bugfix: 修复因rsdp v1 v2版本问题,导致ACPI无法正常初始化的bug (#454)

bugfix: 修复因rsdp v1 v2版本问题,导致ACPI无法正常初始化的bug
This commit is contained in:
Jomo 2023-11-23 21:04:32 +08:00 committed by GitHub
parent c89d0c1237
commit cc5feaf67b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 111 additions and 482 deletions

View File

@ -4,11 +4,10 @@ use crate::driver::pci::pci::{
BusDeviceFunction, PciAddr, PciError, PciRoot, SegmentGroupNumber, PORT_PCI_CONFIG_ADDRESS,
PORT_PCI_CONFIG_DATA,
};
use crate::include::bindings::bindings::{acpi_get_MCFG, acpi_iter_SDT, io_in32, io_out32};
use crate::include::bindings::bindings::{io_in32, io_out32};
use crate::mm::PhysAddr;
use acpi::mcfg::Mcfg;
use core::ffi::c_void;
pub struct X86_64PciArch;
impl TraitPciArch for X86_64PciArch {
@ -45,33 +44,20 @@ impl TraitPciArch for X86_64PciArch {
}
fn ecam_root(segement: SegmentGroupNumber) -> Result<PciRoot, PciError> {
let mut data: usize = 0;
let data_point = &mut data;
unsafe {
acpi_iter_SDT(Some(acpi_get_MCFG), data_point as *mut usize as *mut c_void);
};
// 防止无PCIE的机器找不到MCFG Table导致的错误
if data == 0 {
return Err(PciError::McfgTableNotFound);
}
//kdebug!("{}",data);
//loop{}
let binding = acpi_manager()
let mcfg = acpi_manager()
.tables()
.expect("get acpi_manager table error")
.find_table::<Mcfg>();
if let Ok(mcfg) = binding {
for mcfg_entry in mcfg.entries() {
if mcfg_entry.pci_segment_group == segement {
return Ok(PciRoot {
physical_address_base: PhysAddr::new(mcfg_entry.base_address as usize),
mmio_guard: None,
segement_group_number: segement,
bus_begin: mcfg_entry.bus_number_start,
bus_end: mcfg_entry.bus_number_end,
});
}
.find_table::<Mcfg>()
.map_err(|_| PciError::McfgTableNotFound)?;
for mcfg_entry in mcfg.entries() {
if mcfg_entry.pci_segment_group == segement {
return Ok(PciRoot {
physical_address_base: PhysAddr::new(mcfg_entry.base_address as usize),
mmio_guard: None,
segement_group_number: segement,
bus_begin: mcfg_entry.bus_number_start,
bus_end: mcfg_entry.bus_number_end,
});
}
}
return Err(PciError::SegmentNotFound);

