重写SMP模块 (#633)

* 修复cpumask的迭代器的错误。

* 能进系统(AP核心还没有初始化自身)

* 初始化ap core

* 修改percpu

* 删除无用的cpu.c

* riscv64编译通过
This commit is contained in:
LoGin 2024-03-21 19:19:32 +08:00 committed by GitHub
parent 1d37ca6d17
commit 8cb2e9b344
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
44 changed files with 544 additions and 654 deletions

View File

@ -36,7 +36,7 @@ export ASFLAGS := --64
LD_LIST := ""
kernel_subdirs := common driver debug smp syscall libs time
kernel_subdirs := common driver debug syscall libs time
kernel_rust:

View File

@ -1,6 +1,9 @@
use system_error::SystemError;
use crate::smp::SMPArch;
use crate::smp::{
cpu::{CpuHpCpuState, ProcessorId},
SMPArch,
};
pub struct RiscV64SMPArch;
@ -10,7 +13,7 @@ impl SMPArch for RiscV64SMPArch {
todo!()
}
fn init() -> Result<(), SystemError> {
fn start_cpu(cpu_id: ProcessorId, hp_state: &CpuHpCpuState) -> Result<(), SystemError> {
todo!()
}
}

View File

@ -5,4 +5,8 @@ impl TimeArch for RiscV64TimeArch {
fn get_cycles() -> usize {
riscv::register::cycle::read()
}
fn cal_expire_cycles(ns: usize) -> usize {
todo!()
}
}

View File

@ -20,7 +20,7 @@ _apu_boot_base = .
//
movl $(_apu_boot_tmp_stack_end - _apu_boot_base), %esp
// ap
mov %cs, %ax
movzx %ax, %esi

View File

@ -1,25 +0,0 @@
use crate::{sched::SchedArch, time::TimeArch};
use super::{driver::tsc::TSCManager, syscall::init_syscall_64, CurrentSchedArch, CurrentTimeArch};
/// 获取当前的时间戳
#[no_mangle]
unsafe extern "C" fn rs_get_cycles() -> u64 {
return CurrentTimeArch::get_cycles() as u64;
}
#[no_mangle]
unsafe extern "C" fn rs_tsc_get_cpu_khz() -> u64 {
return TSCManager::cpu_khz();
}
/// syscall指令初始化
#[no_mangle]
pub unsafe extern "C" fn rs_init_syscall_64() {
init_syscall_64();
}
#[no_mangle]
unsafe extern "C" fn rs_init_current_core_sched() {
CurrentSchedArch::initial_setup_sched_local();
}

View File

@ -1,6 +1,6 @@
use x86::cpuid::{cpuid, CpuIdResult};
use crate::smp::cpu::{ProcessorId, SmpCpuManager};
use crate::smp::cpu::ProcessorId;
/// 获取当前cpu的apic id
#[inline]
@ -16,7 +16,3 @@ pub unsafe fn cpu_reset() -> ! {
unsafe { x86::io::outb(0x64, 0xfe) };
loop {}
}
impl SmpCpuManager {
pub fn arch_init(_boot_cpu: ProcessorId) {}
}

View File

@ -1,11 +0,0 @@
//
// Created by longjin on 2022/1/20.
//
#include <common/cpu.h>
void __init_set_cpu_stack_start(uint32_t cpu, uint64_t stack_start)
{
cpu_core_info[cpu].stack_start = stack_start;
}

View File

@ -6,7 +6,6 @@ use x86::dtables::DescriptorTablePointer;
use crate::{
arch::{interrupt::trap::arch_trap_init, process::table::TSSManager},
driver::pci::pci::pci_init,
include::bindings::bindings::cpu_init,
init::init::start_kernel,
kdebug,
mm::{MemoryManagementArch, PhysAddr},
@ -33,7 +32,6 @@ extern "C" {
fn head_stack_start();
fn multiboot2_init(mb2_info: u64, mb2_magic: u32) -> bool;
fn __init_set_cpu_stack_start(cpu: u32, stack_start: u64);
}
#[no_mangle]
@ -81,7 +79,6 @@ pub fn early_setup_arch() -> Result<(), SystemError> {
set_current_core_tss(stack_start, 0);
unsafe { TSSManager::load_tr() };
unsafe { __init_set_cpu_stack_start(0, stack_start as u64) };
arch_trap_init().expect("arch_trap_init failed");
return Ok(());
@ -90,10 +87,6 @@ pub fn early_setup_arch() -> Result<(), SystemError> {
/// 架构相关的初始化
#[inline(never)]
pub fn setup_arch() -> Result<(), SystemError> {
unsafe {
cpu_init();
}
// todo: 将来pci接入设备驱动模型之后删掉这里。
pci_init();
return Ok(());

View File

@ -1,17 +0,0 @@
use crate::smp::cpu::ProcessorId;
use super::ipi::{ipi_send_smp_init, ipi_send_smp_startup};
#[no_mangle]
unsafe extern "C" fn rs_ipi_send_smp_init() -> i32 {
return ipi_send_smp_init()
.map(|_| 0)
.unwrap_or_else(|e| e.to_posix_errno());
}
#[no_mangle]
unsafe extern "C" fn rs_ipi_send_smp_startup(target_cpu: u32) -> i32 {
return ipi_send_smp_startup(ProcessorId::new(target_cpu))
.map(|_| 0)
.unwrap_or_else(|e| e.to_posix_errno());
}

View File

@ -160,7 +160,7 @@ pub fn send_ipi(kind: IpiKind, target: IpiTarget) {
}
/// 发送smp初始化IPI
pub fn ipi_send_smp_init() -> Result<(), SystemError> {
pub fn ipi_send_smp_init() {
let target = ArchIpiTarget::Other;
let icr = if CurrentApic.x2apic_enabled() {
x86::apic::Icr::for_x2apic(
@ -186,7 +186,6 @@ pub fn ipi_send_smp_init() -> Result<(), SystemError> {
)
};
CurrentApic.write_icr(icr);
return Ok(());
}
/// 发送smp启动IPI

View File

@ -1,4 +1,3 @@
mod c_adapter;
pub(super) mod entry;
mod handle;
pub mod ipi;
@ -93,6 +92,14 @@ impl InterruptArch for X86_64InterruptArch {
fn arch_early_irq_init() -> Result<(), SystemError> {
arch_early_irq_init()
}
fn arch_ap_early_irq_init() -> Result<(), SystemError> {
if !CurrentApic.init_current_cpu() {
return Err(SystemError::ENODEV);
}
Ok(())
}
}
/// 中断栈帧结构体

View File

@ -1,7 +0,0 @@
use super::LowAddressRemapping;
#[no_mangle]
unsafe extern "C" fn rs_unmap_at_low_addr() -> usize {
LowAddressRemapping::unmap_at_low_address(true);
return 0;
}

