软中断&定时器重构 (#223)

* 软中断&定时器重构

Co-authored-by: houmkh<houjiaying@DragonOS.org>

* 修改timer的clock()

* 删除debug信息

---------

Co-authored-by: houmkh <1119644616@qq.com>
This commit is contained in:
login 2023-04-02 17:09:33 +08:00 committed by GitHub
parent 6d345b7742
commit bacd691c9e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
33 changed files with 896 additions and 672 deletions

View File

@ -10,6 +10,7 @@ crate-type = ["staticlib"]
# 运行时依赖项 # 运行时依赖项
[dependencies] [dependencies]
x86 = "0.52.0"
x86_64 = "0.14.10" x86_64 = "0.14.10"
bitflags = "1.3.2" bitflags = "1.3.2"
virtio-drivers = "0.3.0" virtio-drivers = "0.3.0"

View File

@ -17,7 +17,7 @@ export ASFLAGS := --64
LD_LIST := head.o LD_LIST := head.o
kernel_subdirs := common driver process debug time arch exception mm smp sched syscall ktest libs ipc io kernel_subdirs := common driver process debug arch exception mm smp sched syscall ktest libs ipc io

View File

@ -1,18 +1,12 @@
use core::arch::asm; use core::arch::asm;
use super::asm::current::current_pcb;
/// @brief 获取当前cpu的apic id /// @brief 获取当前cpu的apic id
#[inline] #[inline]
pub fn current_cpu_id() -> u8 { pub fn current_cpu_id() -> u32 {
let cpuid_res: u32; // TODO: apic重构后使用apic id来设置这里
unsafe { current_pcb().cpu_id as u32
asm!(
"mov eax, 1",
"cpuid",
"mov r15, rbx",
lateout("r15") cpuid_res
);
}
return ((cpuid_res >> 24) & 0xff) as u8;
} }
/// @brief 通过pause指令让cpu休息一会儿。降低空转功耗 /// @brief 通过pause指令让cpu休息一会儿。降低空转功耗

View File

@ -21,19 +21,18 @@ struct tm
const char *__tm_zone; /* Timezone abbreviation. */ const char *__tm_zone; /* Timezone abbreviation. */
}; };
struct timespec struct timespec
{ {
int64_t tv_sec; // 秒 int64_t tv_sec; // 秒
int64_t tv_nsec; // 纳秒 int64_t tv_nsec; // 纳秒
}; };
/** /**
* @brief * @brief
* *
* @param rqtp * @param rqtp
* @param rmtp * @param rmtp
* @return int * @return int
*/ */
extern int nanosleep(const struct timespec *rqtp, struct timespec *rmtp); extern int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
@ -47,7 +46,7 @@ extern int usleep(useconds_t usec);
/** /**
* @brief CPU时间 * @brief CPU时间
* *
* @return uint64_t timer_jiffies * @return uint64_t timer_jiffies
*/ */
extern uint64_t clock(); extern uint64_t rs_clock();

View File

@ -456,7 +456,7 @@ void do_IRQ(struct pt_regs *rsp, ul number)
// kdebug("before softirq"); // kdebug("before softirq");
// 进入软中断处理程序 // 进入软中断处理程序
do_softirq(); rs_do_softirq();
// kdebug("after softirq"); // kdebug("after softirq");
// 检测当前进程是否持有自旋锁,若持有自旋锁,则不进行抢占式的进程调度 // 检测当前进程是否持有自旋锁,若持有自旋锁,则不进行抢占式的进程调度

View File

@ -4,4 +4,5 @@ pub mod pci;
pub mod timers; pub mod timers;
pub mod tty; pub mod tty;
pub mod uart; pub mod uart;
pub mod video;
pub mod virtio; pub mod virtio;

View File

@ -67,7 +67,7 @@ void HPET_handler(uint64_t number, uint64_t param, struct pt_regs *regs)
switch (param) switch (param)
{ {
case 0: // 定时器0中断 case 0: // 定时器0中断
timer_jiffies += HPET0_INTERVAL; rs_update_timer_jiffies(HPET0_INTERVAL);
/* /*
// 将HEPT中断消息转发到ap:1处理器 // 将HEPT中断消息转发到ap:1处理器
@ -76,18 +76,18 @@ void HPET_handler(uint64_t number, uint64_t param, struct pt_regs *regs)
*/ */
// 若当前时间比定时任务的时间间隔大,则进入中断下半部 // 若当前时间比定时任务的时间间隔大,则进入中断下半部
if (container_of(list_next(&timer_func_head.list), struct timer_func_list_t, list)->expire_jiffies <= timer_jiffies) if (rs_timer_get_first_expire() <= rs_clock())
raise_softirq(TIMER_SIRQ); rs_raise_softirq(TIMER_SIRQ);
// 当时间到了,或进程发生切换时,刷新帧缓冲区 // 当时间到了,或进程发生切换时,刷新帧缓冲区
if (timer_jiffies >= video_refresh_expire_jiffies || (video_last_refresh_pid != current_pcb->pid)) if (rs_clock() >= video_refresh_expire_jiffies || (video_last_refresh_pid != current_pcb->pid))
{ {
raise_softirq(VIDEO_REFRESH_SIRQ); rs_raise_softirq(VIDEO_REFRESH_SIRQ);
// 超过130ms仍未刷新完成则重新发起刷新(防止由于进程异常退出导致的屏幕无法刷新) // 超过130ms仍未刷新完成则重新发起刷新(防止由于进程异常退出导致的屏幕无法刷新)
if (unlikely(timer_jiffies >= (video_refresh_expire_jiffies + (1 << 17)))) if (unlikely(rs_clock() >= (video_refresh_expire_jiffies + (1 << 17))))
{ {
video_refresh_expire_jiffies = timer_jiffies + (1 << 20); video_refresh_expire_jiffies = rs_clock() + (1 << 20);
clear_softirq_pending(VIDEO_REFRESH_SIRQ); rs_clear_softirq_pending(VIDEO_REFRESH_SIRQ);
} }
} }
break; break;

View File

@ -245,7 +245,7 @@ static int xhci_hc_stop(int id)
while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0) while ((xhci_read_op_reg32(id, XHCI_OPS_USBSTS) & (1 << 0)) == 0)
{ {
io_mfence(); io_mfence();
usleep(1000); rs_usleep(1000);
if (--timeout == 0) if (--timeout == 0)
return -ETIMEDOUT; return -ETIMEDOUT;
} }
@ -285,7 +285,7 @@ static int xhci_hc_reset(int id)
while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1)) while (xhci_read_op_reg32(id, XHCI_OPS_USBCMD) & (1 << 1))
{ {
io_mfence(); io_mfence();
usleep(1000); rs_usleep(1000);
if (--timeout == 0) if (--timeout == 0)
return -ETIMEDOUT; return -ETIMEDOUT;
} }
@ -319,7 +319,7 @@ static int xhci_hc_stop_legacy(int id)
XHCI_XECP_LEGACY_OS_OWNED) XHCI_XECP_LEGACY_OS_OWNED)
{ {
io_mfence(); io_mfence();
usleep(1000); rs_usleep(1000);
if (--timeout == 0) if (--timeout == 0)
{ {
kerror("The BIOS doesn't stop legacy support."); kerror("The BIOS doesn't stop legacy support.");
@ -352,7 +352,7 @@ static int xhci_hc_start_sched(int id)
io_mfence(); io_mfence();
xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 << 2) | (1 << 3)); xhci_write_op_reg32(id, XHCI_OPS_USBCMD, (1 << 0) | (1 << 2) | (1 << 3));
io_mfence(); io_mfence();
usleep(100 * 1000); rs_usleep(100 * 1000);
} }
/** /**
@ -793,7 +793,7 @@ static int xhci_reset_port(const int id, const int port)
io_mfence(); io_mfence();
xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9)); xhci_write_cap_reg32(id, port_status_offset + XHCI_PORT_PORTSC, (1 << 9));
io_mfence(); io_mfence();
usleep(2000); rs_usleep(2000);
// 检测端口是否被启用, 若未启用,则报错 // 检测端口是否被启用, 若未启用,则报错
if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0) if ((xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC) & (1 << 9)) == 0)
{ {
@ -833,14 +833,14 @@ static int xhci_reset_port(const int id, const int port)
break; break;
#endif #endif
--timeout; --timeout;
usleep(500); rs_usleep(500);
} }
// kdebug("timeout= %d", timeout); // kdebug("timeout= %d", timeout);
if (timeout > 0) if (timeout > 0)
{ {
// 等待恢复 // 等待恢复
usleep(USB_TIME_RST_REC * 100); rs_usleep(USB_TIME_RST_REC * 100);
uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC); uint32_t val = xhci_read_op_reg32(id, port_status_offset + XHCI_PORT_PORTSC);
io_mfence(); io_mfence();
@ -1219,7 +1219,7 @@ static int xhci_wait_for_interrupt(const int id, uint64_t status_vaddr)
} }
} }
--timer; --timer;
usleep(1000); rs_usleep(1000);
} }
kerror(" USB xHCI Interrupt wait timed out."); kerror(" USB xHCI Interrupt wait timed out.");
@ -2001,7 +2001,7 @@ static int xhci_send_command(int id, struct xhci_TRB_t *trb, const bool do_ring)
// We use bit 31 of the command dword since it is reserved // We use bit 31 of the command dword since it is reserved
while (timer && ((__read4b(origin_trb_vaddr + 8) & XHCI_IRQ_DONE) == 0)) while (timer && ((__read4b(origin_trb_vaddr + 8) & XHCI_IRQ_DONE) == 0))
{ {
usleep(1000); rs_usleep(1000);
--timer; --timer;
} }
uint32_t x = xhci_read_cap_reg32(id, xhci_hc[id].rts_offset + 0x20); uint32_t x = xhci_read_cap_reg32(id, xhci_hc[id].rts_offset + 0x20);

