新增系统调用,并对照linux-6.1.9改写sys_wait4 (#440)

* 1. 新增以下系统调用
            - SYS_LSTAT
            - SYS_READV
            - SYS_ACCESS
            - SYS_UNLINK
            - SYS_CHMOD
            - SYS_FCHMOD
            - SYS_UMASK
            - SYS_SYSINFO
            - SYS_CLOCK_GETTIME
            - SYS_FCHMODAT
            - SYS_FACCESSAT

2. 修改sys_wait4,使得其部分符合Linux的行为(还是有些地方不符合的,详情请对比linux-6.1.9的sys_wait4接口)
This commit is contained in:
LoGin
2023-11-13 23:02:21 +08:00
committed by GitHub
parent 9b0abe6da7
commit bf4a48994a
19 changed files with 735 additions and 167 deletions

253
kernel/src/process/exit.rs Normal file
View File

@ -0,0 +1,253 @@
use core::intrinsics::likely;
use alloc::sync::Arc;
use crate::{
arch::{
ipc::signal::{SigChildCode, Signal},
sched::sched,
CurrentIrqArch,
},
exception::InterruptArch,
syscall::{user_access::UserBufferWriter, SystemError},
};
use super::{
abi::WaitOption, pid::PidType, resource::RUsage, Pid, ProcessControlBlock, ProcessManager,
ProcessState,
};
/// 内核wait4时的参数
#[derive(Debug)]
pub struct KernelWaitOption<'a> {
pub pid_type: PidType,
pub pid: Pid,
pub options: WaitOption,
pub ret_status: i32,
pub ret_info: Option<WaitIdInfo>,
pub ret_rusage: Option<&'a mut RUsage>,
pub no_task_error: Option<SystemError>,
}
#[derive(Debug, Clone)]
pub struct WaitIdInfo {
pub pid: Pid,
pub status: i32,
pub cause: i32,
}
impl<'a> KernelWaitOption<'a> {
pub fn new(pid_type: PidType, pid: Pid, options: WaitOption) -> Self {
Self {
pid_type,
pid,
options,
ret_status: 0,
ret_info: None,
ret_rusage: None,
no_task_error: None,
}
}
}
pub fn kernel_wait4(
mut pid: i64,
wstatus_buf: Option<UserBufferWriter<'_>>,
options: WaitOption,
rusage_buf: Option<&mut RUsage>,
) -> Result<usize, SystemError> {
// i64::MIN is not defined
if pid == i64::MIN {
return Err(SystemError::ESRCH);
}
// 判断pid类型
let pidtype: PidType;
if pid == -1 {
pidtype = PidType::MAX;
} else if pid < 0 {
pidtype = PidType::PGID;
kwarn!("kernel_wait4: currently not support pgid, default to wait for pid\n");
pid = -pid;
} else if pid == 0 {
pidtype = PidType::PGID;
kwarn!("kernel_wait4: currently not support pgid, default to wait for pid\n");
pid = ProcessManager::current_pcb().pid().data() as i64;
} else {
pidtype = PidType::PID;
}
let pid = Pid(pid as usize);
// 构造参数
let mut kwo = KernelWaitOption::new(pidtype, pid, options);
kwo.options.insert(WaitOption::WEXITED);
kwo.ret_rusage = rusage_buf;
// 调用do_wait执行等待
let r = do_wait(&mut kwo)?;
// 如果有wstatus_buf则将wstatus写入用户空间
if let Some(mut wstatus_buf) = wstatus_buf {
let wstatus = if let Some(ret_info) = &kwo.ret_info {
ret_info.status
} else {
kwo.ret_status
};
wstatus_buf.copy_one_to_user(&wstatus, 0)?;
}
return Ok(r);
}
/// 参考 https://opengrok.ringotek.cn/xref/linux-6.1.9/kernel/exit.c#1573
fn do_wait(kwo: &mut KernelWaitOption) -> Result<usize, SystemError> {
let mut retval: Result<usize, SystemError>;
// todo: 在signal struct里面增加等待队列并在这里初始化子进程退出的回调使得子进程退出时能唤醒当前进程。
loop {
kwo.no_task_error = Some(SystemError::ECHILD);
let child_pcb = ProcessManager::find(kwo.pid).ok_or(SystemError::ECHILD);