View File

@ -1,132 +1,19 @@
#include "acpi.h"
#include <common/printk.h>
#include <common/kprint.h>
#include <driver/multiboot2/multiboot2.h>
#include <mm/mm.h>
#include <mm/mmio.h>
extern void rs_acpi_init(uint64_t rsdp_paddr);
#define acpi_get_RSDT_entry_vaddr(phys_addr) (acpi_description_header_base + (phys_addr)-acpi_RSDT_entry_phys_base) // 获取RSDT entry的虚拟地址
// #define acpi_get_XSDT_entry_vaddr(phys_addr) (ACPI_DESCRIPTION_HEDERS_BASE + (phys_addr)-acpi_XSDT_entry_phys_base) // 获取XSDT entry的虚拟地址
extern void rs_acpi_init(uint64_t rsdp_paddr1, uint64_t rsdp_paddr2);
static struct acpi_RSDP_t *rsdpv1;
static struct acpi_RSDP_2_t *rsdpv2;
static struct acpi_RSDT_Structure_t *rsdt;
static struct acpi_XSDT_Structure_t *xsdt;
static struct multiboot_tag_old_acpi_t old_acpi;
static struct multiboot_tag_new_acpi_t new_acpi;
static ul acpi_RSDT_offset = 0;
static ul acpi_XSDT_offset = 0;
static uint acpi_RSDT_Entry_num = 0;
static uint acpi_XSDT_Entry_num = 0;
static ul acpi_RSDT_entry_phys_base = 0; // RSDT中的第一个entry所在物理页的基地址
static uint64_t acpi_madt_vaddr = 0; // MADT的虚拟地址
static uint64_t acpi_rsdt_virt_addr_base = 0; // RSDT的虚拟地址
static uint64_t acpi_description_header_base = 0; // RSDT中的第一个entry所在虚拟地址
// static ul acpi_XSDT_entry_phys_base = 0; // XSDT中的第一个entry所在物理页的基地址
/**
* @brief ACPI标准文件的Table 5-29
* @param _fun
* @param _data
*/
void acpi_iter_SDT(bool (*_fun)(const struct acpi_system_description_table_header_t *, void *),
void *_data)
{
struct acpi_system_description_table_header_t *sdt_header;
if (acpi_use_xsdt)
{
ul *ent = &(xsdt->Entry);
for (int i = 0; i < acpi_XSDT_Entry_num; ++i)
{
// mm_map_phys_addr(acpi_description_header_base + PAGE_2M_SIZE * i, (*(ent + i)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
rs_map_phys(acpi_description_header_base + PAGE_2M_SIZE * i, (*(ent + i)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
sdt_header = (struct acpi_system_description_table_header_t *)((ul)(acpi_description_header_base + PAGE_2M_SIZE * i));
if (_fun(sdt_header, _data) == true)
return;
}
}
else
{
uint *ent = &(rsdt->Entry);
for (int i = 0; i < acpi_RSDT_Entry_num; ++i)
{
sdt_header = (struct acpi_system_description_table_header_t *)(acpi_get_RSDT_entry_vaddr((ul)(*(ent + i))));
if (_fun(sdt_header, _data) == true)
return;
}
}
return;
}
/**
* @brief MADT信息 Multiple APIC Description Table
*
* @param _iter_data
* @param _data MADT的虚拟地址
* @param count
* @return true
* @return false
*/
bool acpi_get_MADT(const struct acpi_system_description_table_header_t *_iter_data, void *_data)
{
if (!(_iter_data->Signature[0] == 'A' && _iter_data->Signature[1] == 'P' && _iter_data->Signature[2] == 'I' && _iter_data->Signature[3] == 'C'))
return false;
//*(struct acpi_Multiple_APIC_Description_Table_t *)_data = *(struct acpi_Multiple_APIC_Description_Table_t *)_iter_data;
// 返回MADT的虚拟地址
*(ul *)_data = (ul)_iter_data;
acpi_madt_vaddr = (ul)_iter_data;
return true;
}
/**
* @brief HPET HPET_description_table
*
* @param _iter_data
* @param _data HPET表的虚拟地址
