🆕 fat32文件系统的mkdir

This commit is contained in:
fslongjin
2022-06-25 20:55:59 +08:00
parent d7d449bddd
commit d775af70c7
15 changed files with 495 additions and 39 deletions

View File

@ -3,10 +3,13 @@ CFLAGS += -I .
kernel_common_subdirs:=libELF
all:
all: glib.o
@list='$(kernel_common_subdirs)'; for subdir in $$list; do \
echo "make all in $$subdir";\
cd $$subdir;\
$(MAKE) all CFLAGS="$(CFLAGS)";\
cd ..;\
done
glib.o: glib.c
gcc $(CFLAGS) -c glib.c -o glib.o

31
kernel/common/glib.c Normal file
View File

@ -0,0 +1,31 @@
#include "glib.h"
/**
* @brief 测量来自用户空间的字符串的长度,会检验地址空间是否属于用户空间
* @param src
* @param maxlen
* @return long
*/
long strnlen_user(const char *src, unsigned long maxlen)
{
unsigned long size = strlen(src);
// 地址不合法
if (!verify_area((uint64_t)src, size))
return 0;
return size <= maxlen ? size : maxlen;
}
long strnlen(const char *src, unsigned long maxlen)
{
if (src == NULL)
return 0;
register int __res = 0;
while (src[__res] != '\0' && __res < maxlen)
{
++__res;
}
return __res;
}

View File

@ -168,7 +168,7 @@ static inline struct List *list_next(struct List *entry)
}
//计算字符串的长度经过测试该版本比采用repne/scasb汇编的运行速度快16.8%左右)
static inline int strlen(char *s)
static inline int strlen(const char *s)
{
if(s == NULL)
return 0;
@ -180,6 +180,15 @@ static inline int strlen(char *s)
return __res;
}
/**
* @brief 测量字符串的长度
*
* @param src 字符串
* @param maxlen 最大长度
* @return long
*/
long strnlen(const char *src, unsigned long maxlen);
void *memset(void *dst, unsigned char C, ul size)
{
@ -530,18 +539,9 @@ static inline uint64_t copy_to_user(void *dst, void *src, uint64_t size)
* @param maxlen
* @return long
*/
long strnlen_user(void *src, unsigned long maxlen)
{
long strnlen_user(const char *src, unsigned long maxlen);
unsigned long size = strlen(src);
// 地址不合法
if (!verify_area((uint64_t)src, size))
return 0;
return size <= maxlen ? size : maxlen;
}
char *strncpy(char *Dest, char *Src, long Count)
char *strncpy(char *Dest, const char *Src, long Count)
{
__asm__ __volatile__("cld \n\t"
"1: \n\t"
@ -560,7 +560,7 @@ char *strncpy(char *Dest, char *Src, long Count)
return Dest;
}
long strncpy_from_user(void *dst, void *src, unsigned long size)
long strncpy_from_user(char *dst, const char *src, unsigned long size)
{
if (!verify_area((uint64_t)src, size))
return 0;

View File

@ -186,6 +186,7 @@ void do_general_protection(struct pt_regs *regs, unsigned long error_code)
printk_color(RED, BLACK, "Refers to a descriptor in the current GDT;\n");
printk_color(RED, BLACK, "Segment Selector Index:%#010x\n", error_code & 0xfff8);
traceback(regs);
while (1)
hlt();
}
@ -224,6 +225,7 @@ void do_page_fault(struct pt_regs *regs, unsigned long error_code)
printk_color(RED, BLACK, "CR2:%#018lx\n", cr2);
traceback(regs);
current_pcb->state = PROC_STOPPED;
while (1)
hlt();

