fix(time): modify update wall time (#836)

更改了时间子系统的update_wall_time函数,通过读取当前周期数,计算delta值进行更新,而不是通过传入delta值进行更新
This commit is contained in:
黄铭涛 2024-07-16 21:51:21 +08:00 committed by GitHub
parent 38458c7267
commit af097f9f4b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 389 additions and 203 deletions

View File

@ -12,10 +12,10 @@ use crate::exception::manage::irq_manager;
use crate::exception::IrqNumber;
use crate::mm::percpu::PerCpu;
use crate::process::ProcessManager;
use crate::smp::core::smp_get_processor_id;
use crate::smp::cpu::ProcessorId;
use crate::time::clocksource::HZ;
use crate::time::tick_common::tick_handle_periodic;
use alloc::string::ToString;
use alloc::sync::Arc;
pub use drop;
@ -277,7 +277,7 @@ impl LocalApicTimer {
pub(super) fn handle_irq(trap_frame: &TrapFrame) -> Result<IrqReturn, SystemError> {
// sched_update_jiffies();
ProcessManager::update_process_times(trap_frame.is_from_user());
tick_handle_periodic(trap_frame);
return Ok(IrqReturn::Handled);
}
}

View File

@ -30,10 +30,7 @@ use crate::{
mmio_buddy::{mmio_pool, MMIOSpaceGuard},
PhysAddr,
},
time::{
jiffies::NSEC_PER_JIFFY,
timer::{try_raise_timer_softirq, update_timer_jiffies},
},
time::jiffies::NSEC_PER_JIFFY,
};
static mut HPET_INSTANCE: Option<Hpet> = None;
@ -249,9 +246,6 @@ impl Hpet {
pub(super) fn handle_irq(&self, timer_num: u32) {
if timer_num == 0 {
assert!(!CurrentIrqArch::is_irq_enabled());
update_timer_jiffies(1, Self::HPET0_INTERVAL_USEC as i64);
try_raise_timer_softirq();
}
}
}

View File

@ -88,8 +88,10 @@ impl Acpipm {
max_idle_ns: Default::default(),
flags: ClocksourceFlags::CLOCK_SOURCE_IS_CONTINUOUS,
watchdog_last: CycleNum::new(0),
cs_last: CycleNum::new(0),
uncertainty_margin: 0,
maxadj: 0,
cycle_last: CycleNum::new(0),
};
let acpi_pm = Arc::new(Acpipm(SpinLock::new(InnerAcpipm {
data,
@ -117,14 +119,18 @@ impl Clocksource for Acpipm {
fn update_clocksource_data(&self, data: ClocksourceData) -> Result<(), SystemError> {
let d = &mut self.0.lock_irqsave().data;
d.set_flags(data.flags);
d.set_mask(data.mask);
d.set_max_idle_ns(data.max_idle_ns);
d.set_mult(data.mult);
d.set_name(data.name);
d.set_rating(data.rating);
d.set_mask(data.mask);
d.set_mult(data.mult);
d.set_shift(data.shift);
d.set_max_idle_ns(data.max_idle_ns);
d.set_flags(data.flags);
d.watchdog_last = data.watchdog_last;
d.cs_last = data.cs_last;
d.set_uncertainty_margin(data.uncertainty_margin);
d.set_maxadj(data.maxadj);
d.cycle_last = data.cycle_last;
return Ok(());
}
}
@ -281,7 +287,7 @@ pub fn init_acpi_pm_clocksource() -> Result<(), SystemError> {
}
// 检查TSC时钟源的监视器是否被禁用如果被禁用则将时钟源的标志设置为CLOCK_SOURCE_MUST_VERIFY
// 没有实现clocksource_selecet_watchdog函数所以这里设置为false
// 是因为jiffies精度小于acpi pm所以不需要被jiffies监视
let tsc_clocksource_watchdog_disabled = false;
if tsc_clocksource_watchdog_disabled {
clocksource_acpi_pm().0.lock_irqsave().data.flags |=
@ -290,7 +296,7 @@ pub fn init_acpi_pm_clocksource() -> Result<(), SystemError> {
// 注册ACPI PM Timer
let acpi_pmtmr = clocksource_acpi_pm() as Arc<dyn Clocksource>;
match acpi_pmtmr.register(100, PMTMR_TICKS_PER_SEC as u32) {
match acpi_pmtmr.register(1, PMTMR_TICKS_PER_SEC as u32) {
Ok(_) => {
info!("ACPI PM Timer registered as clocksource sccessfully");
return Ok(());

