bugfix: 当物理机具有多个memory area的时候,无法正确使用这些区域的问题.以及在内核代码处出现内存空洞而导致无法正常运行的问题. (#448)

* bugfix: 当物理机具有多个memory area的时候,无法正确使用这些区域的问题.以及在内核代码处出现内存空洞而导致无法正常运行的问题.

解决方案:
1. 分区域把空闲页添加到buddy
2. 将内核链接到16M的位置,以避免uefi带来的内存空洞.

这个值是因为我看到linux的救援内核也是在16M的地址,因此猜测厂商不会使用这块内存.
尽管uefi规范讲的是固件可以采用任何地址,内核需要使用内核重定位技术去避免遇到内存空洞,但我没有这么做.
This commit is contained in:
LoGin 2023-11-19 11:42:53 +08:00 committed by GitHub
parent 46e234aef6
commit 99dbf38d2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 275 additions and 157 deletions

View File

@ -0,0 +1,53 @@
use crate::{
kdebug,
libs::align::{page_align_down, page_align_up},
mm::{
allocator::bump::BumpAllocator, MemoryManagementArch, PhysAddr, PhysMemoryArea, VirtAddr,
},
};
use super::{X86_64MMBootstrapInfo, BOOTSTRAP_MM_INFO, PHYS_MEMORY_AREAS};
impl<MMA: MemoryManagementArch> BumpAllocator<MMA> {
pub unsafe fn arch_remain_areas(
ret_areas: &mut [PhysMemoryArea],
mut res_count: usize,
) -> usize {
let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
let load_base = info.kernel_load_base_paddr;
let kernel_code_start = MMA::virt_2_phys(VirtAddr::new(info.kernel_code_start))
.unwrap()
.data();
let offset_start = page_align_up(core::cmp::max(load_base + 16384, 0x200000));
let offset_end = page_align_down(kernel_code_start - 16384);
// 把内核代码前的空间加入到可用内存区域中
for area in &PHYS_MEMORY_AREAS {
let area_base = area.area_base_aligned().data();
let area_end = area.area_end_aligned().data();
if area_base >= offset_end {
break;
}
if area_end <= offset_start {
continue;
}
let new_start = core::cmp::max(offset_start, area_base);
let new_end = core::cmp::min(offset_end, area_end);
if new_start >= new_end {
continue;
}
ret_areas[res_count] =
PhysMemoryArea::new(PhysAddr::new(new_start), new_end - new_start);
kdebug!("new arch remain area: {:?}", ret_areas[res_count]);
res_count += 1;
}
return res_count;
}
}

