rust重构mmio_buddy和mmio (#178)

* rust重构mmio_buddy和mmio

* mmio-buddy文档

---------

Co-authored-by: longjin <longjin@RinGoTek.cn>
This commit is contained in:
houmkh
2023-03-04 18:36:55 +08:00
committed by GitHub
parent f1284c3571
commit c2481452f8
12 changed files with 794 additions and 474 deletions

634
kernel/src/mm/mmio_buddy.rs Normal file
View File

@ -0,0 +1,634 @@
use crate::{
arch::asm::current::current_pcb,
include::bindings::bindings::{
initial_mm, mm_create_vma, mm_unmap, vm_area_del, vm_area_free, vm_area_struct, vm_flags_t,
vma_find, EINVAL, ENOMEM, EPERM, MMIO_BASE, MMIO_TOP, PAGE_1G_SHIFT, PAGE_1G_SIZE,
PAGE_2M_SIZE, PAGE_4K_SHIFT, PAGE_4K_SIZE, VM_DONTCOPY, VM_IO,
},
kdebug, kerror,
libs::spinlock::{SpinLock, SpinLockGuard},
};
use alloc::{boxed::Box, collections::LinkedList, vec::Vec};
use core::{mem, ptr::null_mut};
// 最大的伙伴块的幂
const MMIO_BUDDY_MAX_EXP: u32 = PAGE_1G_SHIFT;
// 最小的伙伴块的幂
const MMIO_BUDDY_MIN_EXP: u32 = PAGE_4K_SHIFT;
// 内存池数组的范围
const MMIO_BUDDY_REGION_COUNT: u32 = MMIO_BUDDY_MAX_EXP - MMIO_BUDDY_MIN_EXP + 1;
lazy_static! {
pub static ref MMIO_POOL: MmioBuddyMemPool = MmioBuddyMemPool::new();
}
pub enum MmioResult {
SUCCESS,
EINVAL,
ENOFOUND,
WRONGEXP,
ISEMPTY,
}
/// @brief buddy内存池
pub struct MmioBuddyMemPool {
pool_start_addr: u64,
pool_size: u64,
free_regions: [SpinLock<MmioFreeRegionList>; MMIO_BUDDY_REGION_COUNT as usize],
}
impl Default for MmioBuddyMemPool {
fn default() -> Self {
MmioBuddyMemPool {
pool_start_addr: MMIO_BASE as u64,
pool_size: (MMIO_TOP - MMIO_BASE) as u64,
free_regions: unsafe { mem::zeroed() },
}
}
}
impl MmioBuddyMemPool {
fn new() -> Self {
return MmioBuddyMemPool {
..Default::default()
};
}
/// @brief 创建新的地址区域结构体
///
/// @param vaddr 虚拟地址
///
/// @return 创建好的地址区域结构体
fn __create_region(&self, vaddr: u64) -> Box<MmioBuddyAddrRegion> {
let mut region: Box<MmioBuddyAddrRegion> = Box::new(MmioBuddyAddrRegion::new());
region.vaddr = vaddr;
return region;
}
/// @brief 将内存块归还给buddy
///
/// @param vaddr 虚拟地址
///
/// @param exp 内存空间的大小2^exp
///
/// @param list_guard 【exp】对应的链表
///
/// @return Ok(i32) 返回0
///
/// @return Err(i32) 返回错误码
fn __give_back_block(&self, vaddr: u64, exp: u32) -> Result<i32, i32> {
// 确保内存对齐低位都要为0
if (vaddr & ((1 << exp) - 1)) != 0 {
return Err(-(EINVAL as i32));
}
let region: Box<MmioBuddyAddrRegion> = self.__create_region(vaddr);
// 加入buddy
let list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
&mut self.free_regions[__exp2index(exp)].lock();
self.__buddy_add_region_obj(region, list_guard);
return Ok(0);
}
/// @brief 将给定大小为2^{exp}的内存块一分为二并插入内存块大小为2^{exp-1}的链表中
///
/// @param region 要被分割的地址区域结构体(保证其已经从链表中取出)
///
/// @param exp 要被分割的地址区域的大小的幂
///
/// @param list_guard 【exp-1】对应的链表
fn __buddy_split(
&self,
region: Box<MmioBuddyAddrRegion>,
exp: u32,