View File

@ -0,0 +1,62 @@
use core::{ptr::null_mut, sync::atomic::{AtomicBool, Ordering}};
use alloc::sync::Arc;
use crate::{
exception::softirq::{SoftirqNumber, SoftirqVec, softirq_vectors},
include::bindings::bindings::video_refresh_framebuffer,
};
#[derive(Debug)]
pub struct VideoRefreshFramebuffer{
running: AtomicBool
}
impl SoftirqVec for VideoRefreshFramebuffer {
fn run(&self) {
if self.set_run() == false{
return;
}
unsafe {
video_refresh_framebuffer(null_mut());
}
self.clear_run();
}
}
impl VideoRefreshFramebuffer {
pub fn new() -> VideoRefreshFramebuffer {
VideoRefreshFramebuffer {
running: AtomicBool::new(false)
}
}
fn set_run(&self) -> bool {
let x = self
.running
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed);
if x.is_ok() {
return true;
} else {
return false;
}
}
fn clear_run(&self) {
self.running.store(false, Ordering::Release);
}
}
pub fn register_softirq_video() {
// kdebug!("register_softirq_video");
let handler = Arc::new(VideoRefreshFramebuffer::new());
softirq_vectors()
.register_softirq(SoftirqNumber::VideoRefresh, handler)
.expect("register_softirq_video run failed");
}
// ======= 以下为给C提供的接口,video重构完后请删除 =======
#[no_mangle]
pub extern "C" fn rs_register_softirq_video() {
register_softirq_video();
}

View File

@ -13,6 +13,8 @@
#include <sched/sched.h> #include <sched/sched.h>
#include <time/timer.h> #include <time/timer.h>
extern void rs_register_softirq_video();
uint64_t video_refresh_expire_jiffies = 0; uint64_t video_refresh_expire_jiffies = 0;
uint64_t video_last_refresh_pid = -1; uint64_t video_last_refresh_pid = -1;
@ -57,7 +59,7 @@ int video_refresh_daemon(void *unused)
for (;;) for (;;)
{ {
if (clock() >= video_refresh_expire_jiffies) if (rs_clock() >= video_refresh_expire_jiffies)
{ {
if (likely(video_refresh_target != NULL)) if (likely(video_refresh_target != NULL))
@ -68,7 +70,7 @@ int video_refresh_daemon(void *unused)
spin_unlock(&daemon_refresh_lock); spin_unlock(&daemon_refresh_lock);
video_daemon_pcb->virtual_runtime = 0xfffff0000000; // 临时解决由于显示刷新进程的虚拟运行时间过大/过小,导致其不运行,或者一直运行的问题。将来应使用实时调度解决它 video_daemon_pcb->virtual_runtime = 0xfffff0000000; // 临时解决由于显示刷新进程的虚拟运行时间过大/过小,导致其不运行,或者一直运行的问题。将来应使用实时调度解决它
} }
video_refresh_expire_jiffies = cal_next_n_ms_jiffies(REFRESH_INTERVAL << 1); video_refresh_expire_jiffies = rs_timer_next_n_ms_jiffies(REFRESH_INTERVAL << 1);
} }
video_daemon_pcb->state &= ~PROC_RUNNING; video_daemon_pcb->state &= ~PROC_RUNNING;
video_daemon_pcb->flags |= PF_NEED_SCHED; video_daemon_pcb->flags |= PF_NEED_SCHED;
@ -85,7 +87,7 @@ void video_refresh_framebuffer(void *data)
{ {
if (unlikely(video_daemon_pcb == NULL)) if (unlikely(video_daemon_pcb == NULL))
return; return;
if (clock() >= video_refresh_expire_jiffies) if (rs_clock() >= video_refresh_expire_jiffies)
{ {
video_daemon_pcb->virtual_runtime = 0; video_daemon_pcb->virtual_runtime = 0;
process_wakeup(video_daemon_pcb); process_wakeup(video_daemon_pcb);
@ -105,18 +107,18 @@ int video_reinitialize(bool level) // 这个函数会在main.c调用, 保证 vid
init_frame_buffer(); init_frame_buffer();
else else
{ {
unregister_softirq(VIDEO_REFRESH_SIRQ); rs_unregister_softirq(VIDEO_REFRESH_SIRQ);
// 计算开始时间 // 计算开始时间
video_refresh_expire_jiffies = cal_next_n_ms_jiffies(10 * REFRESH_INTERVAL); video_refresh_expire_jiffies = rs_timer_next_n_ms_jiffies(10 * REFRESH_INTERVAL);
// 创建video守护进程 // 创建video守护进程
video_daemon_pcb = kthread_run(&video_refresh_daemon, NULL, "Video refresh daemon"); video_daemon_pcb = kthread_run(&video_refresh_daemon, NULL, "Video refresh daemon");
video_daemon_pcb->virtual_runtime = 0; // 特殊情况, 最高优先级, 以后再改 video_daemon_pcb->virtual_runtime = 0; // 特殊情况, 最高优先级, 以后再改
// 启用屏幕刷新软中断 // 启用屏幕刷新软中断
register_softirq(VIDEO_REFRESH_SIRQ, &video_refresh_framebuffer, NULL); rs_register_softirq_video();
raise_softirq(VIDEO_REFRESH_SIRQ); rs_raise_softirq(VIDEO_REFRESH_SIRQ);
} }
return 0; return 0;
} }
@ -130,7 +132,7 @@ int video_reinitialize(bool level) // 这个函数会在main.c调用, 保证 vid
int video_set_refresh_target(struct scm_buffer_info_t *buf) int video_set_refresh_target(struct scm_buffer_info_t *buf)
{ {
unregister_softirq(VIDEO_REFRESH_SIRQ); rs_unregister_softirq(VIDEO_REFRESH_SIRQ);
// todo: 在completion实现后在这里等待其他刷新任务完成再进行下一步。 // todo: 在completion实现后在这里等待其他刷新任务完成再进行下一步。
// int counter = 100; // int counter = 100;
@ -138,12 +140,13 @@ int video_set_refresh_target(struct scm_buffer_info_t *buf)
// while ((get_softirq_pending() & (1 << VIDEO_REFRESH_SIRQ)) && counter > 0) // while ((get_softirq_pending() & (1 << VIDEO_REFRESH_SIRQ)) && counter > 0)
// { // {
// --counter; // --counter;
// usleep(1000); // rs_usleep(1000);
// } // }
// kdebug("buf = %#018lx", buf); // kdebug("buf = %#018lx", buf);
video_refresh_target = buf; video_refresh_target = buf;
register_softirq(VIDEO_REFRESH_SIRQ, &video_refresh_framebuffer, NULL); rs_register_softirq_video();
raise_softirq(VIDEO_REFRESH_SIRQ); kdebug("register softirq video done");
// rs_raise_softirq(VIDEO_REFRESH_SIRQ);
} }
/** /**

View File

@ -30,4 +30,4 @@ int video_set_refresh_target(struct scm_buffer_info_t *buf);
extern uint64_t video_refresh_expire_jiffies; extern uint64_t video_refresh_expire_jiffies;
extern uint64_t video_last_refresh_pid; extern uint64_t video_last_refresh_pid;
extern void video_refresh_framebuffer(); void video_refresh_framebuffer(void *data);