View File

@ -20,12 +20,9 @@ use crate::{
},
libs::spinlock::SpinLock,
mm::percpu::PerCpu,
process::ProcessManager,
smp::core::smp_get_processor_id,
time::{
clocksource::HZ,
jiffies::NSEC_PER_JIFFY,
timer::{try_raise_timer_softirq, update_timer_jiffies},
clocksource::HZ, tick_common::tick_handle_periodic, timer::try_raise_timer_softirq,
TimeArch,
},
};
@ -37,13 +34,6 @@ static SBI_TIMER_INIT_BMP: SpinLock<StaticBitmap<{ PerCpu::MAX_CPU_NUM as usize
static mut INTERVAL_CNT: usize = 0;
/// 已经过去的纳秒数
///
/// 0号核心用这个值来更新墙上时钟他只能被0号核心访问
static mut HART0_NSEC_PASSED: usize = 0;
/// hart0上一次更新墙上时钟的时间
static mut HART0_LAST_UPDATED: u64 = 0;
impl RiscVSbiTimer {
pub const TIMER_IRQ: HardwareIrqNumber = HardwareIrqNumber::new(5);
@ -54,8 +44,8 @@ impl RiscVSbiTimer {
// smp_get_processor_id().data(),
// CurrentTimeArch::get_cycles() as u64
// );
ProcessManager::update_process_times(trap_frame.is_from_user());
Self::update_nsec_passed_and_walltime();
tick_handle_periodic(trap_frame);
compiler_fence(Ordering::SeqCst);
sbi_rt::set_timer(CurrentTimeArch::get_cycles() as u64 + unsafe { INTERVAL_CNT } as u64);
Ok(())
}
@ -68,30 +58,6 @@ impl RiscVSbiTimer {
fn disable() {
unsafe { riscv::register::sie::clear_stimer() };
}
fn update_nsec_passed_and_walltime() {
if smp_get_processor_id().data() != 0 {
return;
}
let cycles = CurrentTimeArch::get_cycles() as u64;
let nsec_passed =
CurrentTimeArch::cycles2ns((cycles - unsafe { HART0_LAST_UPDATED }) as usize);
unsafe {
HART0_LAST_UPDATED = cycles;
HART0_NSEC_PASSED += nsec_passed;
}
let jiffies = unsafe { HART0_NSEC_PASSED } / NSEC_PER_JIFFY as usize;
unsafe { HART0_NSEC_PASSED %= NSEC_PER_JIFFY as usize };
update_timer_jiffies(
jiffies as u64,
(jiffies * NSEC_PER_JIFFY as usize / 1000) as i64,
);
try_raise_timer_softirq();
compiler_fence(Ordering::SeqCst);
}
}
/// riscv 初始化本地调度时钟源

