🆕 kmalloc

This commit is contained in:
fslongjin 2022-02-25 20:01:08 +08:00
parent 1ad685f7a3
commit 828621dbbc
3 changed files with 189 additions and 15 deletions

View File

@ -68,7 +68,7 @@ void mm_init()
memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
// 初始化bitmap 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
memset(memory_management_struct.bmp, 0xffffffffffffffff, memory_management_struct.bmp_len);
memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
// 初始化内存页结构
// 将页结构映射于bmp之后

View File

@ -348,19 +348,13 @@ ul slab_init()
// bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
memory_management_struct.end_of_struct += kmalloc_cache_group[i].cache_pool->bmp_len + ((sizeof(ul) << 2) & (~sizeof(ul) - 1));
memset(kmalloc_cache_group[i].cache_pool->bmp, 0, kmalloc_cache_group[i].cache_pool->bmp_len);
// @todo此处可优化直接把所有位设置为0然后再对部分不存在对应的内存对象的位设置为1
memset(kmalloc_cache_group[i].cache_pool->bmp, 0xff, kmalloc_cache_group[i].cache_pool->bmp_len);
for (int j = 0; j < kmalloc_cache_group[i].cache_pool->bmp_count; ++j)
*(kmalloc_cache_group[i].cache_pool->bmp + (j >> 6)) ^= 1UL << (j % 64);
kmalloc_cache_group[i].count_total_using = 0;
kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool->count_free;
/*
memset(kmalloc_cache_size[i].cache_pool->color_map,0xff,kmalloc_cache_size[i].cache_pool->color_length);
for(j = 0;j < kmalloc_cache_size[i].cache_pool->color_count;j++)
*(kmalloc_cache_size[i].cache_pool->color_map + (j >> 6)) ^= 1UL << j % 64;
kmalloc_cache_size[i].total_free = kmalloc_cache_size[i].cache_pool->color_count;
kmalloc_cache_size[i].total_using = 0;
*/
}
struct Page *page = NULL;
@ -388,10 +382,10 @@ ul slab_init()
for (int i = 0; i < 16; ++i)
{
// 获取一个新的空页并添加到空页表,然后返回其虚拟地址
virt = (ul*)(PAGE_2M_ALIGN(memory_management_struct.end_of_struct+PAGE_2M_SIZE*i));
virt = (ul *)(PAGE_2M_ALIGN(memory_management_struct.end_of_struct + PAGE_2M_SIZE * i));
page = Virt_To_2M_Page(virt);
page_init(page, PAGE_PGT_MAPPED|PAGE_KERNEL|PAGE_KERNEL_INIT);
page_init(page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
kmalloc_cache_group[i].cache_pool->page = page;
kmalloc_cache_group[i].cache_pool->vaddr = virt;
@ -401,16 +395,187 @@ ul slab_init()
return 0;
}
/**
* @brief kmalloc中创建slab_obj的函数slab_malloc())
*
* @param size
* @return struct slab_obj* slab_obj
*/
struct slab_obj *kmalloc_create_slab_obj(ul size)
{
struct Page *page = alloc_pages(ZONE_NORMAL, 1, 0);
// BUG
if (page == NULL)
{
kBUG("kmalloc_create()->alloc_pages()=>page == NULL");
return NULL;
}
page_init(page, PAGE_KERNEL);
ul *vaddr = NULL;
ul struct_size = 0;
struct slab_obj *slab_obj_ptr;
// 根据size大小选择不同的分支来处理
// 之所以选择512byte为分界点是因为此时bmp大小刚好为512byte。显而易见选择过小的话会导致kmalloc函数与当前函数反复互相调用最终导致栈溢出
switch (size)
{
// ============ 对于size<=512byte的内存池对象将slab_obj结构体和bmp放置在物理页的内部 ========
// 由于这些对象的特征是bmp占的空间大而内存块的空间小这样做的目的是避免再去申请一块内存来存储bmp减少浪费。
case 32:
case 64:
case 128:
case 256:
case 512:
vaddr = phys_2_virt(page->addr_phys);
// slab_obj结构体的大小 (本身的大小+bmp的大小
struct_size = sizeof(struct slab_obj) + PAGE_2M_SIZE / size / 8;
// 将slab_obj放置到物理页的末尾
slab_obj_ptr = (struct slab_obj *)((unsigned char *)vaddr + PAGE_2M_SIZE - struct_size);
slab_obj_ptr->bmp = (ul *)slab_obj_ptr + sizeof(struct slab_obj);
slab_obj_ptr->count_free = (PAGE_2M_SIZE - struct_size) / size;
slab_obj_ptr->count_using = 0;
slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
slab_obj_ptr->vaddr = vaddr;
slab_obj_ptr->page = page;
list_init(&slab_obj_ptr->list);
slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
// @todo此处可优化直接把所有位设置为0然后再对部分不存在对应的内存对象的位设置为1
memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
*(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
break;
// ================= 较大的size时slab_obj和bmp不再放置于当前物理页内部 ============
// 因为在这种情况下bmp很短继续放置在当前物理页内部则会造成可分配的对象少加剧了内存空间的浪费
case 1024: // 1KB
case 2048:
case 4096: // 4KB
case 8192:
case 16384:
case 32768:
case 65536:
case 131072: // 128KB
case 262144:
case 524288:
case 1048576: // 1MB
slab_obj_ptr = (struct Slab *)kmalloc(sizeof(struct slab_obj), 0);
slab_obj_ptr->count_free = PAGE_2M_SIZE / size;
slab_obj_ptr->count_using = 0;
slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
slab_obj_ptr->bmp = (ul *)kmalloc(slab_obj_ptr->bmp_len, 0);
// @todo此处可优化直接把所有位设置为0然后再对部分不存在对应的内存对象的位设置为1
memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
*(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
slab_obj_ptr->vaddr = phys_2_virt(page->addr_phys);
slab_obj_ptr->page = page;
list_init(&slab_obj_ptr->list);
break;
// size 错误
default:
kerror("kamlloc_create(): Wrong size%d\n", size);
free_pages(page, 1);
return NULL;
break;
}
return slab_obj_ptr;
}
/**
* @brief
*
* @param size
* @param flags flag
* @return void*
* @return void*
*/
void *kmalloc(unsigned long size, unsigned long flags)
{
// @todo: 内存分配函数
if (size > 1048576)
{
kwarn("kmalloc(): Can't alloc such memory: %ld bytes, because it is too large.", size);
return NULL;
}
int index;
for (int i = 0; i < 16; ++i)
if (kmalloc_cache_group[i].size >= size)
{
index = i;
break;
}
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool;
// 内存池没有可用的内存对象,需要进行扩容
if (kmalloc_cache_group[index].count_total_free == 0)
{
// 创建slab_obj
slab_obj_ptr = kmalloc_create_slab_obj(kmalloc_cache_group[index].size);
// BUG
if (slab_obj_ptr == NULL)
{
kBUG("kmalloc()->kmalloc_create_slab_obj()=>slab == NULL");
return NULL;
}
kmalloc_cache_group[index].count_total_free += slab_obj_ptr->count_free;
list_add(&kmalloc_cache_group[index].cache_pool->list, &slab_obj_ptr->list);
}
else // 内存对象充足
{
do
{
// 跳转到下一个内存池对象
if (slab_obj_ptr->count_free == 0)
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
else
break;
} while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool);
}
// 寻找一块可用的内存对象
int md;
for (int i = 0; i < slab_obj_ptr->count_free; ++i)
{
// 当前bmp全部被使用
if (*slab_obj_ptr->bmp + (i >> 6) == 0xffffffffffffffffUL)
{
i += 63;
continue;
}
md = i % 64;
// 找到相应的内存对象
if (*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << md) == 0)
{
*(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << md);
++(slab_obj_ptr->count_using);
--(slab_obj_ptr->count_free);
--kmalloc_cache_group[index].count_total_free;
++kmalloc_cache_group[index].count_total_using;
return (void*)((char*)slab_obj_ptr->vaddr+kmalloc_cache_group[index].size*i);
}
}
kerror("kmalloc(): Cannot alloc more memory: %d bytes", size);
return NULL;
}
/**

View File

@ -102,6 +102,15 @@ void *slab_malloc(struct slab *slab_pool, ul arg);
*/
ul slab_free(struct slab *slab_pool, void *addr, ul arg);
/**
* @brief kmalloc中创建slab_obj的函数slab_malloc())
*
* @param size
* @return struct slab_obj* slab_obj
*/
struct slab_obj * kmalloc_create_slab_obj(ul size);
/**
* @brief
* SLAB内存池指定存储空间