View File

@ -1,4 +1,5 @@
pub mod barrier;
pub mod bump;
use alloc::vec::Vec;
use hashbrown::HashSet;
@ -7,7 +8,8 @@ use x86_64::registers::model_specific::EferFlags;
use crate::driver::tty::serial::serial8250::send_to_default_serial8250_port;
use crate::include::bindings::bindings::{
multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
multiboot_tag_load_base_addr_t,
};
use crate::libs::align::page_align_up;
use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
@ -55,8 +57,9 @@ static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >>
static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
#[derive(Clone, Copy)]
#[derive(Clone, Copy, Debug)]
pub struct X86_64MMBootstrapInfo {
kernel_load_base_paddr: usize,
kernel_code_start: usize,
kernel_code_end: usize,
kernel_data_end: usize,
@ -64,16 +67,7 @@ pub struct X86_64MMBootstrapInfo {
start_brk: usize,
}
impl Debug for X86_64MMBootstrapInfo {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"kernel_code_start: {:x}, kernel_code_end: {:x}, kernel_data_end: {:x}, kernel_rodata_end: {:x}, start_brk: {:x}",
self.kernel_code_start, self.kernel_code_end, self.kernel_data_end, self.kernel_rodata_end, self.start_brk)
}
}
pub static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
/// @brief X86_64的内存管理架构结构体
#[derive(Debug, Clone, Copy, Hash)]
@ -136,14 +130,17 @@ impl MemoryManagementArch for X86_64MMArch {
}
Self::init_xd_rsvd();
let load_base_paddr = Self::get_load_base_paddr();
let bootstrap_info = X86_64MMBootstrapInfo {
kernel_load_base_paddr: load_base_paddr.data(),
kernel_code_start: _text as usize,
kernel_code_end: _etext as usize,
kernel_data_end: _edata as usize,
kernel_rodata_end: _erodata as usize,
start_brk: _end as usize,
};
unsafe {
BOOTSTRAP_MM_INFO = Some(bootstrap_info);
}
@ -151,6 +148,7 @@ impl MemoryManagementArch for X86_64MMArch {
// 初始化物理内存区域(从multiboot2中获取)
let areas_count =
Self::init_memory_area_from_multiboot2().expect("init memory area failed");
send_to_default_serial8250_port("x86 64 init end\n\0".as_bytes());
return &PHYS_MEMORY_AREAS[0..areas_count];
@ -238,6 +236,28 @@ impl MemoryManagementArch for X86_64MMArch {
}
impl X86_64MMArch {
unsafe fn get_load_base_paddr() -> PhysAddr {
let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
let mut mb2_count: u32 = 0;
multiboot2_iter(
Some(multiboot2_get_load_base),
&mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
&mut mb2_count,
);
if mb2_count == 0 {
send_to_default_serial8250_port(
"get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
);
return PhysAddr::new(0x100000);
}
let phys = mb2_lb_info[0].load_base_addr as usize;
return PhysAddr::new(phys);
}
unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
// 这个数组用来存放内存区域的信息从C获取
let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
@ -269,7 +289,6 @@ impl X86_64MMArch {
}
send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
return Ok(areas_count);
}
@ -286,7 +305,11 @@ impl X86_64MMArch {
/// 判断XD标志位是否被保留
pub fn is_xd_reserved() -> bool {
return XD_RESERVED.load(Ordering::Relaxed);
// return XD_RESERVED.load(Ordering::Relaxed);
// 由于暂时不支持execute disable因此直接返回true
// 不支持的原因是目前好像没有能正确的设置page-level的xd位会触发page fault
return true;
}
}

View File

@ -102,6 +102,20 @@ bool multiboot2_get_VBE_info(const struct iter_data_t *_iter_data, void *data, u
return true;
}
/// @brief 获取加载基地址
/// @param _iter_data
/// @param data
/// @param reserved
/// @return
bool multiboot2_get_load_base(const struct iter_data_t *_iter_data, void *data, unsigned int *reserved)
{
if (_iter_data->type != MULTIBOOT_TAG_TYPE_LOAD_BASE_ADDR)
return false;
*(struct multiboot_tag_load_base_addr_t *)data = *(struct multiboot_tag_load_base_addr_t *)_iter_data;
return true;
}
/**
* @brief
*

View File

@ -434,6 +434,8 @@ void multiboot2_iter(bool (*_fun)(const struct iter_data_t *, void *, unsigned i
*/
bool multiboot2_get_memory(const struct iter_data_t *_iter_data, void *_data, unsigned int *count);
bool multiboot2_get_load_base(const struct iter_data_t *_iter_data, void *data, unsigned int *reserved);
/**
* @brief VBE信息
*

View File

@ -18,7 +18,8 @@ SECTIONS
*(.bootstrap.data)
. = ALIGN(4096);
}
. = 0x1000000;
. += KERNEL_VMA;
. = ALIGN(32768);
text_start_pa = .;
@ -40,6 +41,7 @@ SECTIONS
{
_data = .;
*(.data)
*(.data.*)
_edata = .;
}