if kwo.pid_type != PidType::MAX && child_pcb.is_err() {
if let Some(err) = &kwo.no_task_error {
retval = Err(err.clone());
} else {
retval = Ok(0);
}
if !kwo.options.contains(WaitOption::WNOHANG) {
retval = Err(SystemError::ERESTARTSYS);
if ProcessManager::current_pcb()
.sig_info_irqsave()
.sig_pending()
.has_pending()
== false
{
// todo: 增加子进程退出的回调后这里可以直接等待在自身的child_wait等待队列上。
continue;
} else {
break;
}
} else {
break;
}
}
if kwo.pid_type == PidType::PID {
let child_pcb = child_pcb.unwrap();
// 获取weak引用以便于在do_waitpid中能正常drop pcb
let child_weak = Arc::downgrade(&child_pcb);
let r = do_waitpid(child_pcb, kwo);
if r.is_some() {
return r.unwrap();
} else {
child_weak.upgrade().unwrap().wait_queue.sleep();
}
} else if kwo.pid_type == PidType::MAX {
// 等待任意子进程
// todo: 这里有问题如果正在for循环的过程中子进程退出了可能会导致父进程永远等待。
let current_pcb = ProcessManager::current_pcb();
let rd_childen = current_pcb.children.read();
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
for pid in rd_childen.iter() {
let pcb = ProcessManager::find(*pid).ok_or(SystemError::ECHILD)?;
if pcb.sched_info().state().is_exited() {
kwo.ret_status = pcb.sched_info().state().exit_code().unwrap() as i32;
drop(pcb);
unsafe { ProcessManager::release(pid.clone()) };
return Ok(pid.clone().into());
} else {
unsafe { pcb.wait_queue.sleep_without_schedule() };
}
}
drop(irq_guard);
sched();
} else {
// todo: 对于pgid的处理
kwarn!("kernel_wait4: currently not support {:?}", kwo.pid_type);
return Err(SystemError::EINVAL);
}
}
return retval;
}
fn do_waitpid(
child_pcb: Arc<ProcessControlBlock>,
kwo: &mut KernelWaitOption,
) -> Option<Result<usize, SystemError>> {
let state = child_pcb.sched_info().state();
// 获取退出码
match state {
ProcessState::Runnable => {
if kwo.options.contains(WaitOption::WNOHANG)
|| kwo.options.contains(WaitOption::WNOWAIT)
{
if let Some(info) = &mut kwo.ret_info {
*info = WaitIdInfo {
pid: child_pcb.pid(),
status: Signal::SIGCONT as i32,
cause: SigChildCode::Continued.into(),
};
} else {
kwo.ret_status = 0xffff;
}
return Some(Ok(0));
}
}
ProcessState::Blocked(_) | ProcessState::Stopped => {
// todo: 在stopped里面添加code字段表示停止的原因
let exitcode = 0;
// 由于目前不支持ptrace因此这个值为false
let ptrace = false;
if (!ptrace) && (!kwo.options.contains(WaitOption::WUNTRACED)) {
kwo.ret_status = 0;
return Some(Ok(0));
}
if likely(!(kwo.options.contains(WaitOption::WNOWAIT))) {
kwo.ret_status = (exitcode << 8) | 0x7f;
}
if let Some(infop) = &mut kwo.ret_info {
*infop = WaitIdInfo {
pid: child_pcb.pid(),
status: exitcode,
cause: SigChildCode::Stopped.into(),
};
}
return Some(Ok(child_pcb.pid().data()));
}
ProcessState::Exited(status) => {
let pid = child_pcb.pid();
// kdebug!("wait4: child exited, pid: {:?}, status: {status}\n", pid);
if likely(!kwo.options.contains(WaitOption::WEXITED)) {
return None;
}
// todo: 增加对线程组的group leader的处理
if let Some(infop) = &mut kwo.ret_info {
*infop = WaitIdInfo {
pid,
status: status as i32,
cause: SigChildCode::Exited.into(),
};
}
kwo.ret_status = status as i32;
drop(child_pcb);
// kdebug!("wait4: to release {pid:?}");
unsafe { ProcessManager::release(pid) };
return Some(Ok(pid.into()));
}
};
return None;
}