View File

@ -41,7 +41,7 @@ lazy_static! {
pub static ref WATCHDOG_LIST: SpinLock<LinkedList<Arc<dyn Clocksource>>> =
SpinLock::new(LinkedList::new());
pub static ref CLOCKSOUCE_WATCHDOG:SpinLock<ClocksouceWatchdog> = SpinLock::new(ClocksouceWatchdog::new());
pub static ref CLOCKSOURCE_WATCHDOG:SpinLock<ClocksouceWatchdog> = SpinLock::new(ClocksouceWatchdog::new());
pub static ref OVERRIDE_NAME: SpinLock<String> = SpinLock::new(String::from(""));
@ -138,8 +138,6 @@ pub struct ClocksouceWatchdog {
watchdog: Option<Arc<dyn Clocksource>>,
/// 检查器是否在工作的标志
is_running: bool,
/// 上一次检查的时刻
last_check: CycleNum,
/// 定时监视器的过期时间
timer_expires: u64,
}
@ -148,7 +146,6 @@ impl ClocksouceWatchdog {
Self {
watchdog: None,
is_running: false,
last_check: CycleNum(0),
timer_expires: 0,
}
}
@ -168,7 +165,13 @@ impl ClocksouceWatchdog {
// 生成一个定时器
let wd_timer_func: Box<WatchdogTimerFunc> = Box::new(WatchdogTimerFunc {});
self.timer_expires += clock() + WATCHDOG_INTERVAL;
self.last_check = self.watchdog.as_ref().unwrap().clone().read();
let mut wd_data = self.watchdog.as_ref().unwrap().clone().clocksource_data();
wd_data.watchdog_last = self.watchdog.as_ref().unwrap().clone().read();
self.watchdog
.as_ref()
.unwrap()
.update_clocksource_data(wd_data)
.expect("clocksource_start_watchdog: failed to update watchdog data");
let wd_timer = Timer::new(wd_timer_func, self.timer_expires);
wd_timer.activate();
self.is_running = true;
@ -271,15 +274,14 @@ impl dyn Clocksource {
let cs_data_guard = self.clocksource_data();
let mut max_cycles: u64;
// 这里我有问题,不知道要不要修改,暂时不修改它
max_cycles = (1 << (63 - (log2(cs_data_guard.mult) + 1))) as u64;
max_cycles = (1 << (63 - (log2(cs_data_guard.mult + cs_data_guard.maxadj) + 1))) as u64;
max_cycles = max_cycles.min(cs_data_guard.mask.bits);
let max_nsecs = clocksource_cyc2ns(
CycleNum(max_cycles),
cs_data_guard.mult,
cs_data_guard.mult - cs_data_guard.maxadj,
cs_data_guard.shift,
);
return max_nsecs - (max_nsecs >> 5);
return max_nsecs - (max_nsecs >> 3);
}
/// # 计算时钟源的mult和shift以便将一个时钟源的频率转换为另一个时钟源的频率
@ -318,9 +320,8 @@ impl dyn Clocksource {
/// # 更新时钟源频率初始化mult/shift 和 max_idle_ns
fn clocksource_update_freq_scale(&self, scale: u32, freq: u32) -> Result<(), SystemError> {
let mut cs_data = self.clocksource_data();
if freq != 0 {
let mut cs_data = self.clocksource_data();
let mut sec: u64 = cs_data.mask.bits();
sec /= freq as u64;
@ -335,8 +336,10 @@ impl dyn Clocksource {
self.clocks_calc_mult_shift(freq, NSEC_PER_SEC / scale, sec as u32 * scale);
cs_data.set_mult(mult);
cs_data.set_shift(shift);
self.update_clocksource_data(cs_data)?;
}
let mut cs_data = self.clocksource_data();
if scale != 0 && freq != 0 && cs_data.uncertainty_margin == 0 {
cs_data.set_uncertainty_margin(NSEC_PER_SEC / (scale * freq));
if cs_data.uncertainty_margin < 2 * WATCHDOG_MAX_SKEW {
@ -348,10 +351,25 @@ impl dyn Clocksource {
// 确保时钟源没有太大的mult值造成溢出
cs_data.set_maxadj(self.clocksource_max_adjustment());
self.update_clocksource_data(cs_data)?;
while freq != 0
&& (self.clocksource_data().mult + self.clocksource_data().maxadj
< self.clocksource_data().mult
|| self.clocksource_data().mult - self.clocksource_data().maxadj
> self.clocksource_data().mult)
{
let mut cs_data = self.clocksource_data();
cs_data.set_mult(cs_data.mult >> 1);
cs_data.set_shift(cs_data.shift - 1);
self.update_clocksource_data(cs_data)?;
let mut cs_data = self.clocksource_data();
cs_data.set_maxadj(self.clocksource_max_adjustment());
self.update_clocksource_data(cs_data)?;
}
let mut cs_data = self.clocksource_data();
let ns = self.clocksource_max_deferment();
cs_data.set_max_idle_ns(ns as u32);
self.update_clocksource_data(cs_data)?;
return Ok(());
@ -387,7 +405,7 @@ impl dyn Clocksource {
// 根据rating由大到小排序
let cs_data = self.clocksource_data();
let mut list_guard = CLOCKSOURCE_LIST.lock();
let mut spilt_pos: usize = 0;
let mut spilt_pos: usize = list_guard.len();
for (pos, ele) in list_guard.iter().enumerate() {
if ele.clocksource_data().rating < cs_data.rating {
spilt_pos = pos;
@ -445,7 +463,7 @@ impl dyn Clocksource {
drop(list_guard);
// 对比当前注册的时间源的精度和监视器的精度
let mut cs_watchdog = CLOCKSOUCE_WATCHDOG.lock_irqsave();
let mut cs_watchdog = CLOCKSOURCE_WATCHDOG.lock_irqsave();
if cs_watchdog.watchdog.is_none()
|| cs_data.rating
> cs_watchdog
@ -496,7 +514,7 @@ impl dyn Clocksource {
/// # 将时间源从监视链表中弹出
fn clocksource_dequeue_watchdog(&self) {
let data = self.clocksource_data();
let mut locked_watchdog = CLOCKSOUCE_WATCHDOG.lock_irqsave();
let mut locked_watchdog = CLOCKSOURCE_WATCHDOG.lock_irqsave();
let watchdog = locked_watchdog
.get_watchdog()
.clone()
@ -652,10 +670,14 @@ pub struct ClocksourceData {
pub max_idle_ns: u32,
pub flags: ClocksourceFlags,
pub watchdog_last: CycleNum,
/// 用于watchdog机制中的字段记录主时钟源上一次被读取的周期数
pub cs_last: CycleNum,
// 用于描述时钟源的不确定性边界,时钟源读取的时间可能存在的不确定性和误差范围
pub uncertainty_margin: u32,
// 最大的时间调整量
pub maxadj: u32,
/// 上一次读取时钟源时的周期数
pub cycle_last: CycleNum,
}
impl ClocksourceData {
@ -681,8 +703,10 @@ impl ClocksourceData {
max_idle_ns,
flags,
watchdog_last: CycleNum(0),
cs_last: CycleNum(0),
uncertainty_margin,
maxadj,
cycle_last: CycleNum(0),
};
return csd;
}
@ -727,6 +751,9 @@ impl ClocksourceData {
/// converts clocksource cycles to nanoseconds
///
pub fn clocksource_cyc2ns(cycles: CycleNum, mult: u32, shift: u32) -> u64 {