View File

@ -1,6 +1,5 @@
pub mod barrier;
pub mod bump;
mod c_adapter;
use alloc::vec::Vec;
use hashbrown::HashSet;
@ -159,6 +158,7 @@ impl MemoryManagementArch for X86_64MMArch {
// 初始化内存管理器
unsafe { allocator_init() };
send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes());
}
@ -181,11 +181,10 @@ impl MemoryManagementArch for X86_64MMArch {
unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
match table_kind {
PageTableKind::Kernel | PageTableKind::User => {
let paddr: usize;
compiler_fence(Ordering::SeqCst);
asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
let cr3 = x86::controlregs::cr3() as usize;
compiler_fence(Ordering::SeqCst);
return PhysAddr::new(paddr);
return PhysAddr::new(cr3);
}
PageTableKind::EPT => {
let eptp =
@ -461,9 +460,6 @@ unsafe fn allocator_init() {
flusher.ignore();
}
}
// 添加低地址的映射在smp完成初始化之前需要使用低地址的映射.初始化之后需要取消这一段映射)
LowAddressRemapping::remap_at_low_address(&mut mapper);
}
unsafe {
@ -659,9 +655,7 @@ impl LowAddressRemapping {
// 映射64M
const REMAP_SIZE: usize = 64 * 1024 * 1024;
pub unsafe fn remap_at_low_address(
mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
) {
pub unsafe fn remap_at_low_address(mapper: &mut PageMapper) {
for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
@ -676,14 +670,10 @@ impl LowAddressRemapping {
}
/// 取消低地址的映射
pub unsafe fn unmap_at_low_address(flush: bool) {
let mut mapper = KernelMapper::lock();
assert!(mapper.as_mut().is_some());
pub unsafe fn unmap_at_low_address(mapper: &mut PageMapper, flush: bool) {
for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
let (_, _, flusher) = mapper
.as_mut()
.unwrap()
.unmap_phys(vaddr, true)
.expect("Failed to unmap frame");
if flush == false {

View File

@ -1,7 +1,6 @@
#[macro_use]
pub mod asm;
mod acpi;
mod c_adapter;
pub mod cpu;
pub mod driver;
pub mod elf;

View File

@ -1,27 +1,38 @@
use core::{
arch::asm,
hint::spin_loop,
sync::atomic::{compiler_fence, AtomicBool, Ordering},
sync::atomic::{compiler_fence, fence, AtomicBool, Ordering},
};
use kdepends::memoffset::offset_of;
use system_error::SystemError;
use crate::{
arch::process::table::TSSManager,
arch::{mm::LowAddressRemapping, process::table::TSSManager, MMArch},
exception::InterruptArch,
include::bindings::bindings::{cpu_core_info, smp_init},
kdebug,
libs::rwlock::RwLock,
mm::percpu::PerCpu,
libs::{cpumask::CpuMask, rwlock::RwLock},
mm::{percpu::PerCpu, MemoryManagementArch, PhysAddr, VirtAddr, IDLE_PROCESS_ADDRESS_SPACE},
process::ProcessManager,
smp::{core::smp_get_processor_id, cpu::ProcessorId, SMPArch},
smp::{
core::smp_get_processor_id,
cpu::{smp_cpu_manager, CpuHpCpuState, ProcessorId, SmpCpuManager},
init::smp_ap_start_stage2,
SMPArch,
},
};
use super::{acpi::early_acpi_boot_init, CurrentIrqArch};
use super::{
acpi::early_acpi_boot_init,
interrupt::ipi::{ipi_send_smp_init, ipi_send_smp_startup},
CurrentIrqArch,
};
extern "C" {
fn smp_ap_start_stage2();
/// AP处理器启动时会将CR3设置为这个值
pub static mut __APU_START_CR3: u64;
fn _apu_boot_start();
fn _apu_boot_end();
}
pub(super) static X86_64_SMP_MANAGER: X86_64SmpManager = X86_64SmpManager::new();
@ -35,7 +46,17 @@ struct ApStartStackInfo {
#[no_mangle]
unsafe extern "C" fn smp_ap_start() -> ! {
CurrentIrqArch::interrupt_disable();
let vaddr = cpu_core_info[smp_get_processor_id().data() as usize].stack_start as usize;
let vaddr = if let Some(t) = smp_cpu_manager()
.cpuhp_state(smp_get_processor_id())
.thread()
{
t.kernel_stack().stack_max_address().data() - 16
} else {
// 没有设置ap核心的栈那么就进入死循环。
loop {
spin_loop();
}
};
compiler_fence(core::sync::atomic::Ordering::SeqCst);
let v = ApStartStackInfo { vaddr };
smp_init_switch_stack(&v);
@ -49,7 +70,7 @@ unsafe extern "sysv64" fn smp_init_switch_stack(st: &ApStartStackInfo) -> ! {
jmp {stage1}
"),
off_rsp = const(offset_of!(ApStartStackInfo, vaddr)),
stage1 = sym smp_ap_start_stage1,
stage1 = sym smp_ap_start_stage1,
options(noreturn));
}
@ -66,10 +87,9 @@ unsafe extern "C" fn smp_ap_start_stage1() -> ! {
);
TSSManager::load_tr();
CurrentIrqArch::arch_ap_early_irq_init().expect("arch_ap_early_irq_init failed");
smp_ap_start_stage2();
loop {
spin_loop();
}
}
/// 多核的数据
@ -141,10 +161,34 @@ impl X86_64SmpManager {
pub fn build_cpu_map(&self) -> Result<(), SystemError> {
// 参考https://code.dragonos.org.cn/xref/linux-6.1.9/arch/ia64/kernel/smpboot.c?fi=smp_build_cpu_map#496
// todo!("build_cpu_map")
unsafe {
smp_cpu_manager().set_possible_cpu(ProcessorId::new(0), true);
smp_cpu_manager().set_present_cpu(ProcessorId::new(0), true);
smp_cpu_manager().set_online_cpu(ProcessorId::new(0));
}
for cpu in 1..SMP_BOOT_DATA.cpu_count() {
unsafe {
smp_cpu_manager().set_possible_cpu(ProcessorId::new(cpu as u32), true);
smp_cpu_manager().set_present_cpu(ProcessorId::new(cpu as u32), true);
}
}
print_cpus("possible", smp_cpu_manager().possible_cpus());
print_cpus("present", smp_cpu_manager().present_cpus());
return Ok(());
}
}
fn print_cpus(s: &str, mask: &CpuMask) {
let mut v = vec![];
for cpu in mask.iter_cpu() {
v.push(cpu.data());
}
kdebug!("{s}: cpus: {v:?}\n");
}
pub struct X86_64SMPArch;
impl SMPArch for X86_64SMPArch {
@ -155,11 +199,87 @@ impl SMPArch for X86_64SMPArch {
return Ok(());
}
#[inline(never)]
fn init() -> Result<(), SystemError> {
x86::fence::mfence();
unsafe { smp_init() };
x86::fence::mfence();
fn post_init() -> Result<(), SystemError> {
// AP核心启动完毕取消低地址映射
unsafe {
LowAddressRemapping::unmap_at_low_address(
&mut IDLE_PROCESS_ADDRESS_SPACE()
.write_irqsave()
.user_mapper
.utable,
true,
)
}
return Ok(());
}
fn start_cpu(cpu_id: ProcessorId, _cpu_hpstate: &CpuHpCpuState) -> Result<(), SystemError> {
kdebug!("start_cpu: cpu_id: {:#x}\n", cpu_id.data());
Self::copy_smp_start_code();
ipi_send_smp_init();
fence(Ordering::SeqCst);
ipi_send_smp_startup(cpu_id)?;
fence(Ordering::SeqCst);
ipi_send_smp_startup(cpu_id)?;
fence(Ordering::SeqCst);
return Ok(());
}
}
impl X86_64SMPArch {
const SMP_CODE_START: usize = 0x20000;
/// 复制SMP启动代码到0x20000处
fn copy_smp_start_code() -> (VirtAddr, usize) {
let apu_boot_size = Self::start_code_size();
fence(Ordering::SeqCst);
unsafe {
core::ptr::copy(
_apu_boot_start as *const u8,
Self::SMP_CODE_START as *mut u8,
apu_boot_size,
)
};
fence(Ordering::SeqCst);
return (VirtAddr::new(Self::SMP_CODE_START), apu_boot_size);
}
fn start_code_size() -> usize {
let apu_boot_start = _apu_boot_start as usize;
let apu_boot_end = _apu_boot_end as usize;
let apu_boot_size = apu_boot_end - apu_boot_start;
return apu_boot_size;
}
}
impl SmpCpuManager {
pub fn arch_init(_boot_cpu: ProcessorId) {
assert!(smp_get_processor_id().data() == 0);
// 写入APU_START_CR3这个值会在AP处理器启动时设置到CR3寄存器
let addr = IDLE_PROCESS_ADDRESS_SPACE()
.read_irqsave()
.user_mapper
.utable
.table()
.phys();
let vaddr = unsafe {
MMArch::phys_2_virt(PhysAddr::new(&mut __APU_START_CR3 as *mut u64 as usize)).unwrap()
};
let ptr = vaddr.data() as *mut u64;
unsafe { *ptr = addr.data() as u64 };
// 添加低地址映射
unsafe {
LowAddressRemapping::remap_at_low_address(
&mut IDLE_PROCESS_ADDRESS_SPACE()
.write_irqsave()
.user_mapper
.utable,
)
};
}
}