View File

@ -6,9 +6,9 @@
use crate::arch::MMArch;
use crate::mm::allocator::bump::BumpAllocator;
use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
use crate::mm::{MemoryManagementArch, PhysAddr, VirtAddr};
use crate::mm::{MemoryManagementArch, PhysAddr, PhysMemoryArea, VirtAddr};
use crate::{kdebug, kwarn};
use core::cmp::{max, min};
use core::cmp::min;
use core::fmt::Debug;
use core::intrinsics::{likely, unlikely};
@ -77,15 +77,9 @@ impl<A: MemoryManagementArch> BuddyAllocator<A> {
pub unsafe fn new(mut bump_allocator: BumpAllocator<A>) -> Option<Self> {
let initial_free_pages = bump_allocator.usage().free();
let total_memory = bump_allocator.usage().total();
kdebug!("Free pages before init buddy: {:?}", initial_free_pages);
kdebug!("Buddy entries: {}", Self::BUDDY_ENTRIES);
// 最高阶的链表页数
let max_order_linked_list_page_num = max(
1,
(((initial_free_pages.data() * A::PAGE_SIZE) >> (MAX_ORDER - 1)) + Self::BUDDY_ENTRIES
- 1)
/ Self::BUDDY_ENTRIES,
);
let mut free_area: [PhysAddr; (MAX_ORDER - MIN_ORDER) as usize] =
[PhysAddr::new(0); (MAX_ORDER - MIN_ORDER) as usize];
@ -102,139 +96,86 @@ impl<A: MemoryManagementArch> BuddyAllocator<A> {
Self::write_page(*f, page_list);
}
// 分配最高阶的链表页
for _ in 1..max_order_linked_list_page_num {
let curr_page = bump_allocator.allocate_one().unwrap();
// 清空当前页
core::ptr::write_bytes(
MMArch::phys_2_virt(curr_page)?.data() as *mut u8,
0,
A::PAGE_SIZE,
);
let page_list: PageList<A> =
PageList::new(0, free_area[Self::order2index((MAX_ORDER - 1) as u8)]);
Self::write_page(curr_page, page_list);
free_area[Self::order2index((MAX_ORDER - 1) as u8)] = curr_page;
}
let initial_bump_offset = bump_allocator.offset();
let pages_to_buddy = bump_allocator.usage().free();
kdebug!("pages_to_buddy {:?}", pages_to_buddy);
// kdebug!("initial_bump_offset {:#x}", initial_bump_offset);
let mut paddr = initial_bump_offset;
let mut remain_pages = pages_to_buddy;
// 设置entry,这里假设了bump_allocator当前offset之后所有的area的地址是连续的.
// TODO: 这里需要修改按照area来处理
for i in MIN_ORDER..MAX_ORDER {
// kdebug!("i {i}, remain pages={}", remain_pages.data());
if remain_pages.data() < (1 << (i - MIN_ORDER)) {
break;
}
assert!(paddr & ((1 << i) - 1) == 0);
if likely(i != MAX_ORDER - 1) {
// 要填写entry
if paddr & (1 << i) != 0 {
let page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
A::write(
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
paddr,
);
page_list.entry_num += 1;
Self::write_page(page_list_paddr, page_list);
paddr += 1 << i;
remain_pages -= 1 << (i - MIN_ORDER);
};
} else {
// 往最大的阶数的链表中添加entry注意要考虑到最大阶数的链表可能有多页
// 断言剩余页面数量是MAX_ORDER-1阶的整数倍
let mut entries = (remain_pages.data() * A::PAGE_SIZE) >> i;
let mut page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
let block_size = 1usize << i;
if entries > Self::BUDDY_ENTRIES {
// 在第一页填写一些entries
let num = entries % Self::BUDDY_ENTRIES;
entries -= num;
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
for _j in 0..num {
A::write(
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
paddr,
);
page_list.entry_num += 1;
paddr += block_size;
remain_pages -= 1 << (i - MIN_ORDER);
}
page_list_paddr = page_list.next_page;