// info!("<clocksource_cyc2ns>");
// info!("cycles = {:?}, mult = {:?}, shift = {:?}", cycles, mult, shift);
// info!("ret = {:?}", (cycles.data() * mult as u64) >> shift);
return (cycles.data() * mult as u64) >> shift;
}
@ -768,7 +795,7 @@ pub fn clocksource_suspend() {
/// * `Ok()` - 检查完成
/// * `Err(SystemError)` - 错误码
pub fn clocksource_watchdog() -> Result<(), SystemError> {
let mut cs_watchdog = CLOCKSOUCE_WATCHDOG.lock_irqsave();
let cs_watchdog = CLOCKSOURCE_WATCHDOG.lock_irqsave();
// debug!("clocksource_watchdog start");
// watchdog没有在运行的话直接退出
@ -776,17 +803,7 @@ pub fn clocksource_watchdog() -> Result<(), SystemError> {
// debug!("is_running = {:?},watchdog = {:?}", cs_watchdog.is_running, cs_watchdog.watchdog);
return Ok(());
}
let cur_watchdog = cs_watchdog.watchdog.as_ref().unwrap().clone();
let cur_wd_data = cur_watchdog.as_ref().clocksource_data();
let cur_wd_nowclock = cur_watchdog.as_ref().read().data();
let wd_last = cs_watchdog.last_check.data();
let wd_dev_nsec = clocksource_cyc2ns(
CycleNum((cur_wd_nowclock - wd_last) & cur_wd_data.mask.bits),
cur_wd_data.mult,
cur_wd_data.shift,
);
cs_watchdog.last_check = CycleNum(cur_wd_nowclock);
drop(cs_watchdog);
let watchdog_list = WATCHDOG_LIST.lock_irqsave();
for cs in watchdog_list.iter() {
@ -798,11 +815,27 @@ pub fn clocksource_watchdog() -> Result<(), SystemError> {
{
// debug!("clocksource_watchdog unstable");
// 启动watchdog_kthread
if FINISHED_BOOTING.load(Ordering::Relaxed) {
// TODO 在实现了工作队列后将启动线程换成schedule work
run_watchdog_kthread();
}
continue;
}
// 读取时钟源现在的时间
let cs_now_clock = cs.read();
// 读取watchdog现在的时间
let wd = CLOCKSOURCE_WATCHDOG.lock_irqsave();
let wd_now = wd.watchdog.as_ref().unwrap().clone();
let wd_now_data = wd_now.as_ref().clocksource_data();
let wd_now_clock = wd_now.as_ref().read().data();
// info!("cs_name = {:?}", cs_data.name);
// info!("cs_last = {:?}", cs_data.cs_last);
// info!("cs_now_clock = {:?}", cs_now_clock);
// info!("wd_name");
// info!("wd_last = {:?}", cs_data.watchdog_last);
// info!("wd_now_clock = {:?}", wd_now_clock);
// 如果时钟源没有被监视,则开始监视他
if !cs_data
@ -814,29 +847,37 @@ pub fn clocksource_watchdog() -> Result<(), SystemError> {
.flags
.insert(ClocksourceFlags::CLOCK_SOURCE_WATCHDOG);
// 记录此次检查的时刻
cs_data.watchdog_last = cs_now_clock;
cs_data.watchdog_last = CycleNum::new(wd_now_clock);
cs_data.cs_last = cs_now_clock;
cs.update_clocksource_data(cs_data.clone())?;
continue;
}
// debug!("cs_data.watchdog_last = {:?},cs_now_clock = {:?}", cs_data.watchdog_last, cs_now_clock);
// 计算时钟源的误差
let wd_dev_nsec = clocksource_cyc2ns(
CycleNum((wd_now_clock - cs_data.watchdog_last.data()) & wd_now_data.mask.bits),
wd_now_data.mult,
wd_now_data.shift,
);
let cs_dev_nsec = clocksource_cyc2ns(
CycleNum(cs_now_clock.div(cs_data.watchdog_last).data() & cs_data.mask.bits),
cs_data.mult,
cs_data.shift,
CycleNum(cs_now_clock.div(cs_data.cs_last).data() & cs_data.mask.bits),
cs_data.mult, // 2343484437
cs_data.shift, // 23
);
// 记录此次检查的时刻
cs_data.watchdog_last = cs_now_clock;
cs_data.watchdog_last = CycleNum::new(wd_now_clock);
cs_data.cs_last = cs_now_clock;
cs.update_clocksource_data(cs_data.clone())?;
// 判断是否有误差
if cs_dev_nsec.abs_diff(wd_dev_nsec) > WATCHDOG_THRESHOLD.into() {
// debug!("set_unstable");
// 误差过大标记为unstable
info!("cs_dev_nsec = {}", cs_dev_nsec);
info!("wd_dev_nsec = {}", wd_dev_nsec);
cs.set_unstable((cs_dev_nsec - wd_dev_nsec).try_into().unwrap())?;
cs.set_unstable(cs_dev_nsec.abs_diff(wd_dev_nsec).try_into().unwrap())?;
continue;
}
// debug!("clocksource_watchdog aaa");
// 判断是否要切换为高精度模式
if !cs_data
@ -845,7 +886,7 @@ pub fn clocksource_watchdog() -> Result<(), SystemError> {
&& cs_data
.flags
.contains(ClocksourceFlags::CLOCK_SOURCE_IS_CONTINUOUS)
&& cur_wd_data
&& wd_now_data
.flags
.contains(ClocksourceFlags::CLOCK_SOURCE_IS_CONTINUOUS)
{
@ -861,7 +902,7 @@ pub fn clocksource_watchdog() -> Result<(), SystemError> {
}
fn create_new_watchdog_timer_function() {
let mut cs_watchdog = CLOCKSOUCE_WATCHDOG.lock_irqsave();
let mut cs_watchdog = CLOCKSOURCE_WATCHDOG.lock_irqsave();
cs_watchdog.timer_expires += WATCHDOG_INTERVAL;
//创建定时器执行watchdog
@ -890,25 +931,13 @@ fn __clocksource_watchdog_kthread() {
}
// 检查是否需要停止watchdog
CLOCKSOUCE_WATCHDOG
CLOCKSOURCE_WATCHDOG
.lock_irqsave()
.clocksource_stop_watchdog(wd_list.len());
drop(wd_list);
// 将不稳定的时钟源精度都设置为最低然后删除unstable标记
for clock in del_clocks.iter() {
clock.clocksource_change_rating(0);
let mut data = clock.clocksource_data();
data.watchdog_last = clock.read();
debug!("kthread: watchdog_last = {:?}", data.watchdog_last);
data.flags.remove(ClocksourceFlags::CLOCK_SOURCE_UNSTABLE);
clock
.update_clocksource_data(data)
.expect("clocksource_watchdog_kthread: failed to update clocksource data");
// 重新插入监视链表
clock
.clocksource_enqueue_watchdog()
.expect("clocksource_watchdog_kthread: failed to enqueue watchdog list");
}
}
@ -947,7 +976,7 @@ pub fn clocksource_resume_watchdog() {
/// # 根据精度选择最优的时钟源,或者接受用户指定的时间源
pub fn clocksource_select() {
let list_guard = CLOCKSOURCE_LIST.lock();
if FINISHED_BOOTING.load(Ordering::Relaxed) || list_guard.is_empty() {
if !FINISHED_BOOTING.load(Ordering::Relaxed) || list_guard.is_empty() {
return;
}
let mut best = list_guard.front().unwrap().clone();

