🎨 更改内存池的成员命名

This commit is contained in:
fslongjin 2022-02-28 19:59:46 +08:00
parent 0801f25b8e
commit 7d8f89622d
3 changed files with 93 additions and 98 deletions

View File

@ -68,7 +68,7 @@ void test_slab()
for (int i = 1; i < 16; ++i)
{
printk_color(ORANGE, BLACK, "mem_obj_size: %ldbytes\t", kmalloc_cache_group[i].size);
printk_color(ORANGE, BLACK, "bmp(before): %#018lx\t", *kmalloc_cache_group[i].cache_pool->bmp);
printk_color(ORANGE, BLACK, "bmp(before): %#018lx\t", *kmalloc_cache_group[i].cache_pool_entry->bmp);
ul *tmp = kmalloc(kmalloc_cache_group[i].size, 0);
if (tmp == NULL)
@ -76,11 +76,11 @@ void test_slab()
kBUG("Cannot kmalloc such a memory: %ld bytes", kmalloc_cache_group[i].size);
}
printk_color(ORANGE, BLACK, "bmp(middle): %#018lx\t", *kmalloc_cache_group[i].cache_pool->bmp);
printk_color(ORANGE, BLACK, "bmp(middle): %#018lx\t", *kmalloc_cache_group[i].cache_pool_entry->bmp);
kfree(tmp);
printk_color(ORANGE, BLACK, "bmp(after): %#018lx\n", *kmalloc_cache_group[i].cache_pool->bmp);
printk_color(ORANGE, BLACK, "bmp(after): %#018lx\n", *kmalloc_cache_group[i].cache_pool_entry->bmp);
}
// 测试自动扩容
@ -93,7 +93,7 @@ void test_slab()
kmalloc(kmalloc_cache_group[15].size, 0);
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[15].cache_pool;
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[15].cache_pool_entry;
int count=0;
do
{
@ -101,7 +101,7 @@ void test_slab()
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
++count;
} while (slab_obj_ptr != kmalloc_cache_group[15].cache_pool);
} while (slab_obj_ptr != kmalloc_cache_group[15].cache_pool_entry);
kinfo("SLAB test completed!");
}