* @return true
* @return false
*/
bool acpi_get_HPET(const struct acpi_system_description_table_header_t *_iter_data, void *_data)
{
if (!(_iter_data->Signature[0] == 'H' && _iter_data->Signature[1] == 'P' && _iter_data->Signature[2] == 'E' && _iter_data->Signature[3] == 'T'))
return false;
*(ul *)_data = (ul)_iter_data;
return true;
}
/**
* @brief MCFG MCFG_description_table
*
* @param _iter_data
* @param _data MCFG表的虚拟地址
* @return true
* @return false
*/
bool acpi_get_MCFG(const struct acpi_system_description_table_header_t *_iter_data, void *_data)
{
if (!(_iter_data->Signature[0] == 'M' && _iter_data->Signature[1] == 'C' && _iter_data->Signature[2] == 'F' && _iter_data->Signature[3] == 'G'))
return false;
*(ul *)_data = (ul)_iter_data;
return true;
}
/**
* @brief acpi模块
*
*/
// todo: 修复bug当物理机上提供了rsdpv2之后rsdpv1是不提供的物理地址为0因此需要手动判断rsdp的版本信息然后做对应的解析。
void acpi_init()
{
kinfo("Initializing ACPI...");
@ -137,131 +24,11 @@ void acpi_init()
multiboot2_iter(multiboot2_get_acpi_old_RSDP, &old_acpi, &reserved);
rsdpv1 = &(old_acpi.rsdp);
// 这里有bug当multiboot2不存在rsdpv2的时候会导致错误
// multiboot2_iter(multiboot2_get_acpi_new_RSDP, &new_acpi, &reserved);
// rsdpv2 = &(new_acpi.rsdp);
rsdpv2 = NULL;
rs_acpi_init((uint64_t)rsdpv1);
multiboot2_iter(multiboot2_get_acpi_new_RSDP, &new_acpi, &reserved);
rsdpv2 = &(new_acpi.rsdp);
uint64_t paddr = 0;
// An ACPI-compatible OS must use the XSDT if present
if (rsdpv2 && rsdpv2->XsdtAddress != 0x00UL)
{
// 不要删除这段注释因为还不确定是代码的bug还是真机的bug
/*
acpi_use_xsdt = true;
ul xsdt_phys_base = rsdpv2->XsdtAddress & PAGE_2M_MASK;
acpi_XSDT_offset = rsdpv2->XsdtAddress - xsdt_phys_base;
mm_map_phys_addr(ACPI_XSDT_VIRT_ADDR_BASE, xsdt_phys_base, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
kdebug("XSDT mapped!");
xsdt = (struct acpi_XSDT_Structure_t *)(ACPI_XSDT_VIRT_ADDR_BASE + acpi_XSDT_offset);
// 计算RSDT Entry的数量
kdebug("offset=%d", sizeof(xsdt->header));
kdebug("xsdt sign=%s", xsdt->header.Signature);
acpi_XSDT_Entry_num = (xsdt->header.Length - sizeof(xsdt->header)) / 8;
printk_color(ORANGE, BLACK, "XSDT Length=%dbytes.\n", xsdt->header.Length);
printk_color(ORANGE, BLACK, "XSDT Entry num=%d\n", acpi_XSDT_Entry_num);
mm_map_phys_addr(ACPI_XSDT_VIRT_ADDR_BASE, xsdt_phys_base, xsdt->header.Length + PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
// 映射所有的Entry的物理地址
ul *ent = &(xsdt->Entry);
for (int j = 0; j < acpi_XSDT_Entry_num; ++j)
{
kdebug("entry=%#018lx, virt=%#018lx", (*(ent + j)) & PAGE_2M_MASK, ACPI_XSDT_DESCRIPTION_HEDERS_BASE + PAGE_2M_SIZE * j);
// 映射RSDT ENTRY的物理地址
mm_map_phys_addr(ACPI_XSDT_DESCRIPTION_HEDERS_BASE + PAGE_2M_SIZE * j, (*(ent + j)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
}
*/
// 由于解析XSDT出现问题。暂时只使用Rsdpv2的rsdt但是这是不符合ACPI规范的
ul rsdt_phys_base = rsdpv2->rsdp1.RsdtAddress & PAGE_2M_MASK;
acpi_RSDT_offset = rsdpv2->rsdp1.RsdtAddress - rsdt_phys_base;
// 申请mmio空间
uint64_t size = 0;
rs_mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_rsdt_virt_addr_base, &size);
// 映射rsdt表
paddr = (uint64_t)rsdt_phys_base;
// mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr);
rs_map_phys(acpi_rsdt_virt_addr_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
// rsdt表虚拟地址
rsdt = (struct acpi_RSDT_Structure_t *)(acpi_rsdt_virt_addr_base + acpi_RSDT_offset);
kdebug("RSDT mapped!(v2)");
// 计算RSDT Entry的数量
kdebug("offset=%d", sizeof(rsdt->header));
acpi_RSDT_Entry_num = (rsdt->header.Length - 36) / 4;
printk_color(ORANGE, BLACK, "RSDT Length=%dbytes.\n", rsdt->header.Length);
printk_color(ORANGE, BLACK, "RSDT Entry num=%d\n", acpi_RSDT_Entry_num);
// 申请mmio空间
rs_mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_description_header_base, &size);
// 映射所有的Entry的物理地址
acpi_RSDT_entry_phys_base = ((ul)(rsdt->Entry)) & PAGE_2M_MASK;
// 由于地址只是32bit的并且存在脏数据这里需要手动清除高32bit否则会触发#GP
acpi_RSDT_entry_phys_base = MASK_HIGH_32bit(acpi_RSDT_entry_phys_base);
paddr = (uint64_t)acpi_RSDT_entry_phys_base;
// mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr);
rs_map_phys(acpi_description_header_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
}
else if (rsdpv1->RsdtAddress != (uint)0x00UL)
{
// rsdt表物理地址
ul rsdt_phys_base = rsdpv1->RsdtAddress & PAGE_2M_MASK;
acpi_RSDT_offset = rsdpv1->RsdtAddress - rsdt_phys_base;
kdebug("rsdpv1->RsdtAddress=%#018lx", rsdpv1->RsdtAddress);
// 申请mmio空间
uint64_t size = 0;
rs_mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_rsdt_virt_addr_base, &size);
// acpi_rsdt_virt_addr_base = 0xffffb00000000000UL;
kdebug("ACPI: mmio created. acpi_rsdt_virt_addr_base = %#018lx,size= %#010lx", acpi_rsdt_virt_addr_base, size);
// kdebug("acpi_rsdt_virt_addr_base = %#018lx,size= %#010lx", acpi_rsdt_virt_addr_base, size);
// 映射rsdt表
paddr = (uint64_t)rsdt_phys_base;
// mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr);
rs_map_phys(acpi_rsdt_virt_addr_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
// rsdt表虚拟地址
rsdt = (struct acpi_RSDT_Structure_t *)(acpi_rsdt_virt_addr_base + acpi_RSDT_offset);
kdebug("RSDT mapped!");
// kdebug("length = %d",rsdt->header.Length);
// 计算RSDT Entry的数量
// kdebug("offset=%d", sizeof(rsdt->header));
acpi_RSDT_Entry_num = (rsdt->header.Length - 36) / 4;
printk_color(ORANGE, BLACK, "RSDT Length=%dbytes.\n", rsdt->header.Length);
printk_color(ORANGE, BLACK, "RSDT Entry num=%d\n", acpi_RSDT_Entry_num);
// 申请mmio空间
rs_mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_description_header_base, &size);
// 映射所有的Entry的物理地址
acpi_RSDT_entry_phys_base = ((ul)(rsdt->Entry)) & PAGE_2M_MASK;
// 由于地址只是32bit的并且存在脏数据这里需要手动清除高32bit否则会触发#GP
acpi_RSDT_entry_phys_base = MASK_HIGH_32bit(acpi_RSDT_entry_phys_base);
paddr = (uint64_t)acpi_RSDT_entry_phys_base;
// mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr);
rs_map_phys(acpi_description_header_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
kinfo("entry mapped!");
}
else
{
// should not reach here!
kBUG("At acpi_init(): Cannot get right SDT!");
while (1)
;
}
// rsdpv1、rsdpv2二者有一个能成功即可
rs_acpi_init((uint64_t)rsdpv1, (uint64_t)rsdpv2);
kinfo("ACPI module initialized!");
return;