View File

@ -1,9 +1,15 @@
use crate::time::TimeArch;
use super::driver::tsc::TSCManager;
pub struct X86_64TimeArch;
impl TimeArch for X86_64TimeArch {
fn get_cycles() -> usize {
unsafe { x86::time::rdtsc() as usize }
}
fn cal_expire_cycles(ns: usize) -> usize {
Self::get_cycles() + ns * TSCManager::cpu_khz() as usize / 1000000
}
}

View File

@ -1,61 +0,0 @@
#pragma once
#include "glib.h"
#define MAX_CPU_NUM 32 // 操作系统支持的最大处理器数量
// cpu支持的最大cpuid指令的基础主功能号
extern uint32_t Cpu_cpuid_max_Basic_mop;
// cpu支持的最大cpuid指令的扩展主功能号
extern uint32_t Cpu_cpuid_max_Extended_mop;
// cpu制造商信息
extern char Cpu_Manufacturer_Name[17];
// 处理器名称信息
extern char Cpu_BrandName[49];
// 处理器家族ID
extern uint32_t Cpu_Family_ID;
// 处理器扩展家族ID
extern uint32_t Cpu_Extended_Family_ID;
// 处理器模式ID
extern uint32_t Cpu_Model_ID;
// 处理器扩展模式ID
extern uint32_t Cpu_Extended_Model_ID;
// 处理器步进ID
extern uint32_t Cpu_Stepping_ID;
// 处理器类型
extern uint32_t Cpu_Processor_Type;
// 处理器支持的最大物理地址可寻址地址线宽度
extern uint32_t Cpu_max_phys_addrline_size;
// 处理器支持的最大线性地址可寻址地址线宽度
extern uint32_t Cpu_max_linear_addrline_size;
// 处理器的tsc频率单位hz(HPET定时器在测定apic频率时顺便测定了这个值)
extern uint64_t Cpu_tsc_freq;
/**
* @brief cpuid指令
*
* @param mop
* @param sop
* @param eax eax值
* @param ebx ebx值
* @param ecx ecx值
* @param edx edx值
*
* cpuid指令参考英特尔开发手册卷2A Chapter3 3.2 Instruction
*/
void cpu_cpuid(uint32_t mop, uint32_t sop, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
/**
* @brief
*
*/
void cpu_init(void);
struct cpu_core_info_t
{
uint64_t stack_start; // 栈基地址
uint64_t ist_stack_start; // IST栈基地址
};
extern struct cpu_core_info_t cpu_core_info[MAX_CPU_NUM];

View File

@ -181,7 +181,7 @@ impl IrqHandler for Ps2KeyboardIrqHandler {
let status = unsafe { CurrentPortIOArch::in8(PORT_PS2_KEYBOARD_STATUS.into()) };
let status = Ps2StatusRegister::from(status);
if !status.outbuf_full() {
return Ok(IrqReturn::NotHandled);
return Ok(IrqReturn::Handled);
}
let input = unsafe { CurrentPortIOArch::in8(PORT_PS2_KEYBOARD_DATA.into()) };

View File

@ -183,7 +183,6 @@ impl TtyOperation for TtyConsoleDriverInner {
let mut window_size = window_size.upgrade();
window_size.col = vc_data.cols as u16;
window_size.row = vc_data.rows as u16;
kerror!("window_size {:?}", *window_size);
}
if vc_data.utf {

View File

@ -40,6 +40,11 @@ pub trait InterruptArch: Send + Sync {
Ok(())
}
/// ap启动时的中断初始化
fn arch_ap_early_irq_init() -> Result<(), SystemError> {
Ok(())
}
/// 响应未注册的中断
fn ack_bad_irq(irq: IrqNumber);
}

View File

@ -25,8 +25,6 @@
#include <mm/slab.h>
#include <process/process.h>
#include <sched/sched.h>
#include <smp/smp.h>
#include <time/clocksource.h>
#include <time/sleep.h>
#include <common/errno.h>
#include <common/cpu.h>

View File

@ -59,13 +59,12 @@ fn do_start_kernel() {
unsafe {
acpi_init()
};
process_init();
early_smp_init().expect("early smp init failed");
irq_init().expect("irq init failed");
setup_arch().expect("setup_arch failed");
CurrentSMPArch::prepare_cpus().expect("prepare_cpus failed");
process_init();
sched_init();
softirq_init().expect("softirq init failed");
Syscall::init().expect("syscall init failed");
@ -74,9 +73,6 @@ fn do_start_kernel() {
kthread_init();
clocksource_boot_finish();
CurrentSMPArch::init().expect("smp init failed");
// SMP初始化有可能会开中断所以这里再次检查中断是否关闭
assert_eq!(CurrentIrqArch::is_irq_enabled(), false);
Futex::init();
setup_arch_post().expect("setup_arch_post failed");

View File

@ -12,6 +12,7 @@ use crate::{
kdebug, kerror,
net::net_core::net_init,
process::{kthread::KernelThreadMechanism, process::stdio_init},
smp::smp_init,
};
use super::initcall::do_initcalls;
@ -55,6 +56,8 @@ fn kenrel_init_freeable() -> Result<(), SystemError> {
panic!("Failed to initialize subsystems: {:?}", err);
});
smp_init();
return Ok(());
}