low_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) {
let vaddr: u64 = self.__buddy_block_vaddr(region.vaddr, exp - 1);
let new_region: Box<MmioBuddyAddrRegion> = self.__create_region(vaddr);
self.__buddy_add_region_obj(region, low_list_guard);
self.__buddy_add_region_obj(new_region, low_list_guard);
}
/// @brief 从buddy中申请一块指定大小的内存区域
///
/// @param exp 要申请的内存块的大小的幂(2^exp)
///
/// @param list_guard exp对应的链表
///
/// @return Ok(Box<MmioBuddyAddrRegion>) 符合要求的内存区域。
///
/// @return Err(MmioResult)
/// - 没有满足要求的内存块时返回ENOFOUND
/// - 申请的内存块大小超过合法范围返回WRONGEXP
/// - 调用函数出错时,返回出错函数对应错误码
fn __query_addr_region(
&self,
exp: u32,
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
// 申请范围错误
if exp < MMIO_BUDDY_MIN_EXP || exp > MMIO_BUDDY_MAX_EXP {
kdebug!("__query_addr_region: exp wrong");
return Err(MmioResult::WRONGEXP);
}
// 没有恰好符合要求的内存块
// 注意exp对应的链表list_guard已上锁【注意避免死锁问题】
if list_guard.num_free == 0 {
// 找到最小符合申请范围的内存块
// 将大的内存块依次分成小块内存直到能够满足exp大小即将exp+1分成两块exp
for e in exp + 1..MMIO_BUDDY_MAX_EXP + 1 {
if self.free_regions[__exp2index(e) as usize].lock().num_free == 0 {
continue;
}
for e2 in (exp + 1..e + 1).rev() {
match self
.__buddy_pop_region(&mut self.free_regions[__exp2index(e2) as usize].lock())
{
Ok(region) => {
if e2 != exp + 1 {
// 要将分裂后的内存块插入到更小的链表中
let low_list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
&mut self.free_regions[__exp2index(e2 - 1) as usize].lock();
self.__buddy_split(region, e2, low_list_guard);
} else {
// 由于exp对应的链表list_guard已经被锁住了 不能再加锁
// 所以直接将list_guard传入
self.__buddy_split(region, e2, list_guard);
}
}
Err(err) => {
kdebug!("buddy_pop_region get wrong");
return Err(err);
}
}
}
break;
}
// 判断是否获得了exp大小的内存块
if list_guard.num_free > 0 {
return Ok(list_guard.list.pop_back().unwrap());
}
// 拆分大内存块无法获得exp大小内存块
// 尝试用小内存块合成
// 即将两块exp合成一块exp+1
for e in MMIO_BUDDY_MIN_EXP..exp {
if e != exp - 1 {
let high_list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
&mut self.free_regions[__exp2index(exp + 1)].lock();
match self.__buddy_merge(
e,
&mut self.free_regions[__exp2index(e) as usize].lock(),
high_list_guard,
) {
Ok(_) => continue,
Err(err) => {
return Err(err);
}
}
} else {
match self.__buddy_merge(
e,
&mut self.free_regions[__exp2index(e) as usize].lock(),
list_guard,
) {
Ok(_) => continue,
Err(err) => {
return Err(err);
}
}
}
}
//判断是否获得了exp大小的内存块
if list_guard.num_free > 0 {
return Ok(list_guard.list.pop_back().unwrap());
}
return Err(MmioResult::ENOFOUND);
} else {
return Ok(list_guard.list.pop_back().unwrap());
}
}
/// @brief 对query_addr_region进行封装
///
/// @param exp 内存区域的大小(2^exp)
///
/// @return Ok(Box<MmioBuddyAddrRegion>)符合要求的内存块信息结构体。
/// @return Err(MmioResult) 没有满足要求的内存块时返回__query_addr_region的错误码。
fn mmio_buddy_query_addr_region(
&self,
exp: u32,
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