View File

@ -7,28 +7,6 @@
#include <common/glib.h>
#include <mm/mm.h>
#define ACPI_ICS_TYPE_PROCESSOR_LOCAL_APIC 0
#define ACPI_ICS_TYPE_IO_APIC 1
#define ACPI_ICS_TYPE_INTERRUPT_SOURCE_OVERRIDE 2
#define ACPI_ICS_TYPE_NMI_SOURCE 3
#define ACPI_ICS_TYPE_LOCAL_APIC_NMI 4
#define ACPI_ICS_TYPE_LOCAL_APIC_ADDRESS_OVERRIDE 5
#define ACPI_ICS_TYPE_IO_SAPIC 6
#define ACPI_ICS_TYPE_LOCAL_SAPIC 7
#define ACPI_ICS_TYPE_PLATFORM_INTERRUPT_SOURCES 8
#define ACPI_ICS_TYPE_PROCESSOR_LOCAL_x2APIC 9
#define ACPI_ICS_TYPE_PROCESSOR_LOCAL_x2APIC_NMI 0xA
#define ACPI_ICS_TYPE_PROCESSOR_GICC 0xB
#define ACPI_ICS_TYPE_PROCESSOR_GICD 0xC
#define ACPI_ICS_TYPE_PROCESSOR_GIC_MSI_Frame 0xD
#define ACPI_ICS_TYPE_PROCESSOR_GICR 0xE
#define ACPI_ICS_TYPE_PROCESSOR_GIC_ITS 0xF
// 0x10-0x7f Reserved. OSPM skips structures of the reserved type.
// 0x80-0xff Reserved for OEM use
// extern const uint64_t acpi_rsdt_virt_addr_base ; // RSDT的虚拟地址
// extern const uint64_t acpi_description_header_base ; // RSDT中的第一个entry所在虚拟地址
bool acpi_use_xsdt = false;
struct acpi_RSDP_t
{
unsigned char Signature[8];
@ -55,152 +33,5 @@ struct acpi_RSDP_2_t
unsigned char Reserved[3];
} __attribute__((packed));
struct acpi_system_description_table_header_t
{
// The ascii string representation of the table header.
unsigned char Signature[4];
// 整个表的长度单位字节包括了header从偏移量0处开始
uint Length;
// The revision of the structure corresponding to the signature field for this table.
unsigned char Revision;
// The entire table, including the checksum field, must add to zero to be considered valid.
char Checksum;
unsigned char OEMID[6];
unsigned char OEM_Table_ID[8];
uint OEMRevision;
uint CreatorID;
uint CreatorRevision;
} __attribute__((packed));
// HPET描述符结构体sign为HPET
struct acpi_HPET_description_table_t
{
struct acpi_system_description_table_header_t header;
uint8_t hardware_rev_id;
uint8_t comparator_count : 5; // Number of Comparators in 1st Timer Block
uint8_t counter_size : 1; // COUNT_SIZE_CAP counter size
uint8_t reserved0 : 1;
uint8_t legacy_replacement : 1; // LegacyReplacement IRQ Routing Capable
uint16_t pci_vendor_id; // PCI Vendor ID of 1st Timer Block
uint8_t address_space_id; // 0 - system memory, 1 - system I/O
uint8_t register_bit_width;
uint8_t register_bit_offset;
uint8_t reserved1;
uint64_t address;
uint8_t hpet_number;
uint16_t minimum_tick; // The minimum clock ticks can be set without lost interrupts while the counter is programmed to operate in periodic mode
uint8_t page_protection;
} __attribute__((packed));
// =========== MADT结构其中Signature为APIC ============
struct acpi_Multiple_APIC_Description_Table_t
{
struct acpi_system_description_table_header_t header;
// 32bit的每个处理器可访问的local中断控制器的物理地址
uint Local_Interrupt_Controller_Address;
// Multiple APIC flags, 详见 ACPI Specification Version 6.3, Table 5-44
uint flags;
// 接下来的(length-44)字节是Interrupt Controller Structure
};
struct apic_Interrupt_Controller_Structure_header_t
{
unsigned char type;
unsigned char length;
};
struct acpi_Processor_Local_APIC_Structure_t
{
// type=0
struct apic_Interrupt_Controller_Structure_header_t header;
unsigned char ACPI_Processor_UID;
// 处理器的local apic id
unsigned char local_apic_id;
//详见 ACPI Specification Version 6.3, Table 5-47
uint flags;
};
struct acpi_IO_APIC_Structure_t
{
// type=1
struct apic_Interrupt_Controller_Structure_header_t header;
unsigned char IO_APIC_ID;
unsigned char Reserved;
// 32bit的IO APIC物理地址 每个IO APIC都有一个独立的物理地址
uint IO_APIC_Address;
// 当前IO APIC的全局系统中断向量号起始值
// The number of intr inputs is determined by the IO APIC's Max Redir Entry register.
uint Global_System_Interrupt_Base;
};
// =========== RSDT 结构 =============
struct acpi_RSDT_Structure_t
{
// 通过RSDT的header->Length可以计算出entry的数量n
// n = (length - 32)/4
struct acpi_system_description_table_header_t header;
// 一个包含了n个32bit物理地址的数组指向了其他的description headers
uint Entry;
};
// =========== XSDT 结构 =============
struct acpi_XSDT_Structure_t
{
// 通过RSDT的header->Length可以计算出entry的数量n
// n = (length - 36)/8
struct acpi_system_description_table_header_t header;
// 一个包含了n个64bit物理地址的数组指向了其他的description headers
ul Entry;
};
/**
* @brief ACPI标准文件的Table 5-29
* @param _fun
* @param _data
*/
void acpi_iter_SDT(bool (*_fun)(const struct acpi_system_description_table_header_t *, void *),
void *_data);
/**
* @brief MADT信息 Multiple APIC Description Table
*
* @param _iter_data
* @param _data MADT的虚拟地址
* @param count
* @return true
* @return false
*/
bool acpi_get_MADT(const struct acpi_system_description_table_header_t *_iter_data, void *_data);
/**
* @brief HPET HPET_description_table
*
* @param _iter_data
* @param _data HPET表的虚拟地址
* @return true
* @return false
*/
bool acpi_get_HPET(const struct acpi_system_description_table_header_t *_iter_data, void *_data);
/**
* @brief MCFG MCFG_description_table
*
* @param _iter_data
* @param _data MCFG表的虚拟地址
* @return true
* @return false
*/
bool acpi_get_MCFG(const struct acpi_system_description_table_header_t *_iter_data, void *_data);
// 初始化acpi模块
void acpi_init();