View File

@ -80,7 +80,7 @@ fn virtio_device(transport: impl Transport) {
///@brief virtio-net 驱动的初始化与测试 ///@brief virtio-net 驱动的初始化与测试
fn virtio_net<T: Transport>(transport: T) { fn virtio_net<T: Transport>(transport: T) {
let mut driver_net = match VirtIONet::<HalImpl, T>::new(transport) { let driver_net = match VirtIONet::<HalImpl, T>::new(transport) {
Ok(net) => { Ok(net) => {
kdebug!("Virtio-net driver init successfully."); kdebug!("Virtio-net driver init successfully.");
net net
@ -90,40 +90,40 @@ fn virtio_net<T: Transport>(transport: T) {
return; return;
} }
}; };
let mut buf = [0u8; 0x100]; // let mut buf = [0u8; 0x100];
// let len = match driver_net.recv(&mut buf) // // let len = match driver_net.recv(&mut buf)
// { // // {
// Ok(len) =>{len}, // // Ok(len) =>{len},
// Err(_) =>{kerror!("virtio_net recv failed");return;} // // Err(_) =>{kerror!("virtio_net recv failed");return;}
// }; // // };
match driver_net.can_send() { // match driver_net.can_send() {
true => {
kdebug!("Virtio-net can send");
}
false => {
kdebug!("Virtio-net can not send");
}
}
// match driver_net.can_recv() {
// true => { // true => {
// kdebug!("can recv") // kdebug!("Virtio-net can send");
// } // }
// false => { // false => {
// kdebug!("can not recv"); // kdebug!("Virtio-net can not send");
// } // }
// } // }
// // match driver_net.can_recv() {
// // true => {
// // kdebug!("can recv")
// // }
// // false => {
// // kdebug!("can not recv");
// // }
// // }
let len = 100; // let len = 100;
//kdebug!("recv: {:?}", &buf[..len]); // //kdebug!("recv: {:?}", &buf[..len]);
match driver_net.send(&buf[..len]) { // match driver_net.send(&buf[..len]) {
Ok(_) => { // Ok(_) => {
kdebug!("virtio_net send success"); // kdebug!("virtio_net send success");
} // }
Err(_) => { // Err(_) => {
kerror!("virtio_net send failed"); // kerror!("virtio_net send failed");
return; // return;
} // }
} // }
let mac = driver_net.mac(); let mac = driver_net.mac();
kdebug!("virtio_net MAC={:?}", mac); kdebug!("virtio_net MAC={:?}", mac);

View File

@ -13,11 +13,11 @@
#include <common/glib.h> #include <common/glib.h>
// ==================implementation with rust=================== // ==================implementation with rust===================
extern void softirq_init(); extern void rs_softirq_init();
extern void raise_softirq(uint32_t sirq_num); extern void rs_raise_softirq(uint32_t sirq_num);
extern int register_softirq(uint32_t irq_num, void (*action)(void *data), void *data); extern int rs_register_softirq(uint32_t irq_num, void (*action)(void *data), void *data);
extern int unregister_softirq(uint32_t irq_num); extern int unregister_softirq(uint32_t irq_num);
extern void do_softirq(); extern void rs_do_softirq();
// for temporary // for temporary
#define MAX_SOFTIRQ_NUM 64 #define MAX_SOFTIRQ_NUM 64