View File

@ -48,16 +48,20 @@ impl Clocksource for ClocksourceJiffies {
fn clocksource(&self) -> Arc<dyn Clocksource> {
self.0.lock_irqsave().self_ref.upgrade().unwrap()
}
fn update_clocksource_data(&self, _data: ClocksourceData) -> Result<(), SystemError> {
fn update_clocksource_data(&self, data: ClocksourceData) -> Result<(), SystemError> {
let d = &mut self.0.lock_irqsave().data;
d.set_flags(_data.flags);
d.set_mask(_data.mask);
d.set_max_idle_ns(_data.max_idle_ns);
d.set_mult(_data.mult);
d.set_name(_data.name);
d.set_rating(_data.rating);
d.set_shift(_data.shift);
d.watchdog_last = _data.watchdog_last;
d.set_name(data.name);
d.set_rating(data.rating);
d.set_mask(data.mask);
d.set_mult(data.mult);
d.set_shift(data.shift);
d.set_max_idle_ns(data.max_idle_ns);
d.set_flags(data.flags);
d.watchdog_last = data.watchdog_last;
d.cs_last = data.cs_last;
d.set_uncertainty_margin(data.uncertainty_margin);
d.set_maxadj(data.maxadj);
d.cycle_last = data.cycle_last;
return Ok(());
}
@ -76,8 +80,10 @@ impl ClocksourceJiffies {
max_idle_ns: Default::default(),
flags: ClocksourceFlags::new(0),
watchdog_last: CycleNum::new(0),
cs_last: CycleNum::new(0),
uncertainty_margin: 0,
maxadj: 0,
cycle_last: CycleNum::new(0),
};
let jiffies = Arc::new(ClocksourceJiffies(SpinLock::new(InnerJiffies {
data,

View File

@ -13,6 +13,7 @@ pub mod clocksource;
pub mod jiffies;
pub mod sleep;
pub mod syscall;
pub mod tick_common;
pub mod timeconv;
pub mod timekeep;
pub mod timekeeping;

View File

@ -0,0 +1,25 @@
use crate::{
arch::interrupt::TrapFrame,
process::ProcessManager,
smp::{core::smp_get_processor_id, cpu::ProcessorId},
time::timer::run_local_timer,
};
use super::timer::update_timer_jiffies;
/// # 函数的功能
/// 用于周期滴答的事件处理
pub fn tick_handle_periodic(trap_frame: &TrapFrame) {
let cpu_id = smp_get_processor_id();
tick_periodic(cpu_id, trap_frame);
}
fn tick_periodic(cpu_id: ProcessorId, trap_frame: &TrapFrame) {
if cpu_id.data() == 0 {
update_timer_jiffies(1);
run_local_timer();
}
ProcessManager::update_process_times(trap_frame.is_from_user());
}

View File

@ -1,10 +1,16 @@
#![allow(dead_code)]
use core::intrinsics::unlikely;
use system_error::SystemError;
use crate::driver::rtc::interface::rtc_read_time_default;
use super::PosixTimeSpec;
use super::{PosixTimeSpec, NSEC_PER_SEC};
// 参考https://code.dragonos.org.cn/xref/linux-3.4.99/include/linux/time.h#110
const KTIME_MAX: i64 = !(1u64 << 63) as i64;
const KTIME_SEC_MAX: i64 = KTIME_MAX / NSEC_PER_SEC as i64;
#[allow(non_camel_case_types)]
pub type ktime_t = i64;
@ -31,3 +37,25 @@ pub fn ktime_get_real_ns() -> i64 {
let kt: ktime_t = ktime_get_real().unwrap_or(0);
return ktime_to_ns(kt);
}
// # 用于将两个ktime_t类型的变量相加
// #[inline(always)]
// pub(super) fn ktime_add(add1: ktime_t, add2: ktime_t) -> ktime_t {
// let res = add1 + add2;
// }
/// # 通过sec和nsec构造一个ktime_t
#[inline(always)]
fn ktime_set(secs: i64, nsecs: u64) -> ktime_t {
if unlikely(secs >= KTIME_SEC_MAX) {
return KTIME_MAX;
}
return secs * NSEC_PER_SEC as i64 + nsecs as i64;
}
/// # 将PosixTimeSpec转换成ktime_t
#[inline(always)]
pub fn timespec_to_ktime(ts: PosixTimeSpec) -> ktime_t {
return ktime_set(ts.tv_sec, ts.tv_nsec as u64);
}