let list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
&mut self.free_regions[__exp2index(exp)].lock();
match self.__query_addr_region(exp, list_guard) {
Ok(ret) => return Ok(ret),
Err(err) => {
kdebug!("mmio_buddy_query_addr_region failed");
return Err(err);
}
}
}
/// @brief 往指定的地址空间链表中添加一个地址区域
///
/// @param region 要被添加的地址结构体
///
/// @param list_guard 目标链表
fn __buddy_add_region_obj(
&self,
region: Box<MmioBuddyAddrRegion>,
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) {
list_guard.list.push_back(region);
list_guard.num_free += 1;
}
/// @brief 根据地址和内存块大小,计算伙伴块虚拟内存的地址
#[inline(always)]
fn __buddy_block_vaddr(&self, vaddr: u64, exp: u32) -> u64 {
return vaddr ^ (1 << exp);
}
/// @brief 寻找并弹出指定内存块的伙伴块
///
/// @param region 对应内存块的信息
///
/// @param exp 内存块大小
///
/// @param list_guard 【exp】对应的链表
///
/// @return Ok(Box<MmioBuddyAddrRegion) 返回伙伴块的引用
/// @return Err(MmioResult)
/// - 当链表为空返回ISEMPTY
/// - 没有找到伙伴块返回ENOFOUND
fn __pop_buddy_block(
&self,
vaddr: u64,
exp: u32,
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
if list_guard.list.len() == 0 {
return Err(MmioResult::ISEMPTY);
} else {
//计算伙伴块的地址
let buddy_vaddr = self.__buddy_block_vaddr(vaddr, exp);
// element 只会有一个元素
let mut element: Vec<Box<MmioBuddyAddrRegion>> = list_guard
.list
.drain_filter(|x| x.vaddr == buddy_vaddr)
.collect();
if element.len() == 1 {
list_guard.num_free -= 1;
return Ok(element.pop().unwrap());
}
//没有找到对应的伙伴块
return Err(MmioResult::ENOFOUND);
}
}
/// @brief 从指定空闲链表中取出内存区域
///
/// @param list_guard 【exp】对应的链表
///
/// @return Ok(Box<MmioBuddyAddrRegion>) 内存块信息结构体的引用。
///
/// @return Err(MmioResult) 当链表为空无法删除时返回ISEMPTY
fn __buddy_pop_region(
&self,
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
if !list_guard.list.is_empty() {
list_guard.num_free -= 1;
return Ok(list_guard.list.pop_back().unwrap());
}
return Err(MmioResult::ISEMPTY);
}
/// @brief 合并所有2^{exp}大小的内存块
///
/// @param exp 内存块大小的幂(2^exp)
///
/// @param list_guard exp对应的链表
///
/// @param high_list_guard exp+1对应的链表
///
/// @return Ok(MmioResult) 合并成功返回SUCCESS
/// @return Err(MmioResult)
/// - 内存块过少无法合并返回EINVAL
/// - __pop_buddy_block调用出错返回其错误码
/// - __buddy_merge_blocks调用出错返回其错误码
fn __buddy_merge(
&self,
exp: u32,
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
high_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) -> Result<MmioResult, MmioResult> {
// 至少要两个内存块才能合并
if list_guard.num_free <= 1 {
return Err(MmioResult::EINVAL);
}
loop {
if list_guard.num_free <= 1 {
break;
}
// 获取内存块
let vaddr: u64 = list_guard.list.back().unwrap().vaddr;
// 获取伙伴内存块
match self.__pop_buddy_block(vaddr, exp, list_guard) {
Err(err) => {
return Err(err);
}
Ok(buddy_region) => {
let region: Box<MmioBuddyAddrRegion> = list_guard.list.pop_back().unwrap();
let copy_region: Box<MmioBuddyAddrRegion> = Box::new(MmioBuddyAddrRegion {