View File

@ -25,81 +25,81 @@ struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), voi
slab_pool->size = SIZEOF_LONG_ALIGN(size);
slab_pool->count_total_using = 0;
slab_pool->count_total_free = 0;
// 直接分配cache_pool结构体避免每次访问都要检测是否为NULL提升效率
slab_pool->cache_pool = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
// 直接分配cache_pool_entry结构体避免每次访问都要检测是否为NULL提升效率
slab_pool->cache_pool_entry = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
// BUG
if (slab_pool->cache_pool == NULL)
if (slab_pool->cache_pool_entry == NULL)
{
kBUG("slab_create()->kmalloc()->slab->cache_pool == NULL");
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
kfree(slab_pool);
return NULL;
}
memset(slab_pool->cache_pool, 0, sizeof(struct slab_obj));
memset(slab_pool->cache_pool_entry, 0, sizeof(struct slab_obj));
// dma内存池设置为空
slab_pool->cache_dma_pool = NULL;
slab_pool->cache_dma_pool_entry = NULL;
// 设置构造及析构函数
slab_pool->constructor = constructor;
slab_pool->destructor = destructor;
list_init(&slab_pool->cache_pool->list);
list_init(&slab_pool->cache_pool_entry->list);
// 分配属于内存池的内存页
slab_pool->cache_pool->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
slab_pool->cache_pool_entry->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
// BUG
if (slab_pool->cache_pool->page == NULL)
if (slab_pool->cache_pool_entry->page == NULL)
{
kBUG("slab_create()->kmalloc()->slab->cache_pool == NULL");
kfree(slab_pool->cache_pool);
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
kfree(slab_pool->cache_pool_entry);
kfree(slab_pool);
return NULL;
}
// page_init(slab_pool->cache_pool->page, PAGE_KERNEL);
// page_init(slab_pool->cache_pool_entry->page, PAGE_KERNEL);
slab_pool->cache_pool->count_using = 0;
slab_pool->cache_pool->count_free = PAGE_2M_SIZE / slab_pool->size;
slab_pool->cache_pool_entry->count_using = 0;
slab_pool->cache_pool_entry->count_free = PAGE_2M_SIZE / slab_pool->size;
slab_pool->count_total_free = slab_pool->cache_pool->count_free;
slab_pool->count_total_free = slab_pool->cache_pool_entry->count_free;
slab_pool->cache_pool->vaddr = phys_2_virt(slab_pool->cache_pool->page->addr_phys);
slab_pool->cache_pool_entry->vaddr = phys_2_virt(slab_pool->cache_pool_entry->page->addr_phys);
// bitmap有多少有效位
slab_pool->cache_pool->bmp_count = slab_pool->cache_pool->count_free;
slab_pool->cache_pool_entry->bmp_count = slab_pool->cache_pool_entry->count_free;
// 计算位图所占的空间 占用多少byte按unsigned long大小的上边缘对齐
slab_pool->cache_pool->bmp_len = ((slab_pool->cache_pool->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
slab_pool->cache_pool_entry->bmp_len = ((slab_pool->cache_pool_entry->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
// 初始化位图
slab_pool->cache_pool->bmp = (ul *)kmalloc(slab_pool->cache_pool->bmp_len, 0);
slab_pool->cache_pool_entry->bmp = (ul *)kmalloc(slab_pool->cache_pool_entry->bmp_len, 0);
// BUG
if (slab_pool->cache_pool->bmp == NULL)
if (slab_pool->cache_pool_entry->bmp == NULL)
{
kBUG("slab_create()->kmalloc()->slab->cache_pool == NULL");
free_pages(slab_pool->cache_pool->page, 1);
kfree(slab_pool->cache_pool);
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
free_pages(slab_pool->cache_pool_entry->page, 1);
kfree(slab_pool->cache_pool_entry);
kfree(slab_pool);
return NULL;
}
// 将位图清空
memset(slab_pool->cache_pool->bmp, 0, slab_pool->cache_pool->bmp_len);
memset(slab_pool->cache_pool_entry->bmp, 0, slab_pool->cache_pool_entry->bmp_len);
return slab_pool;
}
/**
* @brief
* slab对象是空的时候才能销毁
* @param slab_pool
* @brief
* slab是空的时候才能销毁
* @param slab_pool
* @return ul
*
*/
ul slab_destroy(struct slab *slab_pool)
{
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool;
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
if (slab_pool->count_total_using)
{
kBUG("slab_cache->count_total_using != 0");
@ -129,7 +129,6 @@ ul slab_destroy(struct slab *slab_pool)
free_pages(slab_obj_ptr->page, 1);
kfree(slab_obj_ptr);
kfree(slab_pool);
return 0;
}
@ -142,7 +141,7 @@ ul slab_destroy(struct slab *slab_pool)
*/
void *slab_malloc(struct slab *slab_pool, ul arg)
{
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool;
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
struct slab_obj *tmp_slab_obj = NULL;
// slab内存池中已经没有空闲的内存对象进行扩容
@ -189,7 +188,7 @@ void *slab_malloc(struct slab *slab_pool, ul arg)
memset(tmp_slab_obj->bmp, 0, tmp_slab_obj->bmp_len);