View File

@ -1,12 +1,13 @@
use alloc::sync::Arc;
use core::sync::atomic::{compiler_fence, AtomicBool, AtomicI64, AtomicUsize, Ordering};
use log::{debug, info};
use core::intrinsics::{likely, unlikely};
use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
use log::{debug, info, warn};
use system_error::SystemError;
use crate::{
arch::{CurrentIrqArch, CurrentTimeArch},
arch::CurrentIrqArch,
exception::InterruptArch,
libs::rwlock::{RwLock, RwLockReadGuard},
libs::rwlock::RwLock,
time::{
jiffies::{clocksource_default_clock, jiffies_init},
timekeep::ktime_get_real_ns,
@ -14,10 +15,11 @@ use crate::{
},
};
use super::timekeep::{ktime_t, timespec_to_ktime};
use super::{
clocksource::{clocksource_cyc2ns, Clocksource, CycleNum, HZ},
syscall::PosixTimeval,
TimeArch, NSEC_PER_SEC,
NSEC_PER_SEC,
};
/// NTP周期频率
pub const NTP_INTERVAL_FREQ: u64 = HZ;
@ -28,17 +30,12 @@ pub const NTP_SCALE_SHIFT: u32 = 32;
/// timekeeping休眠标志false为未休眠
pub static TIMEKEEPING_SUSPENDED: AtomicBool = AtomicBool::new(false);
/// 已经递增的微秒数
static __ADDED_USEC: AtomicI64 = AtomicI64::new(0);
/// timekeeper全局变量用于管理timekeeper模块
static mut __TIMEKEEPER: Option<Timekeeper> = None;
#[derive(Debug)]
pub struct Timekeeper {
inner: RwLock<TimekeeperData>,
/// 上一次更新墙上时间时的CPU周期数
last_update_cpu_cycle: AtomicUsize,
}
#[allow(dead_code)]
@ -68,6 +65,8 @@ pub struct TimekeeperData {
wall_to_monotonic: PosixTimeSpec,
total_sleep_time: PosixTimeSpec,
xtime: PosixTimeSpec,
/// 单调时间和实时时间的偏移量
real_time_offset: ktime_t,
}
impl TimekeeperData {
pub fn new() -> Self {
@ -98,6 +97,7 @@ impl TimekeeperData {
tv_nsec: 0,
tv_sec: 0,
},
real_time_offset: 0,
}
}
}
@ -105,7 +105,6 @@ impl Timekeeper {
fn new() -> Self {
Self {
inner: RwLock::new(TimekeeperData::new()),
last_update_cpu_cycle: AtomicUsize::new(0),
}
}
@ -118,7 +117,7 @@ impl Timekeeper {
let mut timekeeper = self.inner.write_irqsave();
// 更新clock
let mut clock_data = clock.clocksource_data();
clock_data.watchdog_last = clock.read();
clock_data.cycle_last = clock.read();
if clock.update_clocksource_data(clock_data).is_err() {
debug!("timekeeper_setup_internals:update_clocksource_data run failed");
}
@ -144,33 +143,150 @@ impl Timekeeper {
timekeeper.mult = clock_data.mult;
}
/// # 获取当前时钟源距离上次watchdog检测走过的纳秒数
#[allow(dead_code)]
pub fn tk_get_ns(&self) -> u64 {
let timekeeper: RwLockReadGuard<'_, TimekeeperData> = self.inner.read_irqsave();
pub fn timekeeping_get_ns(&self) -> i64 {
let timekeeper = self.inner.read_irqsave();
let clock = timekeeper.clock.clone().unwrap();
drop(timekeeper);
let clock_now = clock.read();
let cycle_now = clock.read();
let clock_data = clock.clocksource_data();
let clock_delta = clock_now.div(clock_data.watchdog_last).data() & clock_data.mask.bits();
let cycle_delta = (cycle_now.div(clock_data.cycle_last)).data() & clock_data.mask.bits();
return clocksource_cyc2ns(
CycleNum::new(clock_delta),
clock_data.mult,
clock_data.shift,
CycleNum::new(cycle_delta),
timekeeper.mult,
timekeeper.shift as u32,
) as i64;
}
/// # 处理大幅度调整
pub fn timekeeping_bigadjust(&self, error: i64, interval: i64, offset: i64) -> (i64, i64, i32) {
let mut error = error;
let mut interval = interval;
let mut offset = offset;
// TODO: 计算look_head并调整ntp误差
let tmp = interval;
let mut mult = 1;
let mut adj = 0;
if error < 0 {
error = -error;
interval = -interval;
offset = -offset;
mult = -1;
}
while error > tmp {
adj += 1;
error >>= 1;
}
interval <<= adj;
offset <<= adj;
mult <<= adj;
return (interval, offset, mult);
}
/// # 调整时钟的mult减少ntp_error
pub fn timekeeping_adjust(&self, offset: i64) -> i64 {
let mut timekeeper = self.inner.write_irqsave();
let mut interval = timekeeper.cycle_interval.data() as i64;
let mut offset = offset;
let adj: i32;
// 计算误差
let mut error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
// 误差超过一个interval就要进行调整
if error >= 0 {
if error > interval {
error >>= 2;
if likely(error <= interval) {