View File

@ -1,109 +0,0 @@
#include <common/cpu.h>
#include <common/kprint.h>
#include <common/printk.h>
// #pragma GCC optimize("O0")
// cpu支持的最大cpuid指令的基础主功能号
uint Cpu_cpuid_max_Basic_mop;
// cpu支持的最大cpuid指令的扩展主功能号
uint Cpu_cpuid_max_Extended_mop;
// cpu制造商信息
char Cpu_Manufacturer_Name[17] = {0};
// 处理器名称信息
char Cpu_BrandName[49] = {0};
// 处理器家族ID
uint Cpu_Family_ID;
// 处理器扩展家族ID
uint Cpu_Extended_Family_ID;
// 处理器模式ID
uint Cpu_Model_ID;
// 处理器扩展模式ID
uint Cpu_Extended_Model_ID;
// 处理器步进ID
uint Cpu_Stepping_ID;
// 处理器类型
uint Cpu_Processor_Type;
// 处理器支持的最大物理地址可寻址地址线宽度
uint Cpu_max_phys_addrline_size;
// 处理器支持的最大线性地址可寻址地址线宽度
uint Cpu_max_linear_addrline_size;
// 处理器的tsc频率单位hz(HPET定时器在测定apic频率时顺便测定了这个值)
uint64_t Cpu_tsc_freq = 0;
struct cpu_core_info_t cpu_core_info[MAX_CPU_NUM];
#if ARCH(I386) || ARCH(X86_64)
void cpu_init(void)
{
// 获取处理器制造商信息
uint tmp_info[4] = {0};
cpu_cpuid(0, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
// 保存CPU支持的最大cpuid指令主功能号
Cpu_cpuid_max_Basic_mop = tmp_info[0];
// 保存制造商名称
*(uint *)&Cpu_Manufacturer_Name[0] = tmp_info[1];
*(uint *)&Cpu_Manufacturer_Name[4] = tmp_info[3];
*(uint *)&Cpu_Manufacturer_Name[8] = tmp_info[2];
Cpu_Manufacturer_Name[12] = '\0';
kinfo("CPU manufacturer: %s", Cpu_Manufacturer_Name);
// 获取处理器型号信息
int count = 0;
for (uint i = 0x80000002; i < 0x80000005; ++i)
{
cpu_cpuid(i, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
for (int j = 0; j <= 3; ++j)
{
*(uint *)&Cpu_BrandName[4 * count] = tmp_info[j];
++count;
}
}
Cpu_BrandName[48] = '\0';
kinfo("CPU Brand Name: %s", Cpu_BrandName);
// 使用cpuid主功能号0x01进行查询(未保存ebx ecx edx的信息具体参见白皮书)
cpu_cpuid(1, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
// EAX中包含 Version Informatin Type,Family,Model,and Stepping ID
Cpu_Stepping_ID = tmp_info[0] & 0xf;
Cpu_Model_ID = (tmp_info[0] >> 4) & 0xf;
Cpu_Family_ID = (tmp_info[0] >> 8) & 0xf;
Cpu_Processor_Type = (tmp_info[0] >> 12) & 0x3;
// 14-15位保留
Cpu_Extended_Model_ID = (tmp_info[0] >> 16) & 0xf;
Cpu_Extended_Family_ID = (tmp_info[0] >> 20) & 0xff;
// 31-25位保留
kinfo("Family ID=%#03lx\t Extended Family ID=%#03lx\t Processor Type=%#03lx\t", Cpu_Family_ID, Cpu_Extended_Family_ID, Cpu_Processor_Type);
kinfo("Model ID=%#03lx\t Extended Model ID=%#03lx\tStepping ID=%#03lx\t", Cpu_Model_ID, Cpu_Extended_Model_ID, Cpu_Stepping_ID);
// 使用0x80000008主功能号查询处理器支持的最大可寻址地址线宽度
cpu_cpuid(0x80000008, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
Cpu_max_phys_addrline_size = tmp_info[0] & 0xff;
Cpu_max_linear_addrline_size = (tmp_info[0] >> 8) & 0xff;
kinfo("Cpu_max_phys_addrline_size = %d", Cpu_max_phys_addrline_size);
kinfo("Cpu_max_linear_addrline_size = %d", Cpu_max_linear_addrline_size);
cpu_cpuid(0x80000000, 0, &tmp_info[0], &tmp_info[1], &tmp_info[2], &tmp_info[3]);
Cpu_cpuid_max_Extended_mop = tmp_info[0];
kinfo("Max basic mop=%#05lx", Cpu_cpuid_max_Basic_mop);
kinfo("Max extended mop=%#05lx", Cpu_cpuid_max_Extended_mop);
return;
}
void cpu_cpuid(uint32_t mop, uint32_t sop, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
// 向eax和ecx分别输入主功能号和子功能号
// 结果输出到eax, ebx, ecx, edx
__asm__ __volatile__("cpuid \n\t"
: "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "0"(mop), "2"(sop)
: "memory");
}
#else
void cpu_init(void){}
#endif

View File

@ -65,8 +65,9 @@ impl CpuMask {
pub fn iter_cpu(&self) -> CpuMaskIter {
CpuMaskIter {
mask: self,
index: ProcessorId::new(0),
index: None,
set: true,
begin: true,
}
}
@ -74,36 +75,41 @@ impl CpuMask {
pub fn iter_zero_cpu(&self) -> CpuMaskIter {
CpuMaskIter {
mask: self,
index: ProcessorId::new(0),
index: None,
set: false,
begin: true,
}
}
}
pub struct CpuMaskIter<'a> {
mask: &'a CpuMask,
index: ProcessorId,
index: Option<ProcessorId>,
set: bool,
begin: bool,
}
impl<'a> Iterator for CpuMaskIter<'a> {
type Item = ProcessorId;
fn next(&mut self) -> Option<ProcessorId> {
if self.index.data() == 0 {
if self.index.is_none() && self.begin {
if self.set {
self.index = self.mask.first()?;
self.index = self.mask.first();
} else {
self.index = self.mask.first_zero()?;
self.index = self.mask.first_zero();
}
self.begin = false;
}
let result = self.index;
if self.set {
self.index = self.mask.next_index(self.index?);
} else {
self.index = self.mask.next_zero_index(self.index?);
}
if self.set {
self.index = self.mask.next_index(self.index)?;
} else {
self.index = self.mask.next_zero_index(self.index)?;
}
Some(self.index)
result
}
}

View File

@ -87,7 +87,7 @@ impl WaitQueue {
}
pub unsafe fn sleep_without_schedule_uninterruptible(&self) {
before_sleep_check(0);
before_sleep_check(1);
// 安全检查:确保当前处于中断禁止状态
assert!(CurrentIrqArch::is_irq_enabled() == false);
let mut guard: SpinLockGuard<InnerWaitQueue> = self.0.lock();
@ -264,7 +264,7 @@ fn before_sleep_check(max_preempt: usize) {
if unlikely(pcb.preempt_count() > max_preempt) {
kwarn!(
"Process {:?}: Try to sleep when preempt count is {}",
pcb.pid(),
pcb.pid().data(),
pcb.preempt_count()
);
}

View File

@ -33,7 +33,7 @@ pub mod syscall;
pub mod ucontext;
/// 内核INIT进程的用户地址空间结构体仅在process_init中初始化
static mut __INITIAL_PROCESS_ADDRESS_SPACE: Option<Arc<AddressSpace>> = None;
static mut __IDLE_PROCESS_ADDRESS_SPACE: Option<Arc<AddressSpace>> = None;
bitflags! {
/// Virtual memory flags
@ -74,29 +74,29 @@ bitflags! {
}
}
/// 获取内核INIT进程的用户地址空间结构体
/// 获取内核IDLE进程的用户地址空间结构体
#[allow(non_snake_case)]
#[inline(always)]
pub fn INITIAL_PROCESS_ADDRESS_SPACE() -> Arc<AddressSpace> {
pub fn IDLE_PROCESS_ADDRESS_SPACE() -> Arc<AddressSpace> {
unsafe {
return __INITIAL_PROCESS_ADDRESS_SPACE
return __IDLE_PROCESS_ADDRESS_SPACE
.as_ref()
.expect("INITIAL_PROCESS_ADDRESS_SPACE is null")
.expect("IDLE_PROCESS_ADDRESS_SPACE is null")
.clone();
}
}
/// 设置内核INIT进程的用户地址空间结构体全局变量
/// 设置内核IDLE进程的用户地址空间结构体全局变量
#[allow(non_snake_case)]
pub unsafe fn set_INITIAL_PROCESS_ADDRESS_SPACE(address_space: Arc<AddressSpace>) {
pub unsafe fn set_IDLE_PROCESS_ADDRESS_SPACE(address_space: Arc<AddressSpace>) {
static INITIALIZED: AtomicBool = AtomicBool::new(false);
if INITIALIZED
.compare_exchange(false, true, Ordering::SeqCst, Ordering::Acquire)
.is_err()
{
panic!("INITIAL_PROCESS_ADDRESS_SPACE is already initialized");
panic!("IDLE_PROCESS_ADDRESS_SPACE is already initialized");
}
__INITIAL_PROCESS_ADDRESS_SPACE = Some(address_space);
__IDLE_PROCESS_ADDRESS_SPACE = Some(address_space);
}
/// @brief 将内核空间的虚拟地址转换为物理地址