Self::write_page(page_list_paddr, page_list);
assert!(!page_list_paddr.is_null());
}
while entries > 0 {
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
for _ in 0..Self::BUDDY_ENTRIES {
A::write(
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
paddr,
);
page_list.entry_num += 1;
paddr += block_size;
remain_pages -= 1 << (i - MIN_ORDER);
entries -= 1;
if entries == 0 {
break;
}
}
page_list_paddr = page_list.next_page;
Self::write_page(page_list_paddr, page_list);
if likely(entries > 0) {
assert!(!page_list_paddr.is_null());
}
}
}
}
let mut remain_bytes = remain_pages.data() * A::PAGE_SIZE;
assert!(remain_bytes < (1 << MAX_ORDER - 1));
for i in (MIN_ORDER..MAX_ORDER).rev() {
if remain_bytes >= (1 << i) {
assert!(paddr & ((1 << i) - 1) == 0);
let page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
A::write(
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
paddr,
);
page_list.entry_num += 1;
Self::write_page(page_list_paddr, page_list);
paddr += 1 << i;
remain_bytes -= 1 << i;
}
}
assert!(remain_bytes == 0);
assert!(paddr == initial_bump_offset + pages_to_buddy.data() * A::PAGE_SIZE);
let allocator = Self {
let mut allocator = Self {
free_area,
total: pages_to_buddy,
total: PageFrameCount::new(0),
phantom: PhantomData,
};
let mut total_pages_to_buddy = PageFrameCount::new(0);
let mut res_areas = [PhysMemoryArea::default(); 128];
let mut offset_in_remain_area = bump_allocator
.remain_areas(&mut res_areas)
.expect("BuddyAllocator: failed to get remain areas from bump allocator");
let remain_areas = &res_areas[0..];
kdebug!("Remain areas: {:?}", &remain_areas[0..10]);
kdebug!("offset_in_remain_area: {:?}", offset_in_remain_area);
for area in remain_areas {
let mut paddr = (area.area_base_aligned() + offset_in_remain_area).data();
let mut remain_pages =
PageFrameCount::from_bytes(area.area_end_aligned().data() - paddr).unwrap();
total_pages_to_buddy += remain_pages;
if offset_in_remain_area != 0 {
offset_in_remain_area = 0;
}
// 先从低阶开始,尽可能地填满空闲链表
for i in MIN_ORDER..MAX_ORDER {
// kdebug!("i {i}, remain pages={}", remain_pages.data());
if remain_pages.data() < (1 << (i - MIN_ORDER)) {
break;
}
assert!(paddr & ((1 << i) - 1) == 0);
if likely(i != MAX_ORDER - 1) {
// 要填写entry
if paddr & (1 << i) != 0 {
allocator.buddy_free(PhysAddr::new(paddr), i as u8);
paddr += 1 << i;
remain_pages -= 1 << (i - MIN_ORDER);
};
} else {
// 往最大的阶数的链表中添加entry注意要考虑到最大阶数的链表可能有多页
// 断言剩余页面数量是MAX_ORDER-1阶的整数倍
let mut entries = (remain_pages.data() * A::PAGE_SIZE) >> i;
while entries > 0 {
allocator.buddy_free(PhysAddr::new(paddr), i as u8);
paddr += 1 << i;
remain_pages -= 1 << (i - MIN_ORDER);
entries -= 1;
}
}
}
// 然后从高往低,把剩余的页面加入链表
let mut remain_bytes = remain_pages.data() * A::PAGE_SIZE;
assert!(remain_bytes < (1 << MAX_ORDER - 1));
for i in (MIN_ORDER..MAX_ORDER).rev() {
if remain_bytes >= (1 << i) {
assert!(paddr & ((1 << i) - 1) == 0);
allocator.buddy_free(PhysAddr::new(paddr), i as u8);
paddr += 1 << i;
remain_bytes -= 1 << i;
}
}
assert!(remain_bytes == 0);
}
kdebug!("Total pages to buddy: {:?}", total_pages_to_buddy);
allocator.total = total_memory;
Some(allocator)
}
/// 获取第j个entry的虚拟地址