adj = 1;
} else {
(interval, offset, adj) = self.timekeeping_bigadjust(error, interval, offset);
}
} else {
// 不需要校准
return offset;
}
} else if -error > interval {
if likely(-error <= interval) {
adj = -1;
interval = -interval;
offset = -offset;
} else {
(interval, offset, adj) = self.timekeeping_bigadjust(error, interval, offset);
}
} else {
// 不需要校准
return offset;
}
// 检查最大调整值,确保调整值不会超过时钟源允许的最大值
let clock_data = timekeeper.clock.clone().unwrap().clocksource_data();
if unlikely(
clock_data.maxadj != 0
&& (timekeeper.mult as i32 + adj
> clock_data.mult as i32 + clock_data.maxadj as i32),
) {
warn!(
"Adjusting {:?} more than ({} vs {})",
clock_data.name,
timekeeper.mult as i32 + adj,
clock_data.mult as i32 + clock_data.maxadj as i32
);
}
#[inline]
fn do_read_cpu_cycle_ns(&self) -> usize {
let prev = self.last_update_cpu_cycle.load(Ordering::SeqCst);
CurrentTimeArch::cycles2ns(CurrentTimeArch::get_cycles().wrapping_sub(prev))
if error > 0 {
timekeeper.mult += adj as u32;
timekeeper.xtime_interval += interval as u64;
timekeeper.xtime_nsec -= offset as u64;
} else {
timekeeper.mult -= adj as u32;
timekeeper.xtime_interval -= interval as u64;
timekeeper.xtime_nsec += offset as u64;
}
timekeeper.ntp_error -= (interval - offset) << timekeeper.ntp_error_shift;
return offset;
}
/// # 用于累积时间间隔,并将其转换为纳秒时间
pub fn logarithmic_accumulation(&self, offset: u64, shift: i32) -> u64 {
let mut timekeeper = self.inner.write_irqsave();
let clock = timekeeper.clock.clone().unwrap();
let clock_data = clock.clocksource_data();
let nsecps = (NSEC_PER_SEC as u64) << timekeeper.shift;
let mut offset = offset;
// 检查offset是否小于一个NTP周期间隔
if offset < timekeeper.cycle_interval.data() << shift {
return offset;
}
fn mark_update_wall_time_ok(&self) {
self.last_update_cpu_cycle
.store(CurrentTimeArch::get_cycles(), Ordering::SeqCst);
// 累积一个移位的interval
offset -= timekeeper.cycle_interval.data() << shift;
clock_data
.cycle_last
.add(CycleNum::new(timekeeper.cycle_interval.data() << shift));
if clock.update_clocksource_data(clock_data).is_err() {
debug!("logarithmic_accumulation:update_clocksource_data run failed");
}
timekeeper.clock.replace(clock.clone());
// 更新xime_nsec
timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
while timekeeper.xtime_nsec >= nsecps {
timekeeper.xtime_nsec -= nsecps;
timekeeper.xtime.tv_sec += 1;
// TODO: 处理闰秒
}
// TODO更新raw_time
// TODO计算ntp_error
return offset;
}
}
@ -201,19 +317,15 @@ pub fn getnstimeofday() -> PosixTimeSpec {
Some(tk) => {
xtime = tk.xtime;
drop(tk);
// 提供基于cpu周期数的ns时间以便在两次update_wall_time之间提供更好的精度
let cpu_delta_ns = timekeeper().do_read_cpu_cycle_ns() as u64;
// 尚未同步到xtime的时间
let tmp_delta_ns = __ADDED_USEC.load(Ordering::SeqCst) as u64 * 1000;
nsecs = timekeeper().timekeeping_get_ns();
nsecs = cpu_delta_ns + tmp_delta_ns;
// TODO 不同架构可能需要加上不同的偏移量
break;
}
}
}
xtime.tv_nsec += nsecs as i64;
xtime.tv_nsec += nsecs;
xtime.tv_sec += xtime.tv_nsec / NSEC_PER_SEC as i64;
xtime.tv_nsec %= NSEC_PER_SEC as i64;
// debug!("getnstimeofday: xtime = {:?}, nsecs = {:}", xtime, nsecs);
@ -267,8 +379,6 @@ pub fn timekeeping_init() {
timekeeper.wall_to_monotonic.tv_sec,
) = (-timekeeper.xtime.tv_nsec, -timekeeper.xtime.tv_sec);
__ADDED_USEC.store(0, Ordering::SeqCst);
drop(irq_guard);
drop(timekeeper);
jiffies_init();
@ -276,7 +386,8 @@ pub fn timekeeping_init() {
}
/// # 使用当前时钟源增加wall time
pub fn update_wall_time(delta_us: i64) {
/// 参考https://code.dragonos.org.cn/xref/linux-3.4.99/kernel/time/timekeeping.c#1041
pub fn update_wall_time() {
// debug!("enter update_wall_time, stack_use = {:}",stack_use);
compiler_fence(Ordering::SeqCst);
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
@ -285,60 +396,74 @@ pub fn update_wall_time(delta_us: i64) {
return;
}
// ===== 请不要删除这些注释 =====
// let clock = timekeeper.clock.clone().unwrap();
// let clock_data = clock.clocksource_data();