View File

@ -1,268 +1,265 @@
use core::{ffi::c_void, ptr::null_mut}; use core::{
fmt::Debug,
intrinsics::unlikely,
mem::{self, MaybeUninit},
ptr::null_mut,
sync::atomic::{compiler_fence, Ordering},
};
use alloc::boxed::Box; use alloc::{boxed::Box, sync::Arc};
use num_traits::FromPrimitive;
use crate::{ use crate::{
arch::interrupt::{cli, sti}, arch::{
include::bindings::bindings::verify_area, asm::{
kBUG, current::current_pcb,
libs::spinlock::RawSpinlock, irqflags::{local_irq_restore, local_irq_save},
syscall::SystemError, kdebug, },
interrupt::{cli, sti},
},
include::bindings::bindings::MAX_CPU_NUM,
kdebug, kinfo,
libs::rwlock::RwLock,
smp::core::smp_get_processor_id,
syscall::SystemError,
time::timer::clock,
}; };
const MAX_SOFTIRQ_NUM: u64 = 64; const MAX_SOFTIRQ_NUM: u64 = 64;
const MAX_LOCK_TRIAL_TIME: u64 = 50; const MAX_SOFTIRQ_RESTART: i32 = 20;
pub static mut SOFTIRQ_HANDLER_PTR: *mut Softirq = null_mut();
static mut __CPU_PENDING: Option<Box<[VecStatus; MAX_CPU_NUM as usize]>> = None;
static mut __SORTIRQ_VECTORS: *mut Softirq = null_mut();
#[no_mangle]
pub extern "C" fn rs_softirq_init() {
softirq_init().expect("softirq_init failed");
}
pub fn softirq_init() -> Result<(), SystemError> {
kinfo!("Initializing softirq...");
unsafe {
__SORTIRQ_VECTORS = Box::leak(Box::new(Softirq::new()));
__CPU_PENDING = Some(Box::new([VecStatus::default(); MAX_CPU_NUM as usize]));
let cpu_pending = __CPU_PENDING.as_mut().unwrap();
for i in 0..MAX_CPU_NUM {
cpu_pending[i as usize] = VecStatus::default();
}
}
return Ok(());
}
#[inline(always)]
pub fn softirq_vectors() -> &'static mut Softirq {
unsafe {
return __SORTIRQ_VECTORS.as_mut().unwrap();
}
}
#[inline(always)]
fn cpu_pending(cpu_id: usize) -> &'static mut VecStatus {
unsafe {
return &mut __CPU_PENDING.as_mut().unwrap()[cpu_id];
}
}
/// 软中断向量号码 /// 软中断向量号码
#[allow(dead_code)] #[allow(dead_code)]
#[repr(u8)] #[repr(u8)]
#[derive(FromPrimitive, Copy, Clone, Debug, PartialEq, Eq)]
pub enum SoftirqNumber { pub enum SoftirqNumber {
TIMER = 0, //时钟软中断信号 /// 时钟软中断信号
TIMER = 0,
VideoRefresh = 1, //帧缓冲区刷新软中断 VideoRefresh = 1, //帧缓冲区刷新软中断
} }
#[repr(C)] impl From<u64> for SoftirqNumber {
#[derive(Clone, Copy)] fn from(value: u64) -> Self {
pub struct SoftirqVector { return <Self as FromPrimitive>::from_u64(value).unwrap();
pub action: Option<unsafe extern "C" fn(data: *mut ::core::ffi::c_void)>, //软中断处理函数
pub data: *mut c_void,
}
impl Default for SoftirqVector {
fn default() -> Self {
Self {
action: None,
data: null_mut(),
}
} }
} }
bitflags! {
#[derive(Default)]
pub struct VecStatus: u64 {
const TIMER = 1 << 0;
const VIDEO_REFRESH = 1 << 1;
}
}
impl From<SoftirqNumber> for VecStatus {
fn from(value: SoftirqNumber) -> Self {
return Self::from_bits_truncate(1 << (value as u64));
}
}
pub trait SoftirqVec: Send + Sync + Debug {
fn run(&self);
}
#[derive(Debug)]
pub struct Softirq { pub struct Softirq {
modify_lock: RawSpinlock, table: RwLock<[Option<Arc<dyn SoftirqVec>>; MAX_SOFTIRQ_NUM as usize]>,
pending: u64,
running: u64,
table: [SoftirqVector; MAX_SOFTIRQ_NUM as usize],
} }
#[no_mangle]
#[allow(dead_code)]
/// @brief 提供给c的接口函数,用于初始化静态指针
pub extern "C" fn softirq_init() {
if unsafe { SOFTIRQ_HANDLER_PTR.is_null() } {
unsafe {
SOFTIRQ_HANDLER_PTR = Box::leak(Box::new(Softirq::default()));
}
} else {
kBUG!("Try to init SOFTIRQ_HANDLER_PTR twice.");
panic!("Try to init SOFTIRQ_HANDLER_PTR twice.");
}
}
/// @brief 将raw pointer转换为指针,减少unsafe块
#[inline]
pub fn __get_softirq_handler_mut() -> &'static mut Softirq {
return unsafe { SOFTIRQ_HANDLER_PTR.as_mut().unwrap() };
}
#[no_mangle]
#[allow(dead_code)]
pub extern "C" fn raise_softirq(sirq_num: u32) {
let softirq_handler = __get_softirq_handler_mut();
softirq_handler.set_softirq_pending(sirq_num);
}
/// @brief 软中断注册函数
///
/// @param irq_num 软中断号
/// @param action 响应函数
/// @param data 响应数据结构体
#[no_mangle]
#[allow(dead_code)]
pub extern "C" fn register_softirq(
irq_num: u32,
action: Option<unsafe extern "C" fn(data: *mut ::core::ffi::c_void)>,
data: *mut c_void,
) {
let softirq_handler = __get_softirq_handler_mut();
softirq_handler.register_softirq(irq_num, action, data).expect(&format!("Softirq: Failed to register {}", irq_num));
}
/// @brief 卸载软中断
/// @param irq_num 软中断号
#[no_mangle]
#[allow(dead_code)]
pub extern "C" fn unregister_softirq(irq_num: u32) {
let softirq_handler = __get_softirq_handler_mut();
softirq_handler.unregister_softirq(irq_num).expect(&format!("Softirq: Failed to unregister {}", irq_num));
}
/// 设置软中断的运行状态只应在do_softirq中调用此宏
#[no_mangle]
#[allow(dead_code)]
pub extern "C" fn set_softirq_pending(irq_num: u32) {
let softirq_handler = __get_softirq_handler_mut();
softirq_handler.set_softirq_pending(irq_num);
}
/// @brief 设置软中断运行结束
///
/// @param softirq_num
#[no_mangle]
#[allow(dead_code)]
pub extern "C" fn clear_softirq_pending(irq_num: u32) {
let softirq_handler = __get_softirq_handler_mut();
softirq_handler.clear_softirq_pending(irq_num);
}
/// @brief 软中断处理程序
#[no_mangle]
#[allow(dead_code)]
pub extern "C" fn do_softirq() {
let softirq_handler = __get_softirq_handler_mut();
softirq_handler.do_softirq();
}
impl Default for Softirq {
fn default() -> Self {
Self {
modify_lock: RawSpinlock::INIT,
pending: (0),
running: (0),
table: [Default::default(); MAX_SOFTIRQ_NUM as usize],
}
}
}
impl Softirq { impl Softirq {
#[inline] fn new() -> Softirq {
#[allow(dead_code)] let mut data: [MaybeUninit<Option<Arc<dyn SoftirqVec>>>; MAX_SOFTIRQ_NUM as usize] =
pub fn get_softirq_pending(&self) -> u64 { unsafe { MaybeUninit::uninit().assume_init() };
return self.pending;
}
#[inline] for i in 0..MAX_SOFTIRQ_NUM {
#[allow(dead_code)] data[i as usize] = MaybeUninit::new(None);
pub fn get_softirq_running(&self) -> u64 { }
return self.running;
}
#[inline] let data: [Option<Arc<dyn SoftirqVec>>; MAX_SOFTIRQ_NUM as usize] = unsafe {
pub fn set_softirq_pending(&mut self, softirq_num: u32) { mem::transmute::<_, [Option<Arc<dyn SoftirqVec>>; MAX_SOFTIRQ_NUM as usize]>(data)
self.pending |= 1 << softirq_num; };
}
#[inline] return Softirq {
pub fn set_softirq_running(&mut self, softirq_num: u32) { table: RwLock::new(data),
self.running |= 1 << softirq_num; };
}
#[inline]
pub fn clear_softirq_running(&mut self, softirq_num: u32) {
self.running &= !(1 << softirq_num);
}
/// @brief 清除软中断pending标志位
#[inline]
pub fn clear_softirq_pending(&mut self, softirq_num: u32) {
self.pending &= !(1 << softirq_num);
}
/// @brief 判断对应running标志位是否为0
/// @return true: 标志位为1; false: 标志位为0
#[inline]
pub fn is_running(&mut self, softirq_num: u32) -> bool {
return (self.running & (1 << softirq_num)).ne(&0);
}
/// @brief 判断对应pending标志位是否为0
/// @return true: 标志位为1; false: 标志位为0
#[inline]
pub fn is_pending(&mut self, softirq_num: u32) -> bool {
return (self.pending & (1 << softirq_num)).ne(&0);
} }
/// @brief 注册软中断向量 /// @brief 注册软中断向量
/// @param irq_num 中断向量号码 ///
/// @param action 中断函数的入口地址 /// @param softirq_num 中断向量号
/// @param data 中断函数的操作数据 ///
/// @param hanlder 中断函数对应的结构体
pub fn register_softirq( pub fn register_softirq(
&mut self, &self,
irq_num: u32, softirq_num: SoftirqNumber,
action: Option<unsafe extern "C" fn(data: *mut ::core::ffi::c_void)>, handler: Arc<dyn SoftirqVec>,
data: *mut c_void, ) -> Result<i32, SystemError> {
) -> Result<(), SystemError> { // kdebug!("register_softirq softirq_num = {:?}", softirq_num as u64);
if self.table[irq_num as usize].action.is_some() {
return Err(SystemError::EEXIST);
}
if unsafe { verify_area(action.unwrap() as u64, 1) } { // let self = &mut SOFTIRQ_VECTORS.lock();
return Err(SystemError::EPERM); // 判断该软中断向量是否已经被注册
let mut table_guard = self.table.write();
if table_guard[softirq_num as usize].is_some() {
// kdebug!("register_softirq failed");
return Err(SystemError::EINVAL);
} }
self.modify_lock.lock(); table_guard[softirq_num as usize] = Some(handler);
self.table[irq_num as usize].action = action; drop(table_guard);
self.table[irq_num as usize].data = data;
self.modify_lock.unlock(); // kdebug!(
return Ok(()); // "register_softirq successfully, softirq_num = {:?}",
// softirq_num as u64
// );
compiler_fence(Ordering::SeqCst);
return Ok(0);
} }
/// @brief 解注册软中断向量 /// @brief 解注册软中断向量
/// @param irq_num 中断向量号码 ///
pub fn unregister_softirq(&mut self, irq_num: u32) -> Result<(), SystemError> { /// @param irq_num 中断向量号码
for _trial_time in 0..MAX_LOCK_TRIAL_TIME { pub fn unregister_softirq(&self, softirq_num: SoftirqNumber) {
if self.is_running(irq_num) { // kdebug!("unregister_softirq softirq_num = {:?}", softirq_num as u64);
continue; //running标志位为1 let table_guard = &mut self.table.write();
} // 将软中断向量清空
if self.modify_lock.try_lock() { table_guard[softirq_num as usize] = None;
if self.is_running(irq_num) { drop(table_guard);
self.modify_lock.unlock(); // 将对应位置的pending和runing都置0
continue; // self.running.lock().set(VecStatus::from(softirq_num), false);
// 将对应CPU的pending置0
compiler_fence(Ordering::SeqCst);
cpu_pending(smp_get_processor_id() as usize).set(VecStatus::from(softirq_num), false);
compiler_fence(Ordering::SeqCst);
}
pub fn do_softirq(&self) {
// TODO pcb的flags未修改
// todo: 是否需要判断在当前cpu上面该函数的嵌套层数防止爆栈
let end = clock() + 500 * 2;
let cpu_id = smp_get_processor_id();
let mut max_restart = MAX_SOFTIRQ_RESTART;
loop {
compiler_fence(Ordering::SeqCst);
let pending = cpu_pending(cpu_id as usize).bits;
cpu_pending(cpu_id as usize).bits = 0;
compiler_fence(Ordering::SeqCst);
sti();
if pending != 0 {
for i in 0..MAX_SOFTIRQ_NUM {
if pending & (1 << i) == 0 {
continue;
}
let table_guard = self.table.read();
let softirq_func = table_guard[i as usize].clone();
drop(table_guard);
if softirq_func.is_none() {
continue;
}
let prev_count = current_pcb().preempt_count;
softirq_func.as_ref().unwrap().run();
if unlikely(prev_count != current_pcb().preempt_count) {
kdebug!(
"entered softirq {:?} with preempt_count {:?},exited with {:?}",
i,
prev_count,
current_pcb().preempt_count
);
current_pcb().preempt_count = prev_count;
}
} }
}
cli();
max_restart -= 1;
compiler_fence(Ordering::SeqCst);
if cpu_pending(cpu_id as usize).is_empty() {
compiler_fence(Ordering::SeqCst);
if clock() < end && max_restart > 0 {
continue;
} else {
break;
}
} else {
// TODO当有softirqd时 唤醒它
break; break;
} }
} }
// 存在尝试加锁规定次数后仍加锁失败的情况,报告错误并退出
if !self.modify_lock.is_locked() {
return Err(SystemError::EBUSY);
}
kdebug!("SOftirq: unregister {irq_num}");
self.clear_softirq_running(irq_num);
self.clear_softirq_pending(irq_num);
self.table[irq_num as usize].action = None;
self.table[irq_num as usize].data = null_mut();
self.modify_lock.unlock();
return Ok(());
} }
/// @brief 遍历执行软中断 pub fn raise_softirq(&self, softirq_num: SoftirqNumber) {
pub fn do_softirq(&mut self) { let mut flags = 0;
sti(); local_irq_save(&mut flags);
let mut softirq_index: u32 = 0; //软中断向量号码 let processor_id = smp_get_processor_id() as usize;
while (softirq_index as u64) < MAX_SOFTIRQ_NUM && self.pending != 0 {
if self.is_pending(softirq_index) cpu_pending(processor_id).insert(VecStatus::from(softirq_num));
&& self.table[softirq_index as usize].action.is_some()
&& !self.is_running(softirq_index) compiler_fence(Ordering::SeqCst);
{
if self.modify_lock.try_lock() { local_irq_restore(&flags);
if self.is_running(softirq_index) // kdebug!("raise_softirq exited");
|| self.table[softirq_index as usize].action.is_none() }
{ pub fn clear_softirq_pending(&self, softirq_num: SoftirqNumber) {
self.modify_lock.unlock(); compiler_fence(Ordering::SeqCst);
continue; cpu_pending(smp_get_processor_id() as usize).remove(VecStatus::from(softirq_num));
} compiler_fence(Ordering::SeqCst);
self.clear_softirq_pending(softirq_index);
self.set_softirq_running(softirq_index);
self.modify_lock.unlock();
unsafe {
(self.table[softirq_index as usize].action.unwrap())(
self.table[softirq_index as usize].data,
);
}
self.clear_softirq_running(softirq_index);
}
}
softirq_index += 1;
}
cli();
} }
} }
// ======= 以下为给C提供的接口 =======
#[no_mangle]
pub extern "C" fn rs_raise_softirq(softirq_num: u32) {
softirq_vectors().raise_softirq(SoftirqNumber::from(softirq_num as u64));
}
#[no_mangle]
pub extern "C" fn rs_unregister_softirq(softirq_num: u32) {
softirq_vectors().unregister_softirq(SoftirqNumber::from(softirq_num as u64));
}
#[no_mangle]
pub extern "C" fn rs_do_softirq() {
softirq_vectors().do_softirq();
}
#[no_mangle]
pub extern "C" fn rs_clear_softirq_pending(softirq_num: u32) {
softirq_vectors().clear_softirq_pending(SoftirqNumber::from(softirq_num as u64));
}