View File

@ -37,6 +37,62 @@ impl<MMA: MemoryManagementArch> BumpAllocator<MMA> {
pub fn offset(&self) -> usize {
return self.offset;
}
/// 返回剩余的尚未被分配的物理内存区域
///
/// ## 返回值
///
/// - `result_area`:剩余的尚未被分配的物理内存区域的数组
/// - `offset_aligned`:返回的第一个物理内存区域内,已经分配的偏移量(相对于物理内存区域的已对齐的起始地址)
pub fn remain_areas(&self, result_area: &mut [PhysMemoryArea]) -> Option<usize> {
let mut offset = self.offset();
let mut ret_offset_aligned = 0;
let mut res_cnt = 0;
// 遍历所有的物理内存区域
for i in 0..self.areas().len() {
let area = &self.areas()[i];
// 将area的base地址与PAGE_SIZE对齐对齐时向上取整
// let area_base = (area.base.data() + MMA::PAGE_SHIFT) & !(MMA::PAGE_SHIFT);
let area_base = area.area_base_aligned().data();
// 将area的末尾地址与PAGE_SIZE对齐对齐时向下取整
// let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SHIFT);
let area_end = area.area_end_aligned().data();
// 如果offset大于area_end说明当前的物理内存区域已经分配完了需要跳到下一个物理内存区域
if offset >= area_end {
continue;
}
// 如果offset小于area_base ,说明当前的物理内存区域还没有分配过页帧将offset设置为area_base
if offset < area_base {
offset = area_base;
} else if offset < area_end {
// 将offset对齐到PAGE_SIZE
offset = (offset + (MMA::PAGE_SIZE - 1)) & !(MMA::PAGE_SIZE - 1);
}
// found
if offset + 1 * MMA::PAGE_SIZE <= area_end {
for j in i..self.areas().len() {
if self.areas()[j].area_base_aligned() < self.areas()[j].area_end_aligned() {
result_area[res_cnt] = self.areas()[j];
res_cnt += 1;
}
}
ret_offset_aligned = offset;
break;
}
}
let res_cnt = unsafe { Self::arch_remain_areas(result_area, res_cnt) };
if res_cnt == 0 {
return None;
} else {
return Some(ret_offset_aligned);
}
}
}
impl<MMA: MemoryManagementArch> FrameAllocator for BumpAllocator<MMA> {
@ -50,10 +106,10 @@ impl<MMA: MemoryManagementArch> FrameAllocator for BumpAllocator<MMA> {
for area in self.areas().iter() {
// 将area的base地址与PAGE_SIZE对齐对齐时向上取整
// let area_base = (area.base.data() + MMA::PAGE_SHIFT) & !(MMA::PAGE_SHIFT);
let area_base = (area.base.data() + (MMA::PAGE_SIZE - 1)) & !(MMA::PAGE_SIZE - 1);
let area_base = area.area_base_aligned().data();
// 将area的末尾地址与PAGE_SIZE对齐对齐时向下取整
// let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SHIFT);
let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SIZE - 1);
let area_end = area.area_end_aligned().data();
// 如果offset大于area_end说明当前的物理内存区域已经分配完了需要跳到下一个物理内存区域
if offset >= area_end {

View File

@ -329,6 +329,33 @@ pub struct PhysMemoryArea {
pub size: usize,
}
impl PhysMemoryArea {
pub fn new(base: PhysAddr, size: usize) -> Self {
Self { base, size }
}
/// 返回向上页面对齐的区域起始物理地址
pub fn area_base_aligned(&self) -> PhysAddr {
return PhysAddr::new(
(self.base.data() + (MMArch::PAGE_SIZE - 1)) & !(MMArch::PAGE_SIZE - 1),
);
}
/// 返回向下页面对齐的区域截止物理地址
pub fn area_end_aligned(&self) -> PhysAddr {
return PhysAddr::new((self.base.data() + self.size) & !(MMArch::PAGE_SIZE - 1));
}
}
impl Default for PhysMemoryArea {
fn default() -> Self {
Self {
base: PhysAddr::new(0),
size: 0,
}
}
}
pub trait MemoryManagementArch: Clone + Copy + Debug {
/// 页面大小的shift假如页面4K那么这个值就是12,因为2^12=4096
const PAGE_SHIFT: usize;

View File

@ -62,7 +62,7 @@ if [ ! -f "${root_folder}/bin/disk.img" ]; then
--bios)
case "$2" in
uefi)
sudo bash ./create_hdd_image.sh -P GPT #GPT分区
sudo bash ./create_hdd_image.sh -P MBR #GPT分区
;;
legacy)
sudo bash ./create_hdd_image.sh -P MBR #MBR分区
@ -88,7 +88,7 @@ echo $LOOP_DEVICE
# 检测grub文件夹是否存在
if [ -d "${GRUB_INSTALL_PATH}" ]; then
echo "grub已安装"
INSTALL_GRUB_TO_IMAGE="0"
INSTALL_GRUB_TO_IMAGE="0"
else
mkdir -p ${GRUB_INSTALL_PATH}
fi