTMAX MAX_SIG_NUM
|
@ -28,6 +28,7 @@
|
|||||||
|
|
||||||
#define SYS_MSTAT 21 // 获取系统的内存状态信息
|
#define SYS_MSTAT 21 // 获取系统的内存状态信息
|
||||||
#define SYS_UNLINK_AT 22 // 删除文件夹/删除文件链接
|
#define SYS_UNLINK_AT 22 // 删除文件夹/删除文件链接
|
||||||
|
#define SYS_KILL 23 // kill一个进程(向这个进程发出信号)
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief 用户态系统调用函数
|
* @brief 用户态系统调用函数
|
||||||
|
Loading…
x
Reference in New Issue
Block a user