View File

@ -3,9 +3,11 @@ use core::sync::atomic::AtomicU32;
use alloc::vec::Vec;
use crate::{
include::bindings::bindings::smp_get_total_cpu,
libs::lazy_init::Lazy,
smp::{core::smp_get_processor_id, cpu::ProcessorId},
smp::{
core::smp_get_processor_id,
cpu::{smp_cpu_manager, ProcessorId},
},
};
/// 系统中的CPU数量
@ -29,8 +31,9 @@ impl PerCpu {
if CPU_NUM.load(core::sync::atomic::Ordering::SeqCst) != 0 {
panic!("PerCpu::init() called twice");
}
let cpus = unsafe { smp_get_total_cpu() };
assert!(cpus > 0, "PerCpu::init(): smp_get_total_cpu() returned 0");
let cpus = smp_cpu_manager().present_cpus_count();
assert!(cpus > 0, "PerCpu::init(): present_cpus_count() returned 0");
CPU_NUM.store(cpus, core::sync::atomic::Ordering::SeqCst);
}
}
@ -80,17 +83,19 @@ impl<T> PerCpuVar<T> {
&self.inner[cpu_id.data() as usize]
}
pub fn get_mut(&mut self) -> &mut T {
pub fn get_mut(&self) -> &mut T {
let cpu_id = smp_get_processor_id();
&mut self.inner[cpu_id.data() as usize]
unsafe {
&mut (self as *const Self as *mut Self).as_mut().unwrap().inner[cpu_id.data() as usize]
}
}
pub unsafe fn force_get(&self, cpu_id: ProcessorId) -> &T {
&self.inner[cpu_id.data() as usize]
}
pub unsafe fn force_get_mut(&mut self, cpu_id: ProcessorId) -> &mut T {
&mut self.inner[cpu_id.data() as usize]
pub unsafe fn force_get_mut(&self, cpu_id: ProcessorId) -> &mut T {
&mut (self as *const Self as *mut Self).as_mut().unwrap().inner[cpu_id.data() as usize]
}
}

View File

@ -6,7 +6,7 @@ use core::{
use alloc::{sync::Arc, vec::Vec};
use crate::{
mm::{percpu::PerCpu, VirtAddr, INITIAL_PROCESS_ADDRESS_SPACE},
mm::{percpu::PerCpu, VirtAddr, IDLE_PROCESS_ADDRESS_SPACE},
process::KernelStack,
smp::{core::smp_get_processor_id, cpu::ProcessorId},
};
@ -53,7 +53,7 @@ impl ProcessManager {
unsafe {
idle_pcb
.basic_mut()
.set_user_vm(Some(INITIAL_PROCESS_ADDRESS_SPACE()))
.set_user_vm(Some(IDLE_PROCESS_ADDRESS_SPACE()))
};
assert!(idle_pcb.sched_info().on_cpu().is_none());

View File

@ -41,7 +41,7 @@ use crate::{
spinlock::{SpinLock, SpinLockGuard},
wait_queue::WaitQueue,
},
mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr},
mm::{percpu::PerCpuVar, set_IDLE_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr},
net::socket::SocketInode,
sched::{
completion::Completion,
@ -109,7 +109,7 @@ impl ProcessManager {
compiler_fence(Ordering::SeqCst);
kdebug!("To create address space for INIT process.");
// test_buddy();
set_INITIAL_PROCESS_ADDRESS_SPACE(
set_IDLE_PROCESS_ADDRESS_SPACE(
AddressSpace::new(true).expect("Failed to create address space for INIT process."),
);
kdebug!("INIT process address space created.");

View File

@ -10,7 +10,6 @@
#pragma once
#include "ptrace.h"
#include <common/cpu.h>
#include <common/errno.h>
#include <common/glib.h>
#include <syscall/syscall.h>

View File

@ -5,12 +5,12 @@ use alloc::{boxed::Box, sync::Arc, vec::Vec};
use crate::{
arch::CurrentIrqArch,
exception::InterruptArch,
include::bindings::bindings::MAX_CPU_NUM,
kBUG,
libs::{
rbtree::RBTree,
spinlock::{SpinLock, SpinLockGuard},
},
mm::percpu::PerCpu,
process::{
ProcessControlBlock, ProcessFlags, ProcessManager, ProcessSchedulerInfo, ProcessState,
},
@ -122,7 +122,7 @@ impl SchedulerCFS {
};
// 为每个cpu核心创建队列进程重构后可以直接初始化Idle_pcb
for i in 0..MAX_CPU_NUM {
for i in 0..PerCpu::MAX_CPU_NUM {
let idle_pcb = ProcessManager::idle_pcb()[i as usize].clone();
result
.cpu_queue

View File

@ -4,9 +4,9 @@ use alloc::{boxed::Box, collections::LinkedList, sync::Arc, vec::Vec};
use crate::{
arch::cpu::current_cpu_id,
include::bindings::bindings::MAX_CPU_NUM,
kBUG, kdebug,
libs::spinlock::SpinLock,
mm::percpu::PerCpu,
process::{ProcessControlBlock, ProcessFlags, ProcessManager},
smp::cpu::ProcessorId,
};
@ -108,7 +108,7 @@ impl SchedulerRT {
};
// 为每个cpu核心创建队列
for cpu_id in 0..MAX_CPU_NUM {
for cpu_id in 0..PerCpu::MAX_CPU_NUM {
result.cpu_queue.push(Vec::new());
// 每个CPU有MAX_RT_PRIO个优先级队列
for _ in 0..SchedulerRT::MAX_RT_PRIO {
@ -116,7 +116,7 @@ impl SchedulerRT {
}
}
// 为每个cpu核心创建负载统计队列
for _ in 0..MAX_CPU_NUM {
for _ in 0..PerCpu::MAX_CPU_NUM {
result
.load_list
.push(Box::leak(Box::new(LinkedList::new())));

View File

@ -1,8 +0,0 @@
CFLAGS += -I .
all: smp.o
smp.o: smp.c
$(CC) $(CFLAGS) -c smp.c -o smp.o

View File

@ -1,13 +0,0 @@
use super::{core::smp_get_processor_id, cpu::ProcessorId, kick_cpu};
#[no_mangle]
pub extern "C" fn rs_kick_cpu(cpu_id: u32) -> usize {
return kick_cpu(ProcessorId::new(cpu_id))
.map(|_| 0usize)
.unwrap_or_else(|e| e.to_posix_errno() as usize);
}
#[no_mangle]
pub extern "C" fn rs_current_cpu_id() -> i32 {
return smp_get_processor_id().data() as i32;
}