View File

@ -1,26 +1,8 @@
use crate::{
arch::MMArch,
libs::align::AlignedBox,
mm::{MemoryManagementArch, VirtAddr},
};
use super::acpi_manager;
static mut RSDP_TMP_BOX: Option<AlignedBox<[u8; 4096], 4096>> = None;
#[no_mangle]
unsafe extern "C" fn rs_acpi_init(rsdp_vaddr: u64) {
RSDP_TMP_BOX = Some(AlignedBox::new_zeroed().expect("rs_acpi_init(): failed to alloc"));
let size = core::mem::size_of::<acpi::rsdp::Rsdp>();
let tmp_data = core::slice::from_raw_parts(rsdp_vaddr as usize as *const u8, size);
RSDP_TMP_BOX.as_mut().unwrap()[0..size].copy_from_slice(tmp_data);
let rsdp_paddr = MMArch::virt_2_phys(VirtAddr::new(
RSDP_TMP_BOX.as_ref().unwrap().as_ptr() as usize
))
.unwrap();
unsafe extern "C" fn rs_acpi_init(rsdp_vaddr1: u64, rsdp_vaddr2: u64) {
acpi_manager()
.init(rsdp_paddr)
.init(rsdp_vaddr1, rsdp_vaddr2)
.expect("rs_acpi_init(): failed to init acpi");
}