View File

@ -32,6 +32,7 @@
#include <driver/disk/ahci/ahci.h> #include <driver/disk/ahci/ahci.h>
#include <driver/disk/ahci/ahci_rust.h> #include <driver/disk/ahci/ahci_rust.h>
#include <driver/pci/pci.h> #include <driver/pci/pci.h>
#include <driver/video/video.h>
#include <driver/virtio/virtio.h> #include <driver/virtio/virtio.h>
#include <include/DragonOS/refcount.h> #include <include/DragonOS/refcount.h>
#include <include/DragonOS/signal.h> #include <include/DragonOS/signal.h>
@ -43,4 +44,4 @@
#include <process/process.h> #include <process/process.h>
#include <sched/sched.h> #include <sched/sched.h>
#include <smp/smp.h> #include <smp/smp.h>
#include <time/sleep.h> #include <time/sleep.h>

View File

@ -54,7 +54,7 @@ static long ktest_mutex_case1(uint64_t arg0, uint64_t arg1)
// 启动另一个线程 // 启动另一个线程
pid_t pid = kernel_thread(ktest_mutex_case1_pid1, 0, 0); pid_t pid = kernel_thread(ktest_mutex_case1_pid1, 0, 0);
// 等待100ms // 等待100ms
usleep(100000); rs_usleep(100000);
while (list_empty(&mtx.wait_list)) while (list_empty(&mtx.wait_list))
; ;

View File

@ -45,6 +45,9 @@ extern crate num_derive;
extern crate smoltcp; extern crate smoltcp;
extern crate thingbuf; extern crate thingbuf;
#[cfg(target_arch = "x86_64")]
extern crate x86;
use mm::allocator::KernelAllocator; use mm::allocator::KernelAllocator;
// <3> // <3>

View File

@ -9,6 +9,7 @@ use crate::arch::asm::irqflags::{local_irq_restore, local_irq_save};
use crate::arch::interrupt::{cli, sti}; use crate::arch::interrupt::{cli, sti};
use crate::include::bindings::bindings::{spin_lock, spin_unlock, spinlock_t}; use crate::include::bindings::bindings::{spin_lock, spin_unlock, spinlock_t};
use crate::process::preempt::{preempt_disable, preempt_enable}; use crate::process::preempt::{preempt_disable, preempt_enable};
use crate::syscall::SystemError;
/// @brief 保存中断状态到flags中关闭中断并对自旋锁加锁 /// @brief 保存中断状态到flags中关闭中断并对自旋锁加锁
#[inline] #[inline]
@ -138,6 +139,19 @@ impl RawSpinlock {
self.unlock(); self.unlock();
local_irq_restore(flags); local_irq_restore(flags);
} }
/// @brief 尝试保存中断状态到flags中关闭中断并对自旋锁加锁
/// @return 加锁成功->true
/// 加锁失败->false
#[inline(always)]
pub fn try_lock_irqsave(&self, flags: &mut u64) -> bool {
local_irq_save(flags);
if self.try_lock() {
return true;
}
local_irq_restore(flags);
return false;
}
} }
/// 实现了守卫的SpinLock, 能够支持内部可变性 /// 实现了守卫的SpinLock, 能够支持内部可变性
/// ///
@ -154,6 +168,7 @@ pub struct SpinLock<T> {
#[derive(Debug)] #[derive(Debug)]
pub struct SpinLockGuard<'a, T: 'a> { pub struct SpinLockGuard<'a, T: 'a> {
lock: &'a SpinLock<T>, lock: &'a SpinLock<T>,
flag: u64,
} }
/// 向编译器保证SpinLock在线程之间是安全的. /// 向编译器保证SpinLock在线程之间是安全的.
@ -172,7 +187,41 @@ impl<T> SpinLock<T> {
pub fn lock(&self) -> SpinLockGuard<T> { pub fn lock(&self) -> SpinLockGuard<T> {
self.lock.lock(); self.lock.lock();
// 加锁成功,返回一个守卫 // 加锁成功,返回一个守卫
return SpinLockGuard { lock: self }; return SpinLockGuard {
lock: self,
flag: 0,
};
}
pub fn lock_irqsave(&self) -> SpinLockGuard<T> {
let mut flags: u64 = 0;
self.lock.lock_irqsave(&mut flags);
// 加锁成功,返回一个守卫
return SpinLockGuard {
lock: self,
flag: flags,
};
}
pub fn try_lock(&self) -> Result<SpinLockGuard<T>, SystemError> {
if self.lock.try_lock() {
return Ok(SpinLockGuard {
lock: self,
flag: 0,
});
}
return Err(SystemError::EAGAIN);
}
pub fn try_lock_irqsave(&self) -> Result<SpinLockGuard<T>, SystemError> {
let mut flags: u64 = 0;
if self.lock.try_lock_irqsave(&mut flags) {
return Ok(SpinLockGuard {
lock: self,
flag: flags,
});
}
return Err(SystemError::EAGAIN);
} }
} }

View File

@ -37,6 +37,7 @@
#include <driver/interrupt/apic/apic_timer.h> #include <driver/interrupt/apic/apic_timer.h>
extern int rs_tty_init(); extern int rs_tty_init();
extern void rs_softirq_init();
ul bsp_idt_size, bsp_gdt_size; ul bsp_idt_size, bsp_gdt_size;
@ -118,7 +119,8 @@ void system_initialize()
sched_init(); sched_init();
irq_init(); irq_init();
softirq_init(); // softirq_init();
rs_softirq_init();
current_pcb->cpu_id = 0; current_pcb->cpu_id = 0;
current_pcb->preempt_count = 0; current_pcb->preempt_count = 0;
@ -130,7 +132,7 @@ void system_initialize()
// sched_init(); // sched_init();
io_mfence(); io_mfence();
timer_init(); rs_timer_init();
// 这里必须加内存屏障,否则会出错 // 这里必须加内存屏障,否则会出错
io_mfence(); io_mfence();
smp_init(); smp_init();

View File

@ -1,4 +1,4 @@
use crate::include::bindings::bindings::PAGE_OFFSET; use crate::include::bindings::bindings::{PAGE_OFFSET, process_control_block, mm_struct};
pub mod allocator; pub mod allocator;
pub mod gfp; pub mod gfp;
@ -15,3 +15,11 @@ pub fn virt_2_phys(addr: usize) -> usize {
pub fn phys_2_virt(addr: usize) -> usize { pub fn phys_2_virt(addr: usize) -> usize {
addr + PAGE_OFFSET as usize addr + PAGE_OFFSET as usize
} }
// ====== 重构内存管理后请删除18-24行 ======
//BUG pcb问题
unsafe impl Send for process_control_block {}
unsafe impl Sync for process_control_block {}
unsafe impl Send for mm_struct {}
unsafe impl Sync for mm_struct {}

View File

@ -275,7 +275,7 @@ int kthread_stop(struct process_control_block *pcb)
// 等待指定的内核线程退出 // 等待指定的内核线程退出
// todo: 使用completion机制改进这里 // todo: 使用completion机制改进这里
while (target->exited == false) while (target->exited == false)
usleep(5000); rs_usleep(5000);
retval = target->result; retval = target->result;
// 释放内核线程的页表 // 释放内核线程的页表