View File

@ -1,79 +0,0 @@
use alloc::vec::Vec;
use hashbrown::HashSet;
use crate::{driver::acpi::acpi_manager, kdebug};
/// 这是一个临时的函数用于在acpi、cpu模块被正式实现之前让原本的C写的smp模块能正常运行
///
/// 请注意这样写会使得smp模块与x86强耦合。正确的做法是
/// - 在sysfs中新增acpi firmware
/// - 在acpi初始化的时候初始化处理器拓扑信息
/// - 初始化cpu模块加入到sysfs放置在/sys/devices/system下面
/// - smp模块从cpu模块处获取到与架构无关的处理器拓扑信息
/// - smp根据上述信息初始化指定的处理器这部分在arch下面实现
///
/// 但是由于acpi、cpu模块还没有被正式实现所以暂时使用这个函数来代替接下来会按照上述步骤进行编写代码
#[no_mangle]
unsafe extern "C" fn rs_smp_get_cpus(res: *mut X86CpuInfo) -> usize {
let acpi_table = acpi_manager().tables().unwrap();
let platform_info = acpi_table
.platform_info()
.expect("smp_get_cpu_topology(): failed to get platform info");
let processor_info = platform_info
.processor_info
.expect("smp_get_cpu_topology(): failed to get processor info");
let mut id_set = HashSet::new();
let mut cpu_info = processor_info
.application_processors
.iter()
.filter_map(|ap| {
if id_set.contains(&ap.local_apic_id) {
return None;
}
let can_boot = ap.state == acpi::platform::ProcessorState::WaitingForSipi;
if !can_boot {
return None;
}
id_set.insert(ap.local_apic_id);
Some(X86CpuInfo::new(
ap.local_apic_id,
ap.processor_uid,
can_boot,
))
})
.collect::<Vec<_>>();
let bsp_info = X86CpuInfo::new(
processor_info.boot_processor.local_apic_id,
processor_info.boot_processor.processor_uid,
processor_info.boot_processor.state == acpi::platform::ProcessorState::WaitingForSipi,
);
cpu_info.push(bsp_info);
cpu_info.sort_by(|a, b| a.apic_id.cmp(&b.apic_id));
kdebug!("cpu_info: {:?}", cpu_info);
res.copy_from_nonoverlapping(cpu_info.as_ptr(), cpu_info.len());
return cpu_info.len();
}
/// 这个是临时用于传数据给c版本代码的结构体请勿用作其他用途
#[repr(C)]
#[derive(Debug)]
struct X86CpuInfo {
apic_id: u32,
core_id: u32,
can_boot: core::ffi::c_char,
}
impl X86CpuInfo {
fn new(apic_id: u32, core_id: u32, can_boot: bool) -> Self {
Self {
apic_id,
core_id,
can_boot: can_boot as core::ffi::c_char,
}
}
}

View File

@ -1,8 +1,17 @@
use core::sync::atomic::AtomicU32;
use crate::libs::cpumask::CpuMask;
use alloc::{sync::Arc, vec::Vec};
use system_error::SystemError;
mod c_adapter;
use crate::{
arch::CurrentSMPArch,
libs::cpumask::CpuMask,
mm::percpu::{PerCpu, PerCpuVar},
process::{ProcessControlBlock, ProcessManager},
sched::completion::Completion,
};
use super::{core::smp_get_processor_id, SMPArch};
int_like!(ProcessorId, AtomicProcessorId, u32, AtomicU32);
@ -17,14 +26,81 @@ pub fn smp_cpu_manager() -> &'static SmpCpuManager {
unsafe { SMP_CPU_MANAGER.as_ref().unwrap() }
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum CpuHpState {
/// 启动阈值
ThresholdBringUp = 0,
/// 该CPU是离线的
Offline,
/// 该CPU是在线的
Online,
}
/// Per-Cpu Cpu的热插拔状态
pub struct CpuHpCpuState {
/// 当前状态
state: CpuHpState,
/// 目标状态
target_state: CpuHpState,
/// 指向热插拔的线程的PCB
thread: Option<Arc<ProcessControlBlock>>,
/// 当前是否为启动流程
bringup: bool,
/// 启动完成的信号
comp_done_up: Completion,
}
impl CpuHpCpuState {
const fn new() -> Self {
Self {
state: CpuHpState::Offline,
target_state: CpuHpState::Offline,
thread: None,
bringup: false,
comp_done_up: Completion::new(),
}
}
pub const fn thread(&self) -> &Option<Arc<ProcessControlBlock>> {
&self.thread
}
}
pub struct SmpCpuManager {
/// 可用的CPU
possible_cpus: CpuMask,
/// 出现的CPU
present_cpus: CpuMask,
/// 出现在系统中的CPU的数量
present_cnt: AtomicU32,
/// 可用的CPU的数量
possible_cnt: AtomicU32,
/// CPU的状态
cpuhp_state: PerCpuVar<CpuHpCpuState>,
}
impl SmpCpuManager {
fn new() -> Self {
let possible_cpus = CpuMask::new();
Self { possible_cpus }
let present_cpus = CpuMask::new();
let mut data = Vec::with_capacity(PerCpu::MAX_CPU_NUM as usize);
for i in 0..PerCpu::MAX_CPU_NUM {
let mut hpstate = CpuHpCpuState::new();
hpstate.thread = Some(ProcessManager::idle_pcb()[i as usize].clone());
data.push(hpstate);
}
let cpuhp_state = PerCpuVar::new(data).unwrap();
Self {
possible_cpus,
present_cpus,
cpuhp_state,
present_cnt: AtomicU32::new(0),
possible_cnt: AtomicU32::new(0),
}
}
/// 设置可用的CPU
@ -38,14 +114,184 @@ impl SmpCpuManager {
// 强制获取mut引用因为该函数只能在初始化阶段调用
let p = (self as *const Self as *mut Self).as_mut().unwrap();
p.possible_cpus.set(cpu, value);
if let Some(prev) = p.possible_cpus.set(cpu, value) {
if prev != value {
if value {
p.possible_cnt
.fetch_add(1, core::sync::atomic::Ordering::SeqCst);
} else {
p.possible_cnt
.fetch_sub(1, core::sync::atomic::Ordering::SeqCst);
}
}
}
}
/// 获取可用的CPU
#[allow(dead_code)]
pub fn possible_cpus(&self) -> &CpuMask {
&self.possible_cpus
}
#[allow(dead_code)]
pub fn possible_cpus_count(&self) -> u32 {
self.possible_cnt.load(core::sync::atomic::Ordering::SeqCst)
}
pub fn present_cpus_count(&self) -> u32 {
self.present_cnt.load(core::sync::atomic::Ordering::SeqCst)
}
pub unsafe fn set_present_cpu(&self, cpu: ProcessorId, value: bool) {
// 强制获取mut引用因为该函数只能在初始化阶段调用
let p = (self as *const Self as *mut Self).as_mut().unwrap();
if let Some(prev) = p.present_cpus.set(cpu, value) {
if prev != value {
if value {
p.present_cnt
.fetch_add(1, core::sync::atomic::Ordering::SeqCst);
} else {
p.present_cnt
.fetch_sub(1, core::sync::atomic::Ordering::SeqCst);
}
}
}
}
/// 获取CPU的状态
pub fn cpuhp_state(&self, cpu_id: ProcessorId) -> &CpuHpCpuState {
unsafe { self.cpuhp_state.force_get(cpu_id) }
}
fn cpuhp_state_mut(&self, cpu_id: ProcessorId) -> &mut CpuHpCpuState {
unsafe { self.cpuhp_state.force_get_mut(cpu_id) }
}
/// 设置CPU的状态, 返回旧的状态
pub unsafe fn set_cpuhp_state(
&self,
cpu_id: ProcessorId,
target_state: CpuHpState,
) -> CpuHpState {
let p = self.cpuhp_state.force_get_mut(cpu_id);
let old_state = p.state;
let bringup = target_state > p.state;
p.target_state = target_state;
p.bringup = bringup;
return old_state;
}
pub fn set_online_cpu(&self, cpu_id: ProcessorId) {
unsafe { self.set_cpuhp_state(cpu_id, CpuHpState::Online) };
}
/// 获取出现在系统中的CPU
#[allow(dead_code)]
pub fn present_cpus(&self) -> &CpuMask {
&self.present_cpus
}
/// 启动bsp以外的CPU
pub(super) fn bringup_nonboot_cpus(&self) {
for cpu_id in self.present_cpus().iter_cpu() {
if cpu_id == smp_get_processor_id() {
continue;
}
kdebug!("Bring up CPU {}", cpu_id.data());
if let Err(e) = self.cpu_up(cpu_id, CpuHpState::Online) {
kerror!("Failed to bring up CPU {}: {:?}", cpu_id.data(), e);
}
}
kinfo!("All non-boot CPUs have been brought up");
}
fn cpu_up(&self, cpu_id: ProcessorId, target_state: CpuHpState) -> Result<(), SystemError> {
if !self.possible_cpus().get(cpu_id).unwrap_or(false) {
return Err(SystemError::EINVAL);
}
let cpu_state = self.cpuhp_state(cpu_id).state;
kdebug!(
"cpu_up: cpu_id: {}, cpu_state: {:?}, target_state: {:?}",
cpu_id.data(),
cpu_state,
target_state
);
// 如果CPU的状态已经达到或者超过目标状态则直接返回
if cpu_state >= target_state {
return Ok(());
}
unsafe { self.set_cpuhp_state(cpu_id, target_state) };
let cpu_state = self.cpuhp_state(cpu_id).state;
if cpu_state > CpuHpState::ThresholdBringUp {
self.cpuhp_kick_ap(cpu_id, target_state)?;
}
return Ok(());
}
fn cpuhp_kick_ap(
&self,
cpu_id: ProcessorId,
target_state: CpuHpState,
) -> Result<(), SystemError> {
let prev_state = unsafe { self.set_cpuhp_state(cpu_id, target_state) };
let hpstate = self.cpuhp_state_mut(cpu_id);
if let Err(e) = self.do_cpuhp_kick_ap(hpstate) {
self.cpuhp_reset_state(hpstate, prev_state);
self.do_cpuhp_kick_ap(hpstate).ok();
return Err(e);
}
return Ok(());
}
fn do_cpuhp_kick_ap(&self, cpu_state: &mut CpuHpCpuState) -> Result<(), SystemError> {
let pcb = cpu_state.thread.as_ref().ok_or(SystemError::EINVAL)?;
let cpu_id = pcb.sched_info().on_cpu().ok_or(SystemError::EINVAL)?;
// todo: 等待CPU启动完成
ProcessManager::wakeup(cpu_state.thread.as_ref().unwrap())?;
CurrentSMPArch::start_cpu(cpu_id, cpu_state)?;
assert_eq!(ProcessManager::current_pcb().preempt_count(), 0);
self.wait_for_ap_thread(cpu_state, cpu_state.bringup);
return Ok(());
}
fn wait_for_ap_thread(&self, cpu_state: &mut CpuHpCpuState, bringup: bool) {
if bringup {
cpu_state.comp_done_up.wait_for_completion().ok();
} else {
todo!("wait_for_ap_thread")
}
}
/// 完成AP的启动
pub fn complete_ap_thread(&self, bringup: bool) {
let cpu_id = smp_get_processor_id();
let cpu_state = self.cpuhp_state_mut(cpu_id);
if bringup {
cpu_state.comp_done_up.complete();
} else {
todo!("complete_ap_thread")
}
}
fn cpuhp_reset_state(&self, st: &mut CpuHpCpuState, prev_state: CpuHpState) {
let bringup = !st.bringup;
st.target_state = prev_state;
st.bringup = bringup;
}
}
pub fn smp_cpu_manager_init(boot_cpu: ProcessorId) {