View File

@ -1,15 +1,16 @@
use core::{fmt::Debug, ptr::NonNull};
use core::{fmt::Debug, hint::spin_loop, ptr::NonNull};
use acpi::{AcpiHandler, PlatformInfo};
use acpi::{AcpiHandler, AcpiTables, PlatformInfo};
use alloc::{string::ToString, sync::Arc};
use crate::{
arch::MMArch,
driver::base::firmware::sys_firmware_kset,
kinfo,
libs::align::{page_align_down, page_align_up},
libs::align::{page_align_down, page_align_up, AlignedBox},
mm::{
mmio_buddy::{mmio_pool, MMIOSpaceGuard},
PhysAddr, VirtAddr,
MemoryManagementArch, PhysAddr, VirtAddr,
},
syscall::SystemError,
};
@ -28,6 +29,8 @@ static mut __ACPI_TABLE: Option<acpi::AcpiTables<AcpiHandlerImpl>> = None;
/// `/sys/firmware/acpi`的kset
static mut ACPI_KSET_INSTANCE: Option<Arc<KSet>> = None;
static mut RSDP_TMP_BOX: Option<AlignedBox<[u8; 4096], 4096>> = None;
#[inline(always)]
pub fn acpi_manager() -> &'static AcpiManager {
&AcpiManager
@ -46,13 +49,14 @@ impl AcpiManager {
///
/// ## 参数
///
/// - `rsdp_paddr`: RSDP的物理地址
/// - `rsdp_vaddr1`: RSDP(v1)的虚拟地址
/// - `rsdp_vaddr2`: RSDP(v2)的虚拟地址
///
///
/// ## 参考资料
///
/// https://opengrok.ringotek.cn/xref/linux-6.1.9/drivers/acpi/bus.c#1390
pub fn init(&self, rsdp_paddr: PhysAddr) -> Result<(), SystemError> {
pub fn init(&self, rsdp_vaddr1: u64, rsdp_vaddr2: u64) -> Result<(), SystemError> {
kinfo!("Initializing Acpi Manager...");
// 初始化`/sys/firmware/acpi`的kset
@ -61,28 +65,86 @@ impl AcpiManager {
unsafe {
ACPI_KSET_INSTANCE = Some(kset.clone());
}
self.map_tables(rsdp_paddr)?;
self.map_tables(rsdp_vaddr1, rsdp_vaddr2)?;
self.bus_init()?;
kinfo!("Acpi Manager initialized.");
return Ok(());
}
fn map_tables(&self, rsdp_paddr: PhysAddr) -> Result<(), SystemError> {
let acpi_table: acpi::AcpiTables<AcpiHandlerImpl> =
unsafe { acpi::AcpiTables::from_rsdp(AcpiHandlerImpl, rsdp_paddr.data()) }.map_err(
|e| {
kerror!("acpi_init(): failed to parse acpi tables, error: {:?}", e);
SystemError::ENOMEM
},
)?;
fn map_tables(&self, rsdp_vaddr1: u64, rsdp_vaddr2: u64) -> Result<(), SystemError> {
let rsdp_paddr1 = Self::rsdp_paddr(rsdp_vaddr1);
let res1 = unsafe { acpi::AcpiTables::from_rsdp(AcpiHandlerImpl, rsdp_paddr1.data()) };
let e1;
match res1 {
// 如果rsdpv1能够获取到acpi_table则就用该表不用rsdpv2了
Ok(acpi_table) => {
Self::set_acpi_table(acpi_table);
return Ok(());
}
Err(e) => {
e1 = e;
Self::drop_rsdp_tmp_box();
}
}
unsafe {
__ACPI_TABLE = Some(acpi_table);
let rsdp_paddr2 = Self::rsdp_paddr(rsdp_vaddr2);
let res2 = unsafe { acpi::AcpiTables::from_rsdp(AcpiHandlerImpl, rsdp_paddr2.data()) };
match res2 {
Ok(acpi_table) => {
Self::set_acpi_table(acpi_table);
}
// 如果rsdpv1和rsdpv2都无法获取到acpi_table说明有问题打印报错信息后进入死循环
Err(e2) => {
kerror!("acpi_init(): failed to parse acpi tables, error: (rsdpv1: {:?}) or (rsdpv2: {:?})", e1, e2);
Self::drop_rsdp_tmp_box();
loop {
spin_loop();
}
}
}
return Ok(());
}
/// 通过RSDP虚拟地址获取RSDP物理地址
///
/// ## 参数
///
/// - `rsdp_vaddr`: RSDP的虚拟地址
///
/// ## 返回值
///
/// RSDP物理地址
fn rsdp_paddr(rsdp_vaddr: u64) -> PhysAddr {
unsafe {
RSDP_TMP_BOX = Some(AlignedBox::new_zeroed().expect("rs_acpi_init(): failed to alloc"))
};
let size = core::mem::size_of::<acpi::rsdp::Rsdp>();
let tmp_data =
unsafe { core::slice::from_raw_parts(rsdp_vaddr as usize as *const u8, size) };
unsafe { RSDP_TMP_BOX.as_mut().unwrap()[0..size].copy_from_slice(tmp_data) };
let rsdp_paddr = unsafe {
MMArch::virt_2_phys(VirtAddr::new(
RSDP_TMP_BOX.as_ref().unwrap().as_ptr() as usize
))
.unwrap()
};
return rsdp_paddr;
}
fn set_acpi_table(acpi_table: AcpiTables<AcpiHandlerImpl>) {
unsafe {
__ACPI_TABLE = Some(acpi_table);
}
}
fn drop_rsdp_tmp_box() {
unsafe {
RSDP_TMP_BOX = None;
}
}
#[allow(dead_code)]
pub fn tables(&self) -> Option<&'static acpi::AcpiTables<AcpiHandlerImpl>> {
unsafe { __ACPI_TABLE.as_ref() }