list_add(&slab_pool->cache_pool->list, tmp_slab_obj);
list_add(&slab_pool->cache_pool_entry->list, tmp_slab_obj);
slab_pool->count_total_free += tmp_slab_obj->count_free;
@ -240,7 +239,7 @@ void *slab_malloc(struct slab *slab_pool, ul arg)
}
}
} while (slab_obj_ptr != slab_pool->cache_pool);
} while (slab_obj_ptr != slab_pool->cache_pool_entry);
// should not be here
@ -268,7 +267,7 @@ void *slab_malloc(struct slab *slab_pool, ul arg)
*/
ul slab_free(struct slab *slab_pool, void *addr, ul arg)
{
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool;
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
do
{
@ -276,43 +275,43 @@ ul slab_free(struct slab *slab_pool, void *addr, ul arg)
if (!(slab_obj_ptr->vaddr <= addr && addr <= (slab_obj_ptr->vaddr + PAGE_2M_SIZE)))
{
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
continue;
}
// 计算出给定内存对象是第几个
int index = (addr - slab_obj_ptr->vaddr) / slab_pool->size;
// 复位位图中对应的位
*(slab_obj_ptr->bmp + (index >> 6)) ^= (1UL << index % 64);
++(slab_obj_ptr->count_free);
--(slab_obj_ptr->count_using);
++(slab_pool->count_total_free);
--(slab_pool->count_total_using);
// 有对应的析构函数,调用析构函数
if (slab_pool->destructor != NULL)
slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
// 当前内存对象池的正在使用的内存对象为0且内存池的空闲对象大于当前对象池的2倍则销毁当前对象池以减轻系统内存压力
if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free))
else
{
// 防止删除了slab_pool的cache_pool入口
if (slab_pool->cache_pool == slab_obj_ptr)
slab_pool->cache_pool = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
list_del(&slab_obj_ptr->list);
slab_pool->count_total_free -= slab_obj_ptr->count_free;
// 计算出给定内存对象是第几个
int index = (addr - slab_obj_ptr->vaddr) / slab_pool->size;
kfree(slab_obj_ptr->bmp);
page_clean(slab_obj_ptr->page);
free_pages(slab_obj_ptr->page, 1);
kfree(slab_obj_ptr);
// 复位位图中对应的位
*(slab_obj_ptr->bmp + (index >> 6)) ^= (1UL << index % 64);
++(slab_obj_ptr->count_free);
--(slab_obj_ptr->count_using);
++(slab_pool->count_total_free);
--(slab_pool->count_total_using);
// 有对应的析构函数,调用析构函数
if (slab_pool->destructor != NULL)
slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
// 当前内存对象池的正在使用的内存对象为0且内存池的空闲对象大于当前对象池的2倍则销毁当前对象池以减轻系统内存压力
if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free) && (slab_obj_ptr != slab_pool->cache_pool_entry))
{
list_del(&slab_obj_ptr->list);
slab_pool->count_total_free -= slab_obj_ptr->count_free;
kfree(slab_obj_ptr->bmp);
page_clean(slab_obj_ptr->page);
free_pages(slab_obj_ptr->page, 1);
kfree(slab_obj_ptr);
}
}
return 0;
} while (slab_obj_ptr != slab_pool->cache_pool);
} while (slab_obj_ptr != slab_pool->cache_pool_entry);
kwarn("slab_free(): address not in current slab");
return ENOT_IN_SLAB;
@ -332,30 +331,30 @@ ul slab_init()
for (int i = 0; i < 16; ++i)
{
// 将slab内存池对象的空间放置在mms的后面并且预留4个unsigned long 的空间以防止内存越界
kmalloc_cache_group[i].cache_pool = (struct slab_obj *)memory_management_struct.end_of_struct;
kmalloc_cache_group[i].cache_pool_entry = (struct slab_obj *)memory_management_struct.end_of_struct;
memory_management_struct.end_of_struct += sizeof(struct slab_obj) + (sizeof(ul) << 2);
list_init(&kmalloc_cache_group[i].cache_pool->list);
list_init(&kmalloc_cache_group[i].cache_pool_entry->list);
// 初始化内存池对象
kmalloc_cache_group[i].cache_pool->count_using = 0;
kmalloc_cache_group[i].cache_pool->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
kmalloc_cache_group[i].cache_pool->bmp_len = (((kmalloc_cache_group[i].cache_pool->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
kmalloc_cache_group[i].cache_pool->bmp_count = kmalloc_cache_group[i].cache_pool->count_free;
kmalloc_cache_group[i].cache_pool_entry->count_using = 0;
kmalloc_cache_group[i].cache_pool_entry->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
kmalloc_cache_group[i].cache_pool_entry->bmp_len = (((kmalloc_cache_group[i].cache_pool_entry->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
kmalloc_cache_group[i].cache_pool_entry->bmp_count = kmalloc_cache_group[i].cache_pool_entry->count_free;
// 在slab对象后方放置bmp
kmalloc_cache_group[i].cache_pool->bmp = (ul *)memory_management_struct.end_of_struct;
kmalloc_cache_group[i].cache_pool_entry->bmp = (ul *)memory_management_struct.end_of_struct;
// bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
memory_management_struct.end_of_struct = (ul)(memory_management_struct.end_of_struct + kmalloc_cache_group[i].cache_pool->bmp_len + (sizeof(ul) << 2)) & (~(sizeof(ul) - 1));