View File

@ -55,6 +55,7 @@ use self::kthread::WorkerPrivate;
pub mod abi;
pub mod c_adapter;
pub mod exec;
pub mod exit;
pub mod fork;
pub mod idle;
pub mod init;
@ -473,6 +474,7 @@ impl ProcessState {
return matches!(self, ProcessState::Blocked(true));
}
/// Returns `true` if the process state is [`Exited`].
#[inline(always)]
pub fn is_exited(&self) -> bool {
return matches!(self, ProcessState::Exited(_));
@ -485,6 +487,15 @@ impl ProcessState {
pub fn is_stopped(&self) -> bool {
matches!(self, ProcessState::Stopped)
}
/// Returns exit code if the process state is [`Exited`].
#[inline(always)]
pub fn exit_code(&self) -> Option<usize> {
match self {
ProcessState::Exited(code) => Some(*code),
_ => None,
}
}
}
bitflags! {
@ -848,6 +859,10 @@ impl ProcessControlBlock {
self.sig_info.read()
}
pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
self.sig_info.read_irqsave()
}
pub fn try_siginfo(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
for _ in 0..times {
if let Some(r) = self.sig_info.try_read() {

View File

@ -8,13 +8,13 @@ use alloc::{
use super::{
abi::WaitOption,
exit::kernel_wait4,
fork::{CloneFlags, KernelCloneArgs},
resource::{RLimit64, RLimitID, RUsage, RUsageWho},
KernelStack, Pid, ProcessManager, ProcessState,
KernelStack, Pid, ProcessManager,
};
use crate::{
arch::{interrupt::TrapFrame, sched::sched, CurrentIrqArch, MMArch},
exception::InterruptArch,
arch::{interrupt::TrapFrame, MMArch},
filesystem::{
procfs::procfs_register_pid,
vfs::{file::FileDescriptorVec, MAX_PATHLEN},
@ -24,9 +24,7 @@ use crate::{
process::ProcessControlBlock,
sched::completion::Completion,
syscall::{
user_access::{
check_and_clone_cstr, check_and_clone_cstr_array, UserBufferReader, UserBufferWriter,
},
user_access::{check_and_clone_cstr, check_and_clone_cstr_array, UserBufferWriter},
Syscall, SystemError,
},
};
@ -38,11 +36,16 @@ impl Syscall {
}
pub fn vfork(frame: &mut TrapFrame) -> Result<usize, SystemError> {
ProcessManager::fork(
frame,
CloneFlags::CLONE_VM | CloneFlags::CLONE_FS | CloneFlags::CLONE_SIGNAL,
)
.map(|pid| pid.into())
// 由于Linux vfork需要保证子进程先运行除非子进程调用execve或者exit
// 而我们目前没有实现这个特性所以暂时使用fork代替vforklinux文档表示这样也是也可以的
Self::fork(frame)
// 下面是以前的实现,除非我们实现了子进程先运行的特性,否则不要使用,不然会导致父进程数据损坏
// ProcessManager::fork(
// frame,
// CloneFlags::CLONE_VM | CloneFlags::CLONE_FS | CloneFlags::CLONE_SIGNAL,
// )
// .map(|pid| pid.into())
}
pub fn execve(
@ -100,98 +103,35 @@ impl Syscall {
options: i32,
rusage: *mut c_void,
) -> Result<usize, SystemError> {
let ret = WaitOption::from_bits(options as u32);
let options = match ret {
Some(options) => options,
None => {
return Err(SystemError::EINVAL);
}
let options = WaitOption::from_bits(options as u32).ok_or(SystemError::EINVAL)?;
let wstatus_buf = if wstatus.is_null() {
None
} else {
Some(UserBufferWriter::new(
wstatus,
core::mem::size_of::<i32>(),
true,
)?)
};
let mut _rusage_buf =