// let offset = (clock.read().div(clock_data.watchdog_last).data()) & clock_data.mask.bits();
// timekeeper.xtime_nsec = (timekeeper.xtime.tv_nsec as u64) << timekeeper.shift;
// // TODO 当有ntp模块之后 需要将timekeep与ntp进行同步并检查
// timekeeper.xtime.tv_nsec = ((timekeeper.xtime_nsec as i64) >> timekeeper.shift) + 1;
// timekeeper.xtime_nsec -= (timekeeper.xtime.tv_nsec as u64) << timekeeper.shift;
// timekeeper.xtime.tv_nsec += offset as i64;
// while unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC.into()) {
// timekeeper.xtime.tv_nsec -= NSEC_PER_SEC as i64;
// timekeeper.xtime.tv_sec += 1;
// // TODO 需要处理闰秒
// }
// ================
compiler_fence(Ordering::SeqCst);
__ADDED_USEC.fetch_add(delta_us, Ordering::SeqCst);
compiler_fence(Ordering::SeqCst);
let mut retry = 10;
let usec = __ADDED_USEC.load(Ordering::SeqCst);
// 一分钟同步一次
loop {
if (usec & !((1 << 26) - 1)) != 0 {
if __ADDED_USEC
.compare_exchange(usec, 0, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
|| retry == 0
{
// 同步时间
// 我感觉这里会出问题:多个读者不退出的话,写者就无法写入
// 然后这里会超时,导致在中断返回之后,会不断的进入这个中断,最终爆栈。
let mut timekeeper = timekeeper().inner.write_irqsave();
timekeeper.xtime.tv_nsec = ktime_get_real_ns();
timekeeper.xtime.tv_sec = 0;
__ADDED_USEC.store(0, Ordering::SeqCst);
drop(timekeeper);
break;
let mut tk = timekeeper().inner.write_irqsave();
// 获取当前时钟源
let clock = tk.clock.clone().unwrap();
let clock_data = clock.clocksource_data();
// 计算从上一次更新周期以来经过的时钟周期数
let mut offset = (clock.read().div(clock_data.cycle_last).data()) & clock_data.mask.bits();
// 检查offset是否达到了一个NTP周期间隔
if offset < tk.cycle_interval.data() {
return;
}
retry -= 1;
} else {
break;
// 将纳秒部分转换为更高精度的格式
tk.xtime_nsec = (tk.xtime.tv_nsec as u64) << tk.shift;
let mut shift = (offset.ilog2() - tk.cycle_interval.data().ilog2()) as i32;
shift = shift.max(0);
// let max_shift = (64 - (ntp_tick_length().ilog2()+1)) - 1;
// shift = min(shift, max_shift)
while offset >= tk.cycle_interval.data() {
offset = timekeeper().logarithmic_accumulation(offset, shift);
if offset < tk.cycle_interval.data() << shift {
shift -= 1;
}
}
timekeeper().mark_update_wall_time_ok();
// TODO 需要检查是否更新时间源
timekeeper().timekeeping_adjust(offset as i64);
// 处理xtime_nsec下溢问题并对NTP误差进行调整
if unlikely((tk.xtime_nsec as i64) < 0) {
let neg = -(tk.xtime_nsec as i64);
tk.xtime_nsec = 0;
tk.ntp_error += neg << tk.ntp_error_shift;
}
// 将纳秒部分舍入后存储在xtime.tv_nsec中
tk.xtime.tv_nsec = ((tk.xtime_nsec as i64) >> tk.shift) + 1;
tk.xtime_nsec -= (tk.xtime.tv_nsec as u64) << tk.shift;
// 确保经过舍入后的xtime.tv_nsec不会大于NSEC_PER_SEC并在超过1秒的情况下进行适当的调整
if unlikely(tk.xtime.tv_nsec >= NSEC_PER_SEC.into()) {
tk.xtime.tv_nsec -= NSEC_PER_SEC as i64;
tk.xtime.tv_sec += 1;
// TODO: 处理闰秒
}
// 更新时间的相关信息
timekeeping_update();
compiler_fence(Ordering::SeqCst);
drop(irq_guard);
compiler_fence(Ordering::SeqCst);
}
// TODO timekeeping_adjust
// TODO wall_to_monotic
/// 参考https://code.dragonos.org.cn/xref/linux-3.4.99/kernel/time/timekeeping.c#190
pub fn timekeeping_update() {
// TODO如果clearntp为true则会清除NTP错误并调用ntp_clear()
// 更新实时时钟偏移量,用于跟踪硬件时钟与系统时间的差异,以便进行时间校正
update_rt_offset();
}
/// # 更新实时偏移量(墙上之间与单调时间的差值)
pub fn update_rt_offset() {
let mut timekeeper = timekeeper().inner.write_irqsave();
let ts = PosixTimeSpec::new(
-timekeeper.wall_to_monotonic.tv_sec,
-timekeeper.wall_to_monotonic.tv_nsec,
);
timekeeper.real_time_offset = timespec_to_ktime(ts);
}

View File

@ -366,11 +366,17 @@ pub fn try_raise_timer_softirq() {
}
}
/// 处理本地定时器中断
pub fn run_local_timer() {
assert!(!CurrentIrqArch::is_irq_enabled());
try_raise_timer_softirq();
}
/// 更新系统时间片
pub fn update_timer_jiffies(add_jiffies: u64, time_us: i64) -> u64 {
pub fn update_timer_jiffies(add_jiffies: u64) -> u64 {
let prev = TIMER_JIFFIES.fetch_add(add_jiffies, Ordering::SeqCst);
compiler_fence(Ordering::SeqCst);
update_wall_time(time_us);
update_wall_time();
compiler_fence(Ordering::SeqCst);
return prev + add_jiffies;