View File

@ -11,7 +11,7 @@ unsigned int multiboot2_boot_info_size;
static uint8_t mbi_raw[MBI_RAW_MAX_SIZE] = {0};
bool multiboot2_init(uint64_t mb2_info_paddr, uint32_t mb2_magic)
{
uint64_t vaddr = phys_2_virt(mb2_info_paddr);
uint64_t vaddr = (uint64_t)phys_2_virt(mb2_info_paddr);
if (mb2_magic != MULTIBOOT2_BOOTLOADER_MAGIC)
return false;
// vaddr+0 处保存了大小

View File

@ -240,7 +240,7 @@ int irq_unregister(ul irq_num)
if (p->irq_name)
kfree(p->irq_name);
p->irq_name = NULL;
p->parameter = NULL;
p->parameter = (ul)NULL;
p->flags = 0;
p->handler = NULL;

View File

@ -5,6 +5,7 @@
#include <exception/gate.h>
#include <mm/slab.h>
#include <process/process.h>
#include <arch/x86_64/driver/apic/apic_timer.h>
#include <process/preempt.h>
#include <sched/sched.h>
@ -13,10 +14,10 @@
#include "ipi.h"
/* x86-64 specific MSRs */
#define MSR_EFER 0xc0000080 /* extended feature register */
#define MSR_STAR 0xc0000081 /* legacy mode SYSCALL target */
#define MSR_LSTAR 0xc0000082 /* long mode SYSCALL target */
#define MSR_SYSCALL_MASK 0xc0000084 /* EFLAGS mask for syscall */
#define MSR_EFER 0xc0000080 /* extended feature register */
#define MSR_STAR 0xc0000081 /* legacy mode SYSCALL target */
#define MSR_LSTAR 0xc0000082 /* long mode SYSCALL target */
#define MSR_SYSCALL_MASK 0xc0000084 /* EFLAGS mask for syscall */
static void __smp_kick_cpu_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs);
static void __smp__flush_tlb_ipi_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs);
@ -77,7 +78,7 @@ void smp_init()
kdebug("total_processor_num=%d", total_processor_num);
// 注册接收kick_cpu功能的处理函数。向量号200
ipi_regiserIPI(KICK_CPU_IRQ_NUM, NULL, &__smp_kick_cpu_handler, NULL, NULL, "IPI kick cpu");
ipi_regiserIPI(KICK_CPU_IRQ_NUM, NULL, &__smp_kick_cpu_handler, (uint64_t)NULL, NULL, "IPI kick cpu");
ipi_regiserIPI(FLUSH_TLB_IRQ_NUM, NULL, &__smp__flush_tlb_ipi_handler, NULL, NULL, "IPI flush tlb");
int core_to_start = 0;
@ -116,7 +117,8 @@ void smp_init()
// 连续发送两次start-up IPI
int r = rs_ipi_send_smp_startup(__cpu_info[i].apic_id);
if(r){
if (r)
{
kerror("Failed to send startup ipi to cpu: %d", __cpu_info[i].apic_id);
}
io_mfence();
@ -158,9 +160,8 @@ void smp_ap_start_stage2()
spin_unlock_no_preempt(&multi_core_starting_lock);
rs_init_syscall_64();
apic_timer_ap_core_init();
apic_timer_ap_core_init();
sti();
sched();

View File

@ -7,7 +7,7 @@ CFLAGS += -I .
libc_sub_dirs=math sys
ifeq ($(ARCH), __x86_64__)
ifeq ($(ARCH), x86_64)
libc_sub_dirs += arch/x86_64
endif