UserBufferReader::new::<c_void>(rusage, core::mem::size_of::<c_void>(), true)?;
let mut wstatus_buf =
UserBufferWriter::new::<i32>(wstatus, core::mem::size_of::<i32>(), true)?;
let cur_pcb = ProcessManager::current_pcb();
let rd_childen = cur_pcb.children.read();
if pid > 0 {
let pid = Pid(pid as usize);
let child_pcb = ProcessManager::find(pid).ok_or(SystemError::ECHILD)?;
drop(rd_childen);
loop {
let state = child_pcb.sched_info().state();
// 获取退出码
match state {
ProcessState::Runnable => {
if options.contains(WaitOption::WNOHANG)
|| options.contains(WaitOption::WNOWAIT)
{
if !wstatus.is_null() {
wstatus_buf.copy_one_to_user(&WaitOption::WCONTINUED.bits(), 0)?;
}
return Ok(0);
}
}
ProcessState::Blocked(_) | ProcessState::Stopped => {
// 指定WUNTRACED则等待暂停的进程不指定则返回0
if !options.contains(WaitOption::WUNTRACED)
|| options.contains(WaitOption::WNOWAIT)
{
if !wstatus.is_null() {
wstatus_buf.copy_one_to_user(&WaitOption::WSTOPPED.bits(), 0)?;
}
return Ok(0);
}
}
ProcessState::Exited(status) => {
// kdebug!("wait4: child exited, pid: {:?}, status: {status}\n", pid);
if !wstatus.is_null() {
wstatus_buf.copy_one_to_user(
&(status as u32 | WaitOption::WEXITED.bits()),
0,
)?;
}
drop(child_pcb);
// kdebug!("wait4: to release {pid:?}");
unsafe { ProcessManager::release(pid) };
return Ok(pid.into());
}
};
// 等待指定进程
child_pcb.wait_queue.sleep();
}
} else if pid < -1 {
// TODO 判断是否pgid == -pid等待指定组任意进程
// 暂时不支持
return Err(SystemError::EINVAL);
} else if pid == 0 {
// TODO 判断是否pgid == current_pgid等待当前组任意进程
// 暂时不支持
return Err(SystemError::EINVAL);
let mut tmp_rusage = if rusage.is_null() {
None
} else {
// 等待任意子进程(这两)
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
for pid in rd_childen.iter() {
let pcb = ProcessManager::find(*pid).ok_or(SystemError::ECHILD)?;
if pcb.sched_info().state().is_exited() {
if !wstatus.is_null() {
wstatus_buf.copy_one_to_user(&0, 0)?;
}
return Ok(pid.clone().into());
} else {
unsafe { pcb.wait_queue.sleep_without_schedule() };
}
}
drop(irq_guard);
sched();
}
Some(RUsage::default())
};
return Ok(0);
let r = kernel_wait4(pid, wstatus_buf, options, tmp_rusage.as_mut())?;
if !rusage.is_null() {
let mut rusage_buf = UserBufferWriter::new::<RUsage>(
rusage as *mut RUsage,
core::mem::size_of::<RUsage>(),
true,
)?;
rusage_buf.copy_one_to_user(&tmp_rusage.unwrap(), 0)?;
}
return Ok(r);
}
/// # 退出进程
@ -356,16 +296,12 @@ impl Syscall {
pub fn prlimit64(
_pid: Pid,
resource: usize,
new_limit: *const RLimit64,
_new_limit: *const RLimit64,
old_limit: *mut RLimit64,
) -> Result<usize, SystemError> {
let resource = RLimitID::try_from(resource)?;
let mut writer = None;
if new_limit.is_null() {
return Err(SystemError::EINVAL);
}
if !old_limit.is_null() {
writer = Some(UserBufferWriter::new(
old_limit,
@ -374,8 +310,6 @@ impl Syscall {
)?);
}
let _reader = UserBufferReader::new(new_limit, core::mem::size_of::<RLimit64>(), true)?;
match resource {
RLimitID::Stack => {
if let Some(mut writer) = writer {