vaddr: region.vaddr,
});
// 在两块内存都被取出之后才进行合并
match self.__buddy_merge_blocks(region, buddy_region, exp, high_list_guard) {
Err(err) => {
// 如果合并失败了要将取出来的元素放回去
self.__buddy_add_region_obj(copy_region, list_guard);
kdebug!("__buddy_merge: __buddy_merge_blocks failed");
return Err(err);
}
Ok(_) => continue,
}
}
}
}
return Ok(MmioResult::SUCCESS);
}
/// @brief 合并两个【已经从链表中取出】的内存块
///
/// @param region_1 第一个内存块
///
/// @param region_2 第二个内存
///
/// @return Ok(MmioResult) 成功返回SUCCESS
///
/// @return Err(MmioResult) 两个内存块不是伙伴块,返回EINVAL
fn __buddy_merge_blocks(
&self,
region_1: Box<MmioBuddyAddrRegion>,
region_2: Box<MmioBuddyAddrRegion>,
exp: u32,
high_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
) -> Result<MmioResult, MmioResult> {
// 判断是否为伙伴块
if region_1.vaddr != self.__buddy_block_vaddr(region_2.vaddr, exp) {
return Err(MmioResult::EINVAL);
}
// 将大的块放进下一级链表
self.__buddy_add_region_obj(region_1, high_list_guard);
return Ok(MmioResult::SUCCESS);
}
}
/// @brief mmio伙伴系统内部的地址区域结构体
pub struct MmioBuddyAddrRegion {
vaddr: u64,
}
impl MmioBuddyAddrRegion {
pub fn new() -> Self {
return MmioBuddyAddrRegion {
..Default::default()
};
}
}
impl Default for MmioBuddyAddrRegion {
fn default() -> Self {
MmioBuddyAddrRegion {
vaddr: Default::default(),
}
}
}
/// @brief 空闲页数组结构体
pub struct MmioFreeRegionList {
/// 存储mmio_buddy的地址链表
list: LinkedList<Box<MmioBuddyAddrRegion>>,
/// 空闲块的数量
num_free: i64,
}
impl MmioFreeRegionList {
fn new() -> Self {
return MmioFreeRegionList {
..Default::default()
};
}
}
impl Default for MmioFreeRegionList {
fn default() -> Self {
MmioFreeRegionList {
list: Default::default(),
num_free: 0,
}
}
}
/// @brief 初始化mmio的伙伴系统
#[no_mangle]
pub extern "C" fn __mmio_buddy_init() {
// 创建一堆1GB的地址块
let cnt_1g_blocks: u32 = ((MMIO_TOP - MMIO_BASE) / PAGE_1G_SIZE as i64) as u32;
let mut vaddr_base: u64 = MMIO_BASE as u64;
for _ in 0..cnt_1g_blocks {
match MMIO_POOL.__give_back_block(vaddr_base, PAGE_1G_SHIFT) {
Ok(_) => {
vaddr_base += PAGE_1G_SIZE as u64;
}
Err(_) => {
kerror!("__mmio_buddy_init failed");
return;
}
}
}
}
/// @brief 将内存对象大小的幂转换成内存池中的数组的下标
///
/// @param exp内存大小
///
/// @return 内存池数组下标
#[inline(always)]
fn __exp2index(exp: u32) -> usize {
return (exp - 12) as usize;
}
/// @brief 创建一块mmio区域并将vma绑定到initial_mm
///
/// @param size mmio区域的大小字节
///
/// @param vm_flags 要把vma设置成的标志
///
/// @param res_vaddr 返回值-分配得到的虚拟地址
///
/// @param res_length 返回值-分配的虚拟地址空间长度
///
/// @return int 错误码
#[no_mangle]
pub extern "C" fn mmio_create(
size: u32,
vm_flags: vm_flags_t,
res_vaddr: *mut u64,
res_length: *mut u64,
) -> i32 {
if size > PAGE_1G_SIZE || size == 0 {
return -(EPERM as i32);
}
let mut retval: i32 = 0;
// 计算前导0
let mut size_exp: u32 = 31 - size.leading_zeros();
// 记录最终申请的空间大小
let mut new_size: u32 = size;