View File

@ -92,7 +92,7 @@ static long __wait_for_common(struct completion *x, long (*action)(long), long t
void wait_for_completion(struct completion *x) void wait_for_completion(struct completion *x)
{ {
spin_lock(&x->wait_queue.lock); spin_lock(&x->wait_queue.lock);
__wait_for_common(x, &schedule_timeout_ms, MAX_TIMEOUT, PROC_UNINTERRUPTIBLE); __wait_for_common(x, &rs_schedule_timeout, MAX_TIMEOUT, PROC_UNINTERRUPTIBLE);
spin_unlock(&x->wait_queue.lock); spin_unlock(&x->wait_queue.lock);
} }
@ -107,7 +107,7 @@ long wait_for_completion_timeout(struct completion *x, long timeout)
{ {
BUG_ON(timeout < 0); BUG_ON(timeout < 0);
spin_lock(&x->wait_queue.lock); spin_lock(&x->wait_queue.lock);
timeout = __wait_for_common(x, &schedule_timeout_ms, timeout, PROC_UNINTERRUPTIBLE); timeout = __wait_for_common(x, &rs_schedule_timeout, timeout, PROC_UNINTERRUPTIBLE);
spin_unlock(&x->wait_queue.lock); spin_unlock(&x->wait_queue.lock);
return timeout; return timeout;
} }
@ -120,7 +120,7 @@ long wait_for_completion_timeout(struct completion *x, long timeout)
void wait_for_completion_interruptible(struct completion *x) void wait_for_completion_interruptible(struct completion *x)
{ {
spin_lock(&x->wait_queue.lock); spin_lock(&x->wait_queue.lock);
__wait_for_common(x, &schedule_timeout_ms, MAX_TIMEOUT, PROC_INTERRUPTIBLE); __wait_for_common(x, &rs_schedule_timeout, MAX_TIMEOUT, PROC_INTERRUPTIBLE);
spin_unlock(&x->wait_queue.lock); spin_unlock(&x->wait_queue.lock);
} }
@ -136,7 +136,7 @@ long wait_for_completion_interruptible_timeout(struct completion *x, long timeou
BUG_ON(timeout < 0); BUG_ON(timeout < 0);
spin_lock(&x->wait_queue.lock); spin_lock(&x->wait_queue.lock);
timeout = __wait_for_common(x, &schedule_timeout_ms, timeout, PROC_INTERRUPTIBLE); timeout = __wait_for_common(x, &rs_schedule_timeout, timeout, PROC_INTERRUPTIBLE);
spin_unlock(&x->wait_queue.lock); spin_unlock(&x->wait_queue.lock);
return timeout; return timeout;
} }
@ -257,7 +257,7 @@ int __test_completion_worker(void *input_data)
wait_for_completion(data->one_to_many); wait_for_completion(data->one_to_many);
} }
schedule_timeout_ms(50); rs_schedule_timeout(50);
// for(uint64_t i=0;i<1e7;++i) // for(uint64_t i=0;i<1e7;++i)
// pause(); // pause();
complete(data->one_to_one); complete(data->one_to_one);

View File

@ -1,7 +1,7 @@
/// @brief 获取当前的cpu id /// @brief 获取当前的cpu id
#[inline] #[inline]
pub fn smp_get_processor_id() -> u32 { pub fn smp_get_processor_id() -> u32 {
return crate::arch::cpu::current_cpu_id() as u32; return crate::arch::cpu::current_cpu_id();
} }
#[inline] #[inline]

View File

@ -378,7 +378,7 @@ uint64_t sys_nanosleep(struct pt_regs *regs)
const struct timespec *rqtp = (const struct timespec *)regs->r8; const struct timespec *rqtp = (const struct timespec *)regs->r8;
struct timespec *rmtp = (struct timespec *)regs->r9; struct timespec *rmtp = (struct timespec *)regs->r9;
return nanosleep(rqtp, rmtp); return rs_nanosleep(rqtp, rmtp);
} }
ul sys_ahci_end_req(struct pt_regs *regs) ul sys_ahci_end_req(struct pt_regs *regs)

View File

@ -1,13 +0,0 @@
all: timer.o sleep.o
CFLAGS += -I .
timer.o: timer.c
$(CC) $(CFLAGS) -c timer.c -o timer.o
sleep.o: sleep.c
$(CC) $(CFLAGS) -c sleep.c -o sleep.o
clean:
echo "Done."

View File

@ -1,4 +1,6 @@
pub mod sleep;
pub mod timekeep; pub mod timekeep;
pub mod timer;
/// 表示时间的结构体 /// 表示时间的结构体
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)] #[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
@ -14,4 +16,4 @@ impl TimeSpec {
tv_nsec: nsec, tv_nsec: nsec,
}; };
} }
} }

View File

@ -1,86 +0,0 @@
#include "sleep.h"
#include <common/errno.h>
#include <time/timer.h>
#include <process/process.h>
#include <sched/sched.h>
#include <mm/slab.h>
#include <common/cpu.h>
#include <common/glib.h>
/**
* @brief nanosleep定时事件到期后
*
* @param pcb pcb
*/
void nanosleep_handler(void *pcb)
{
process_wakeup((struct process_control_block *)pcb);
}
/**
* @brief
*
* @param rqtp
* @param rmtp
* @return int
*/
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
{
if (rqtp->tv_nsec < 0 || rqtp->tv_nsec >= 1000000000)
return -EINVAL;
// 对于小于500us的时间使用spin/rdtsc来进行定时
if (rqtp->tv_nsec < 500000)
{
uint64_t expired_tsc = rdtsc() + (((uint64_t)rqtp->tv_nsec) * Cpu_tsc_freq) / 1000000000;
while (rdtsc() < expired_tsc)
;
if (rmtp != NULL)
{
rmtp->tv_nsec = 0;
rmtp->tv_sec = 0;
}
return 0;
}
// 增加定时任务
struct timer_func_list_t *sleep_task = (struct timer_func_list_t *)kmalloc(sizeof(struct timer_func_list_t), 0);
memset(sleep_task, 0, sizeof(struct timer_func_list_t));
timer_func_init_us(sleep_task, &nanosleep_handler, (void *)current_pcb, rqtp->tv_nsec / 1000);
timer_func_add(sleep_task);
current_pcb->state = PROC_INTERRUPTIBLE;
current_pcb->flags |= PF_NEED_SCHED;
sched();
// todo: 增加信号唤醒的功能后设置rmtp
if (rmtp != NULL)
{
rmtp->tv_nsec = 0;
rmtp->tv_sec = 0;
}
return 0;
}
/**
* @brief
*
* @param usec
* @return int
*/
int usleep(useconds_t usec)
{
struct timespec ts = {
tv_sec : (long int)(usec / 1000000),
tv_nsec : (long int)(usec % 1000000) * 1000UL
};
return nanosleep(&ts, NULL);
}

View File

@ -12,7 +12,7 @@
* @param rmtp * @param rmtp
* @return int * @return int
*/ */
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp); int rs_nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
/** /**
* @brief * @brief
@ -20,4 +20,4 @@ int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
* @param usec * @param usec
* @return int * @return int
*/ */
int usleep(useconds_t usec); int rs_usleep(useconds_t usec);

139
kernel/src/time/sleep.rs Normal file
View File

@ -0,0 +1,139 @@
use core::{arch::x86_64::_rdtsc, hint::spin_loop, ptr::null_mut};
use alloc::{boxed::Box, sync::Arc};
use crate::{
arch::{
asm::current::current_pcb,
interrupt::{cli, sti},
sched::sched,
},
include::bindings::bindings::{timespec, useconds_t, Cpu_tsc_freq},
syscall::SystemError,
};
use super::{
timer::{next_n_us_timer_jiffies, Timer, WakeUpHelper},
TimeSpec,
};
/// @brief 休眠指定时间(单位:纳秒)
///
/// @param sleep_time 指定休眠的时间
///
/// @return Ok(TimeSpec) 剩余休眠时间
///
/// @return Err(SystemError) 错误码
pub fn nano_sleep(sleep_time: TimeSpec) -> Result<TimeSpec, SystemError> {
if sleep_time.tv_nsec < 0 || sleep_time.tv_nsec >= 1000000000 {
return Err(SystemError::EINVAL);
}
// 对于小于500us的时间使用spin/rdtsc来进行定时
if sleep_time.tv_nsec < 500000 {
let expired_tsc: u64 =
unsafe { _rdtsc() + (sleep_time.tv_nsec as u64 * Cpu_tsc_freq) / 1000000000 };
while unsafe { _rdtsc() } < expired_tsc {
spin_loop()
}
return Ok(TimeSpec {
tv_sec: 0,
tv_nsec: 0,
});
}
// 创建定时器
let handler: Box<WakeUpHelper> = WakeUpHelper::new(current_pcb());
let timer: Arc<Timer> = Timer::new(
handler,
next_n_us_timer_jiffies((sleep_time.tv_nsec / 1000) as u64),
);
cli();
timer.activate();
unsafe {
current_pcb().mark_sleep_interruptible();
}
sti();
sched();
// TODO: 增加信号唤醒的功能后,返回正确的剩余时间
return Ok(TimeSpec {
tv_sec: 0,
tv_nsec: 0,
});
}
/// @brief 休眠指定时间(单位:微秒)
///
/// @param usec 微秒
///
/// @return Ok(TimeSpec) 剩余休眠时间
///
/// @return Err(SystemError) 错误码
pub fn us_sleep(sleep_time: TimeSpec) -> Result<TimeSpec, SystemError> {
match nano_sleep(sleep_time) {
Ok(value) => return Ok(value),
Err(err) => return Err(err),
};
}
//===== 以下为提供给C的接口 =====
/// @brief 休眠指定时间单位纳秒提供给C的接口
///
/// @param sleep_time 指定休眠的时间
///
/// @param rm_time 剩余休眠时间(传出参数)
///
/// @return Ok(i32) 0
///
/// @return Err(SystemError) 错误码
#[no_mangle]
pub extern "C" fn rs_nanosleep(sleep_time: *const timespec, rm_time: *mut timespec) -> i32 {
if sleep_time == null_mut() {
return SystemError::EINVAL.to_posix_errno();
}
let slt_spec = TimeSpec {
tv_sec: unsafe { *sleep_time }.tv_sec,
tv_nsec: unsafe { *sleep_time }.tv_nsec,
};
match nano_sleep(slt_spec) {
Ok(value) => {
if rm_time != null_mut() {
unsafe { *rm_time }.tv_sec = value.tv_sec;
unsafe { *rm_time }.tv_nsec = value.tv_nsec;
}
return 0;
}
Err(err) => {
return err.to_posix_errno();
}
}
}
/// @brief 休眠指定时间单位微秒提供给C的接口
///
/// @param usec 微秒
///
/// @return Ok(i32) 0
///
/// @return Err(SystemError) 错误码
#[no_mangle]
pub extern "C" fn rs_usleep(usec: useconds_t) -> i32 {
let sleep_time = TimeSpec {
tv_sec: (usec / 1000000) as i64,
tv_nsec: ((usec % 1000000) * 1000) as i64,
};
match us_sleep(sleep_time) {
Ok(_) => {
return 0;
}
Err(err) => {
return err.to_posix_errno();
}
};
}