memory_management_struct.end_of_struct = (ul)(memory_management_struct.end_of_struct + kmalloc_cache_group[i].cache_pool_entry->bmp_len + (sizeof(ul) << 2)) & (~(sizeof(ul) - 1));
// @todo此处可优化直接把所有位设置为0然后再对部分不存在对应的内存对象的位设置为1
memset(kmalloc_cache_group[i].cache_pool->bmp, 0xff, kmalloc_cache_group[i].cache_pool->bmp_len);
for (int j = 0; j < kmalloc_cache_group[i].cache_pool->bmp_count; ++j)
*(kmalloc_cache_group[i].cache_pool->bmp + (j >> 6)) ^= 1UL << (j % 64);
memset(kmalloc_cache_group[i].cache_pool_entry->bmp, 0xff, kmalloc_cache_group[i].cache_pool_entry->bmp_len);
for (int j = 0; j < kmalloc_cache_group[i].cache_pool_entry->bmp_count; ++j)
*(kmalloc_cache_group[i].cache_pool_entry->bmp + (j >> 6)) ^= 1UL << (j % 64);
kmalloc_cache_group[i].count_total_using = 0;
kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool->count_free;
kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool_entry->count_free;
}
struct Page *page = NULL;
@ -383,18 +382,15 @@ ul slab_init()
page_init(page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
// 这里很神奇给page赋值之后list_next就会改变我找不到原因于是就直接重新初始化这个list好了
// @todo: 找到这个bug的原因
kmalloc_cache_group[i].cache_pool->page = page;
list_init(&kmalloc_cache_group[i].cache_pool->list);
kmalloc_cache_group[i].cache_pool_entry->page = page;
list_init(&kmalloc_cache_group[i].cache_pool_entry->list);
kmalloc_cache_group[i].cache_pool->vaddr = virt;
kmalloc_cache_group[i].cache_pool_entry->vaddr = virt;
}
printk_color(ORANGE, BLACK, "3.memory_management_struct.bmp:%#018lx\tzone_struct->count_pages_using:%d\tzone_struct->count_pages_free:%d\n", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
kinfo("SLAB initialized successfully!");
return 0;
@ -524,9 +520,9 @@ void *kmalloc(unsigned long size, unsigned long flags)
break;
}
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool;
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool_entry;
kdebug("count_total_free=%d",kmalloc_cache_group[index].count_total_free);
kdebug("count_total_free=%d", kmalloc_cache_group[index].count_total_free);
// 内存池没有可用的内存对象,需要进行扩容
if (kmalloc_cache_group[index].count_total_free == 0)
@ -542,7 +538,7 @@ void *kmalloc(unsigned long size, unsigned long flags)
}
kmalloc_cache_group[index].count_total_free += slab_obj_ptr->count_free;
list_add(&kmalloc_cache_group[index].cache_pool->list, &slab_obj_ptr->list);
list_add(&kmalloc_cache_group[index].cache_pool_entry->list, &slab_obj_ptr->list);
}
else // 内存对象充足
{
@ -553,7 +549,7 @@ void *kmalloc(unsigned long size, unsigned long flags)
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
else
break;
} while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool);
} while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool_entry);
}
// 寻找一块可用的内存对象
int md;
@ -603,7 +599,7 @@ unsigned long kfree(void *address)
for (int i = 0; i < 16; ++i)
{
slab_obj_ptr = kmalloc_cache_group[i].cache_pool;
slab_obj_ptr = kmalloc_cache_group[i].cache_pool_entry;
do
{
@ -618,7 +614,6 @@ unsigned long kfree(void *address)
// 计算地址属于哪一个内存对象
index = (address - slab_obj_ptr->vaddr) / kmalloc_cache_group[i].size;
// 复位bmp
*(slab_obj_ptr->bmp + (index >> 6)) ^= 1UL << (index % 64);
@ -629,7 +624,7 @@ unsigned long kfree(void *address)
// 回收空闲的slab_obj
// 条件当前slab_obj_ptr的使用为0、总空闲内存对象>=当前slab_obj的总对象的2倍 且当前slab_pool不为起始slab_obj
if ((slab_obj_ptr->count_using == 0) && (kmalloc_cache_group[i].count_total_free >= ((slab_obj_ptr->bmp_count) << 1)) && (kmalloc_cache_group[i].cache_pool != slab_obj_ptr))
if ((slab_obj_ptr->count_using == 0) && (kmalloc_cache_group[i].count_total_free >= ((slab_obj_ptr->bmp_count) << 1)) && (kmalloc_cache_group[i].cache_pool_entry != slab_obj_ptr))
{
switch (kmalloc_cache_group[i].size)
{
@ -663,7 +658,7 @@ unsigned long kfree(void *address)
return 0;
}
} while (slab_obj_ptr != kmalloc_cache_group[i].cache_pool);
} while (slab_obj_ptr != kmalloc_cache_group[i].cache_pool_entry);
}
kBUG("kfree(): Can't free memory.");
return ECANNOT_FREE_MEM;

View File

@ -38,9 +38,9 @@ struct slab
ul count_total_using;
ul count_total_free;
// 内存池对象
struct slab_obj *cache_pool;
struct slab_obj *cache_pool_entry;
// dma内存池对象
struct slab_obj *cache_dma_pool;
struct slab_obj *cache_dma_pool_entry;
// 内存池的构造函数和析构函数
void *(*constructor)(void *vaddr, ul arg);