27
kernel/src/smp/init.rs Normal file
View File

@ -0,0 +1,27 @@
use crate::{
arch::{syscall::arch_syscall_init, CurrentIrqArch, CurrentSchedArch},
exception::InterruptArch,
process::ProcessManager,
sched::SchedArch,
smp::{core::smp_get_processor_id, cpu::smp_cpu_manager},
};
#[inline(never)]
pub fn smp_ap_start_stage2() -> ! {
assert_eq!(CurrentIrqArch::is_irq_enabled(), false);
smp_cpu_manager().complete_ap_thread(true);
do_ap_start_stage2();
CurrentSchedArch::initial_setup_sched_local();
CurrentSchedArch::enable_sched_local();
ProcessManager::arch_idle_func();
}
#[inline(never)]
fn do_ap_start_stage2() {
kinfo!("Successfully started AP {}", smp_get_processor_id().data());
arch_syscall_init().expect("AP core failed to initialize syscall");
}

View File

@ -1,18 +1,18 @@
use system_error::SystemError;
use crate::{
arch::interrupt::ipi::send_ipi,
arch::{interrupt::ipi::send_ipi, CurrentSMPArch},
exception::ipi::{IpiKind, IpiTarget},
};
use self::{
core::smp_get_processor_id,
cpu::{smp_cpu_manager_init, ProcessorId},
cpu::{smp_cpu_manager, smp_cpu_manager_init, CpuHpCpuState, ProcessorId},
};
pub mod c_adapter;
pub mod core;
pub mod cpu;
pub mod init;
pub fn kick_cpu(cpu_id: ProcessorId) -> Result<(), SystemError> {
// todo: 增加对cpu_id的有效性检查
@ -27,10 +27,17 @@ pub trait SMPArch {
/// 该函数需要标记为 `#[inline(never)]`
fn prepare_cpus() -> Result<(), SystemError>;
/// 初始化SMP
/// 在smp初始化结束后执行一些必要的操作
///
/// 该函数需要标记为 `#[inline(never)]`
fn init() -> Result<(), SystemError>;
fn post_init() -> Result<(), SystemError> {
return Ok(());
}
/// 向目标CPU发送启动信号
///
/// 如果目标CPU已经启动返回Ok。
fn start_cpu(cpu_id: ProcessorId, hp_state: &CpuHpCpuState) -> Result<(), SystemError>;
}
/// 早期SMP初始化
@ -40,3 +47,10 @@ pub fn early_smp_init() -> Result<(), SystemError> {
return Ok(());
}
#[inline(never)]
pub fn smp_init() {
smp_cpu_manager().bringup_nonboot_cpus();
CurrentSMPArch::post_init().expect("SMP post init failed");
}