View File

@ -1,178 +0,0 @@
#include "timer.h"
#include <common/kprint.h>
#include <driver/timers/HPET/HPET.h>
#include <exception/softirq.h>
#include <mm/slab.h>
#include <process/process.h>
#include <sched/sched.h>
struct timer_func_list_t timer_func_head;
static spinlock_t sched_lock;
// 定时器循环阈值每次最大执行20个定时器任务
#define TIMER_RUN_CYCLE_THRESHOLD 20
void test_timer()
{
printk_color(ORANGE, BLACK, "(test_timer)");
}
void timer_init()
{
spin_init(&sched_lock);
timer_jiffies = 0;
timer_func_init(&timer_func_head, NULL, NULL, -1UL);
register_softirq(TIMER_SIRQ, &do_timer_softirq, NULL);
struct timer_func_list_t *tmp = (struct timer_func_list_t *)kmalloc(sizeof(struct timer_func_list_t), 0);
timer_func_init(tmp, &test_timer, NULL, 5);
timer_func_add(tmp);
kdebug("timer func initialized.");
}
/**
* @brief
*
* @param data
*/
void do_timer_softirq(void *data)
{
// todo: 修改这里以及 softirq 的部分,使得 timer 具有并行性
struct timer_func_list_t *tmp = container_of(list_next(&timer_func_head.list), struct timer_func_list_t, list);
int cycle_count = 0;
while ((!list_empty(&timer_func_head.list)) && (tmp->expire_jiffies <= timer_jiffies))
{
spin_lock(&sched_lock);
timer_func_del(tmp);
tmp->func(tmp->data);
kfree(tmp);
spin_unlock(&sched_lock);
++cycle_count;
// kdebug("SOLVE SOFT IRQ %d", cycle_count);
// 当前定时器达到阈值
if (cycle_count == TIMER_RUN_CYCLE_THRESHOLD)
break;
tmp = container_of(list_next(&timer_func_head.list), struct timer_func_list_t, list);
}
}
/**
* @brief
*
* @param timer_func
* @param func
* @param data
* @param expire_ms (ms)
*/
void timer_func_init(struct timer_func_list_t *timer_func, void (*func)(void *data), void *data, uint64_t expire_ms)
{
list_init(&timer_func->list);
timer_func->func = func;
timer_func->data = data;
timer_func->expire_jiffies = cal_next_n_ms_jiffies(expire_ms); // 设置过期的时间片
}
/**
* @brief
*
* @param timer_func
* @param func
* @param data
* @param expire_us (us)
*/
void timer_func_init_us(struct timer_func_list_t *timer_func, void (*func)(void *data), void *data, uint64_t expire_us)
{
list_init(&timer_func->list);
timer_func->func = func;
timer_func->data = data;
timer_func->expire_jiffies = cal_next_n_us_jiffies(expire_us); // 设置过期的时间片
// kdebug("timer_func->expire_jiffies=%ld",cal_next_n_us_jiffies(expire_us));
}
/**
* @brief
*
* @param timer_func
*/
void timer_func_add(struct timer_func_list_t *timer_func)
{
struct timer_func_list_t *tmp = container_of(list_next(&timer_func_head.list), struct timer_func_list_t, list);
if (list_empty(&timer_func_head.list) == false)
while (tmp->expire_jiffies < timer_func->expire_jiffies)
tmp = container_of(list_next(&tmp->list), struct timer_func_list_t, list);
list_add(&tmp->list, &(timer_func->list));
}
/**
* @brief
*
* @param timer_func
*/
void timer_func_del(struct timer_func_list_t *timer_func)
{
list_del(&timer_func->list);
}
uint64_t sys_clock(struct pt_regs *regs)
{
return timer_jiffies;
}
uint64_t clock()
{
return timer_jiffies;
}
/**
* @brief schedule_timeout函数中, pcb ()
*
* @param pcb process_control_block
*/
static void __wake_up_helper(void *pcb)
{
BUG_ON(pcb == NULL);
BUG_ON(process_wakeup((struct process_control_block *)pcb) != 0); // 正常唤醒,返回值为0
}
/**
* @brief timeout的时间之后唤醒进程/线
*
* @param timeout
* @return long
*/
long schedule_timeout_ms(long timeout)
{
if (timeout == MAX_TIMEOUT) // 无期停止, 意味着不会调用func
{
sched();
return MAX_TIMEOUT;
}
else if (timeout < 0)
{
BUG_ON(1);
return 0;
}
spin_lock(&sched_lock);
struct timer_func_list_t timer={0};
timer_func_init(&timer, &__wake_up_helper, current_pcb, timeout);
timer_func_add(&timer);
current_pcb->state &= ~(PROC_RUNNING);
spin_unlock(&sched_lock);
sched();
timeout -= timer_jiffies;
return timeout < 0 ? 0 : timeout;
}

View File

@ -3,74 +3,12 @@
#include <common/glib.h> #include <common/glib.h>
#include <driver/timers/HPET/HPET.h> #include <driver/timers/HPET/HPET.h>
// 定义LONG_MAX为最大超时时间 - 允许负数 // 定义LONG_MAX为最大超时时间 - 允许负数
#define MAX_TIMEOUT (int64_t)((1ul << 63) - 1) #define MAX_TIMEOUT (int64_t)((1ul << 63) - 1)
uint64_t volatile timer_jiffies = 0; // 系统时钟计数 extern void rs_timer_init();
extern int64_t rs_timer_get_first_expire();
extern uint64_t rs_timer_next_n_ms_jiffies(uint64_t expire_ms);
extern int64_t rs_schedule_timeout(int64_t timeout);
// 计算接下来n毫秒对应的系统时间片 extern uint64_t rs_clock();
#define cal_next_n_ms_jiffies(expire_ms) (timer_jiffies + 1000 * (expire_ms))
// 计算接下来n微秒对应的系统时间片
#define cal_next_n_us_jiffies(expire_us) (timer_jiffies + (expire_us))
void timer_init();
void do_timer_softirq(void *data);
/**
* @brief
*
*/
struct timer_func_list_t
{
struct List list;
uint64_t expire_jiffies;
void (*func)(void *data);
void *data;
};
extern struct timer_func_list_t timer_func_head;
/**
* @brief
*
* @param timer_func
* @param func
* @param data
* @param expire_ms (ms)
*/
void timer_func_init(struct timer_func_list_t *timer_func, void (*func)(void *data), void *data, uint64_t expire_ms);
/**
* @brief
*
* @param timer_func
* @param func
* @param data
* @param expire_us (us)
*/
void timer_func_init_us(struct timer_func_list_t *timer_func, void (*func)(void *data), void *data, uint64_t expire_us);
/**
* @brief
*
* @param timer_func
*/
void timer_func_add(struct timer_func_list_t *timer_func);
/**
* @brief
*
* @param timer_func
*/
void timer_func_del(struct timer_func_list_t *timer_func);
uint64_t clock();
/**
* @brief timeout的时间之后唤醒进程/线
*
* @param timeout
* @return long
*/
long schedule_timeout_ms(long timeout);