// 对齐要申请的空间大小
// 如果要申请的空间大小小于4k则分配4k
if size_exp < PAGE_4K_SHIFT {
new_size = PAGE_4K_SIZE;
size_exp = PAGE_4K_SHIFT;
} else if (new_size & (!(1 << size_exp))) != 0 {
// 向左对齐空间大小
size_exp += 1;
new_size = 1 << size_exp;
}
match MMIO_POOL.mmio_buddy_query_addr_region(size_exp) {
Ok(region) => {
unsafe {
*res_vaddr = region.vaddr;
*res_length = new_size as u64;
}
// 创建vma
let flags: u64 = vm_flags | (VM_IO | VM_DONTCOPY) as u64;
let len_4k: u64 = (new_size % PAGE_2M_SIZE) as u64;
let len_2m: u64 = new_size as u64 - len_4k;
let mut loop_i: u64 = 0;
// 先分配2M的vma
loop {
if loop_i >= len_2m {
break;
}
let vma: *mut *mut vm_area_struct = null_mut();
retval = unsafe {
mm_create_vma(
&mut initial_mm,
region.vaddr + loop_i,
PAGE_2M_SIZE.into(),
flags,
null_mut(),
vma,
)
};
if retval != 0 {
kdebug!(
"failed to create mmio 2m vma. pid = {:?}",
current_pcb().pid
);
unsafe {
vm_area_del(*vma);
vm_area_free(*vma);
}
return retval;
}
loop_i += PAGE_2M_SIZE as u64;
}
// 分配4K的vma
loop_i = len_2m;
loop {
if loop_i >= size as u64 {
break;
}
let vma: *mut *mut vm_area_struct = null_mut();
retval = unsafe {
mm_create_vma(
&mut initial_mm,
region.vaddr + loop_i,
PAGE_4K_SIZE.into(),
flags,
null_mut(),
vma,
)
};
if retval != 0 {
kdebug!(
"failed to create mmio 4k vma. pid = {:?}",
current_pcb().pid
);
unsafe {
vm_area_del(*vma);
vm_area_free(*vma);
}
return retval;
}
loop_i += PAGE_4K_SIZE as u64;
}
}
Err(_) => {
kdebug!("failed to create mmio vma.pid = {:?}", current_pcb().pid);
return -(ENOMEM as i32);
}
}
return retval;
}
/// @brief 取消mmio的映射并将地址空间归还到buddy中
///
/// @param vaddr 起始的虚拟地址
///
/// @param length 要归还的地址空间的长度
///
/// @return Ok(i32) 成功返回0
///
/// @return Err(i32) 失败返回错误码
#[no_mangle]
pub extern "C" fn mmio_release(vaddr: u64, length: u64) -> i32 {
//先将要释放的空间取消映射
unsafe {
mm_unmap(&mut initial_mm, vaddr, length, false);
}
let mut loop_i: u64 = 0;
loop {
if loop_i >= length {
break;
}
// 获取要释放的vma的结构体
let vma: *mut vm_area_struct = unsafe { vma_find(&mut initial_mm, vaddr + loop_i) };
if vma == null_mut() {
kdebug!(
"mmio_release failed: vma not found. At address: {:?}, pid = {:?}",
vaddr + loop_i,
current_pcb().pid
);
return -(EINVAL as i32);
}
// 检查vma起始地址是否正确
if unsafe { (*vma).vm_start != (vaddr + loop_i) } {
kdebug!(
"mmio_release failed: addr_start is not equal to current: {:?}. pid = {:?}",
vaddr + loop_i,
current_pcb().pid
);
return -(EINVAL as i32);
}
// 将vma对应空间归还
match MMIO_POOL.__give_back_block(unsafe { (*vma).vm_start }, unsafe {
31 - ((*vma).vm_end - (*vma).vm_start).leading_zeros()
}) {
Ok(_) => {
loop_i += unsafe { (*vma).vm_end - (*vma).vm_start };
unsafe {
vm_area_del(vma);
vm_area_free(vma);
}
}
Err(err) => {
// vma对应空间没有成功归还的话就不删除vma
kdebug!(
"mmio_release give_back failed: pid = {:?}",
current_pcb().pid
);
return err;
}
}
}
return 0;
}