View File

@ -1,182 +0,0 @@
#include "smp.h"
#include <common/cpu.h>
#include <common/kprint.h>
#include <common/spinlock.h>
#include <mm/slab.h>
#include <process/process.h>
#include <process/preempt.h>
#include <sched/sched.h>
#include <driver/acpi/acpi.h>
#include <arch/arch.h>
/* x86-64 specific MSRs */
#define MSR_EFER 0xc0000080 /* extended feature register */
#define MSR_STAR 0xc0000081 /* legacy mode SYSCALL target */
#define MSR_LSTAR 0xc0000082 /* long mode SYSCALL target */
#define MSR_SYSCALL_MASK 0xc0000084 /* EFLAGS mask for syscall */
static spinlock_t multi_core_starting_lock = {1}; // 多核启动锁
static uint32_t total_processor_num = 0;
static int current_starting_cpu = 0;
int num_cpu_started = 1;
extern void smp_ap_start();
extern uint64_t rs_get_idle_stack_top(uint32_t cpu_id);
extern int rs_ipi_send_smp_startup(uint32_t apic_id);
extern void rs_ipi_send_smp_init();
extern void rs_init_syscall_64();
// 在head.S中定义的APU启动时要加载的页表
// 由于内存管理模块初始化的时候重置了页表因此我们要把当前的页表传给APU
extern uint64_t __APU_START_CR3;
struct X86CpuInfo
{
uint32_t apic_id;
uint32_t core_id;
char can_boot;
};
extern uint64_t rs_smp_get_cpus(struct X86CpuInfo *res);
static struct X86CpuInfo __cpu_info[MAX_SUPPORTED_PROCESSOR_NUM] = {0};
// kick cpu 功能所使用的中断向量号
#define KICK_CPU_IRQ_NUM 0xc8
#define FLUSH_TLB_IRQ_NUM 0xc9
void smp_init()
{
spin_init(&multi_core_starting_lock); // 初始化多核启动锁
#if ARCH(I386) || ARCH(X86_64)
// 设置多核启动时,要加载的页表
__APU_START_CR3 = (uint64_t)get_CR3();
// kdebug("processor num=%d", total_processor_num);
total_processor_num = rs_smp_get_cpus(__cpu_info);
// 将引导程序复制到物理地址0x20000处
memcpy((unsigned char *)phys_2_virt(0x20000), _apu_boot_start,
(unsigned long)&_apu_boot_end - (unsigned long)&_apu_boot_start);
io_mfence();
io_mfence();
io_mfence();
rs_ipi_send_smp_init();
kdebug("total_processor_num=%d", total_processor_num);
int core_to_start = 0;
// total_processor_num = 3;
for (int i = 0; i < total_processor_num; ++i) // i从1开始不初始化bsp
{
io_mfence();
// 跳过BSP
kdebug("[core %d] acpi processor UID=%d, APIC ID=%d, can_boot=%d", i,
__cpu_info[i].core_id, __cpu_info[i].apic_id,
__cpu_info[i].can_boot);
if (__cpu_info[i].apic_id == 0)
{
// --total_processor_num;
continue;
}
if (__cpu_info[i].can_boot == false)
{
// --total_processor_num;
kdebug("processor %d cannot be enabled.", __cpu_info[i].core_id);
continue;
}
++core_to_start;
// continue;
io_mfence();
spin_lock_no_preempt(&multi_core_starting_lock);
current_starting_cpu = __cpu_info[i].apic_id;
io_mfence();
// 为每个AP处理器分配栈空间
cpu_core_info[current_starting_cpu].stack_start = (uint64_t)rs_get_idle_stack_top(current_starting_cpu);
io_mfence();
kdebug("core %d, to send start up", __cpu_info[i].apic_id);
// 连续发送两次start-up IPI
int r = rs_ipi_send_smp_startup(__cpu_info[i].apic_id);
if (r)
{
kerror("Failed to send startup ipi to cpu: %d", __cpu_info[i].apic_id);
}
io_mfence();
rs_ipi_send_smp_startup(__cpu_info[i].apic_id);
io_mfence();
}
io_mfence();
while (num_cpu_started != (core_to_start + 1))
pause();
kinfo("Cleaning page table remapping...\n");
// 由于ap处理器初始化过程需要用到0x00处的地址因此初始化完毕后才取消内存地址的重映射
rs_unmap_at_low_addr();
kinfo("Successfully cleaned page table remapping!\n");
#endif
io_mfence();
}
/**
* @brief AP处理器启动后执行的第一个函数
*
*/
void smp_ap_start_stage2()
{
ksuccess("AP core %d successfully started!", current_starting_cpu);
io_mfence();
++num_cpu_started;
io_mfence();
#if ARCH(I386) || ARCH(X86_64)
rs_apic_init_ap();
// ============ 为ap处理器初始化IDLE进程 =============
barrier();
io_mfence();
spin_unlock_no_preempt(&multi_core_starting_lock);
rs_init_syscall_64();
rs_init_current_core_sched();
#endif
sti();
sched();
while (1)
{
// kdebug("123");
hlt();
}
while (1)
{
printk_color(BLACK, WHITE, "CPU:%d IDLE process.\n", rs_current_cpu_id());
}
while (1) // 这里要循环hlt原因是当收到中断后核心会被唤醒处理完中断之后不会自动hlt
hlt();
}
/**
* @brief cpu数目
*
* @return uint32_t
*/
uint32_t smp_get_total_cpu()
{
return num_cpu_started;
}

View File

@ -1,23 +0,0 @@
#pragma once
#include <common/glib.h>
#include <common/stddef.h>
#include <common/asm.h>
#define MAX_SUPPORTED_PROCESSOR_NUM 1024
extern uchar _apu_boot_start[];
extern uchar _apu_boot_end[];
/**
* @brief
*
*/
void smp_init();
extern int64_t rs_kick_cpu(uint32_t cpu_id);
uint32_t smp_get_total_cpu();
extern void set_current_core_tss(uint64_t stack_start, uint64_t ist0);
extern void rs_load_current_core_tss();

View File

@ -425,4 +425,15 @@ impl From<Duration> for smoltcp::time::Duration {
pub trait TimeArch {
/// Get CPU cycles (Read from register)
fn get_cycles() -> usize;
/// Calculate expire cycles
///
/// # Arguments
///
/// - `ns` - The time to expire in nanoseconds
///
/// # Returns
///
/// The expire cycles
fn cal_expire_cycles(ns: usize) -> usize;
}

View File

@ -6,7 +6,7 @@ use system_error::SystemError;
use crate::{
arch::{sched::sched, CurrentIrqArch, CurrentTimeArch},
exception::InterruptArch,
include::bindings::bindings::{useconds_t, Cpu_tsc_freq},
include::bindings::bindings::useconds_t,
process::ProcessManager,
time::timekeeping::getnstimeofday,
};
@ -29,11 +29,8 @@ pub fn nanosleep(sleep_time: TimeSpec) -> Result<TimeSpec, SystemError> {
}
// 对于小于500us的时间使用spin/rdtsc来进行定时
if sleep_time.tv_nsec < 500000 && sleep_time.tv_sec == 0 {
let expired_tsc: u64 = unsafe {
CurrentTimeArch::get_cycles() as u64
+ (sleep_time.tv_nsec as u64 * Cpu_tsc_freq) / 1000000000
};
while (CurrentTimeArch::get_cycles() as u64) < expired_tsc {
let expired_tsc: usize = CurrentTimeArch::cal_expire_cycles(sleep_time.tv_nsec as usize);
while CurrentTimeArch::get_cycles() < expired_tsc {
spin_loop()
}
return Ok(TimeSpec {

View File

@ -262,7 +262,9 @@ pub fn next_n_us_timer_jiffies(expire_us: u64) -> u64 {
pub fn schedule_timeout(mut timeout: i64) -> Result<i64, SystemError> {
// kdebug!("schedule_timeout");
if timeout == MAX_TIMEOUT {
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
ProcessManager::mark_sleep(true).ok();
drop(irq_guard);
sched();
return Ok(MAX_TIMEOUT);
} else if timeout < 0 {