303
kernel/src/time/timer.rs Normal file
View File

@ -0,0 +1,303 @@
use core::sync::atomic::{AtomicBool, Ordering};
use alloc::{
boxed::Box,
collections::LinkedList,
sync::{Arc, Weak},
};
use crate::{
arch::{
asm::current::current_pcb,
interrupt::{cli, sti},
sched::sched,
},
exception::softirq::{softirq_vectors, SoftirqNumber, SoftirqVec},
include::bindings::bindings::{process_control_block, process_wakeup, pt_regs, PROC_RUNNING},
kdebug, kerror,
libs::spinlock::SpinLock,
syscall::SystemError,
};
const MAX_TIMEOUT: i64 = i64::MAX;
const TIMER_RUN_CYCLE_THRESHOLD: usize = 20;
static mut TIMER_JIFFIES: u64 = 0;
lazy_static! {
pub static ref TIMER_LIST: SpinLock<LinkedList<Arc<Timer>>> = SpinLock::new(LinkedList::new());
}
/// 定时器要执行的函数的特征
pub trait TimerFunction: Send + Sync {
fn run(&mut self);
}
/// WakeUpHelper函数对应的结构体
pub struct WakeUpHelper {
pcb: &'static mut process_control_block,
}
impl WakeUpHelper {
pub fn new(pcb: &'static mut process_control_block) -> Box<WakeUpHelper> {
return Box::new(WakeUpHelper { pcb });
}
}
impl TimerFunction for WakeUpHelper {
fn run(&mut self) {
unsafe {
process_wakeup(self.pcb);
}
}
}
pub struct Timer(SpinLock<InnerTimer>);
impl Timer {
/// @brief 创建一个定时器单位ms
///
/// @param timer_func 定时器需要执行的函数对应的结构体
///
/// @param expire_jiffies 定时器结束时刻
///
/// @return 定时器结构体
pub fn new(timer_func: Box<dyn TimerFunction>, expire_jiffies: u64) -> Arc<Self> {
let result: Arc<Timer> = Arc::new(Timer(SpinLock::new(InnerTimer {
expire_jiffies,
timer_func,
self_ref: Weak::default(),
})));
result.0.lock().self_ref = Arc::downgrade(&result);
return result;
}
/// @brief 将定时器插入到定时器链表中
pub fn activate(&self) {
let timer_list = &mut TIMER_LIST.lock();
let inner_guard = self.0.lock();
// 链表为空,则直接插入
if timer_list.is_empty() {
// FIXME push_timer
timer_list.push_back(inner_guard.self_ref.upgrade().unwrap());
return;
}
let mut split_pos: usize = 0;
for (pos, elt) in timer_list.iter().enumerate() {
if elt.0.lock().expire_jiffies > inner_guard.expire_jiffies {
split_pos = pos;
break;
}
}
let mut temp_list: LinkedList<Arc<Timer>> = timer_list.split_off(split_pos);
timer_list.push_back(inner_guard.self_ref.upgrade().unwrap());
timer_list.append(&mut temp_list);
}
#[inline]
fn run(&self) {
self.0.lock().timer_func.run();
}
}
/// 定时器类型
pub struct InnerTimer {
/// 定时器结束时刻
pub expire_jiffies: u64,
/// 定时器需要执行的函数结构体
pub timer_func: Box<dyn TimerFunction>,
/// self_ref
self_ref: Weak<Timer>,
}
#[derive(Debug)]
pub struct DoTimerSoftirq {
running: AtomicBool,
}
impl DoTimerSoftirq {
pub fn new() -> Self {
return DoTimerSoftirq {
running: AtomicBool::new(false),
};
}
fn set_run(&self) -> bool {
let x = self
.running
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed);
if x.is_ok() {
return true;
} else {
return false;
}
}
fn clear_run(&self) {
self.running.store(false, Ordering::Release);
}
}
impl SoftirqVec for DoTimerSoftirq {
fn run(&self) {
if self.set_run() == false {
return;
}
// 最多只处理TIMER_RUN_CYCLE_THRESHOLD个计时器
for _ in 0..TIMER_RUN_CYCLE_THRESHOLD {
// kdebug!("DoTimerSoftirq run");
let timer_list = &mut TIMER_LIST.lock();
if timer_list.is_empty() {
break;
}
if timer_list.front().unwrap().0.lock().expire_jiffies
<= unsafe { TIMER_JIFFIES as u64 }
{
let timer = timer_list.pop_front().unwrap();
drop(timer_list);
timer.run();
}
}
self.clear_run();
}
}
/// @brief 初始化timer模块
pub fn timer_init() {
// FIXME 调用register_trap
let do_timer_softirq = Arc::new(DoTimerSoftirq::new());
softirq_vectors()
.register_softirq(SoftirqNumber::TIMER, do_timer_softirq)
.expect("Failed to register timer softirq");
kdebug!("timer initiated successfully");
}
/// 计算接下来n毫秒对应的定时器时间片
pub fn next_n_ms_timer_jiffies(expire_ms: u64) -> u64 {
return unsafe { TIMER_JIFFIES as u64 } + 1000 * (expire_ms);
}
/// 计算接下来n微秒对应的定时器时间片
pub fn next_n_us_timer_jiffies(expire_us: u64) -> u64 {
return unsafe { TIMER_JIFFIES as u64 } + (expire_us);
}
/// @brief 让pcb休眠timeout个jiffies
///
/// @param timeout 需要休眠的时间(单位jiffies)
///
/// @return Ok(i64) 剩余需要休眠的时间(单位jiffies)
///
/// @return Err(SystemError) 错误码
pub fn schedule_timeout(mut timeout: i64) -> Result<i64, SystemError> {
// kdebug!("schedule_timeout");
if timeout == MAX_TIMEOUT {
sched();
return Ok(MAX_TIMEOUT);
} else if timeout < 0 {
kerror!("timeout can't less than 0");
return Err(SystemError::EINVAL);
} else {
// 禁用中断,防止在这段期间发生调度,造成死锁
cli();
timeout += unsafe { TIMER_JIFFIES } as i64;
let timer = Timer::new(WakeUpHelper::new(current_pcb()), timeout as u64);
timer.activate();
current_pcb().state &= (!PROC_RUNNING) as u64;
sti();
sched();
let time_remaining: i64 = timeout - unsafe { TIMER_JIFFIES } as i64;
if time_remaining >= 0 {
// 被提前唤醒,返回剩余时间
return Ok(time_remaining);
} else {
return Ok(0);
}
}
}
pub fn timer_get_first_expire() -> Result<u64, SystemError> {
// FIXME
// kdebug!("rs_timer_get_first_expire,timer_jif = {:?}", TIMER_JIFFIES);
for _ in 0..10 {
match TIMER_LIST.try_lock() {
Ok(timer_list) => {
// kdebug!("rs_timer_get_first_expire TIMER_LIST lock successfully");
if timer_list.is_empty() {
// kdebug!("timer_list is empty");
return Ok(0);
} else {
// kdebug!("timer_list not empty");
return Ok(timer_list.front().unwrap().0.lock().expire_jiffies);
}
}
// 加锁失败返回啥??
Err(_) => continue,
}
}
return Err(SystemError::EAGAIN);
}
pub fn update_timer_jiffies(add_jiffies: u64) -> u64 {
unsafe { TIMER_JIFFIES += add_jiffies };
return unsafe { TIMER_JIFFIES };
}
pub fn clock() -> u64 {
return unsafe { TIMER_JIFFIES };
}
// ====== 重构完成后请删掉extern C ======
#[no_mangle]
pub extern "C" fn rs_clock() -> u64 {
clock()
}
#[no_mangle]
pub extern "C" fn sys_clock(_regs: *const pt_regs) -> u64 {
clock()
}
// ====== 以下为给C提供的接口 ======
#[no_mangle]
pub extern "C" fn rs_schedule_timeout(timeout: i64) -> i64 {
match schedule_timeout(timeout) {
Ok(v) => {
return v;
}
Err(e) => {
kdebug!("rs_schedule_timeout run failed");
return e.to_posix_errno() as i64;
}
}
}
#[no_mangle]
pub extern "C" fn rs_timer_init() {
timer_init();
}
#[no_mangle]
pub extern "C" fn rs_timer_next_n_ms_jiffies(expire_ms: u64) -> u64 {
return next_n_ms_timer_jiffies(expire_ms);
}
#[no_mangle]
pub extern "C" fn rs_timer_next_n_us_jiffies(expire_us: u64) -> u64 {
return next_n_us_timer_jiffies(expire_us);
}
#[no_mangle]
pub extern "C" fn rs_timer_get_first_expire() -> i64 {
match timer_get_first_expire() {
Ok(v) => return v as i64,
Err(e) => return e.to_posix_errno() as i64,
}
}
#[no_mangle]
pub extern "C" fn rs_update_timer_jiffies(add_jiffies: u64) -> u64 {
return update_timer_jiffies(add_jiffies);
}

View File

@ -1,5 +1,4 @@
#include "sys_version.h" // 这是系统的版本头文件,在编译过程中自动生成 #include "sys_version.h" // 这是系统的版本头文件,在编译过程中自动生成
#include <fcntl.h>
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>