View File

@ -4,6 +4,8 @@
#include <common/errno.h>
#include <mm/mm.h>
#include <mm/slab.h>
#include <process/ptrace.h>
#include <process/process.h>
// 为filesystem_type_t结构体实例化一个链表头
static struct vfs_filesystem_type_t vfs_fs = {"filesystem", 0};
@ -165,3 +167,93 @@ int vfs_fill_dentry(void *buf, ino_t d_ino, char *name, int namelen, unsigned ch
// 返回dirent的总大小
return sizeof(struct dirent) + namelen;
}
/**
* @brief 创建文件夹
*
* @param path(r8) 路径
* @param mode(r9) 模式
* @return uint64_t
*/
uint64_t sys_mkdir(struct pt_regs *regs)
{
const char *path = (const char *)regs->r8;
kdebug("path = %s", path);
mode_t mode = (mode_t)regs->r9;
uint32_t pathlen;
if (regs->cs & USER_CS)
pathlen = strnlen_user(path, PAGE_4K_SIZE - 1);
else
pathlen = strnlen(path, PAGE_4K_SIZE - 1);
if (pathlen == 0)
return -ENOENT;
int last_slash = -1;
// 查找最后一个'/',忽略路径末尾的'/'
for (int i = pathlen - 2; i >= 0; --i)
{
if (path[i] == '/')
{
last_slash = i;
break;
}
}
// 路径格式不合法(必须使用绝对路径)
if (last_slash < 0)
return ENOTDIR;
char *buf = (char *)kmalloc(last_slash + 1, 0);
memset(buf, 0, pathlen + 1);
// 拷贝字符串(不包含要被创建的部分)
if (regs->cs & USER_CS)
strncpy_from_user(buf, path, last_slash);
else
strncpy(buf, path, last_slash);
buf[last_slash + 1] = '\0';
// 查找父目录
struct vfs_dir_entry_t *parent_dir = vfs_path_walk(buf, 0);
if (parent_dir == NULL)
{
kfree(buf);
return -ENOENT;
}
kfree(buf);
// 检查父目录中是否已经有相同的目录项
if (vfs_path_walk(path, 0) != NULL)
{
// 目录中已有对应的文件夹
kwarn("Dir '%s' aleardy exists.", path);
return -EEXIST;
}
struct vfs_dir_entry_t *subdir_dentry = (struct vfs_dir_entry_t *)kmalloc(sizeof(struct vfs_dir_entry_t), 0);
memset((void *)subdir_dentry, 0, sizeof(struct vfs_dir_entry_t));
if (path[pathlen - 1] == '/')
subdir_dentry->name_length = pathlen - last_slash - 2;
else
subdir_dentry->name_length = pathlen - last_slash - 1;
subdir_dentry->name = (char *)kmalloc(subdir_dentry->name_length + 1, 0);
memset((void *)subdir_dentry->name, 0, subdir_dentry->name_length + 1);
for (int i = last_slash + 1, cnt = 0; i < pathlen && cnt < subdir_dentry->name_length; ++i, ++cnt)
{
subdir_dentry->name[cnt] = path[i];
}
++subdir_dentry->name_length;
kdebug("last_slash=%d", last_slash);
kdebug("name=%s", path + last_slash + 1);
subdir_dentry->parent = parent_dir;
kdebug("to mkdir, parent name=%s", parent_dir->name);
int retval = parent_dir->dir_inode->inode_ops->mkdir(parent_dir->dir_inode, subdir_dentry, 0);
kdebug("retval = %d", retval);
return 0;
}

View File

@ -108,7 +108,19 @@ struct vfs_super_block_operations_t
struct vfs_inode_operations_t
{
long (*create)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode);
/**
* @brief 在文件系统中查找指定的目录项
* @param parent_inode 父目录项(在这个目录下查找)
* @param dest_dEntry 构造的目标目录项的结构体(传入名称,然后更多的详细信息将在本函数中完成填写)
*
*/
struct vfs_dir_entry_t *(*lookup)(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dEntry);
/**
* @brief 创建文件夹
* @param inode 父目录的inode
* @param dEntry 新的文件夹的dentry
* @param mode 创建文件夹的mode
*/
long (*mkdir)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode);
long (*rmdir)(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry);
long (*rename)(struct vfs_index_node_t *old_inode, struct vfs_dir_entry_t *old_dEntry, struct vfs_index_node_t *new_inode, struct vfs_dir_entry_t *new_dEntry);

View File

@ -38,6 +38,22 @@ struct vfs_superblock_t *fat32_register_partition(uint8_t ahci_ctrl_num, uint8_t
return vfs_mount_fs("FAT32", (void *)(&DPT->DPTE[part_num]), VFS_DPT_MBR, buf, ahci_ctrl_num, ahci_port_num, part_num);
}
/**
* @brief 计算短目录项文件名的校验和
*
* @param name 短目录项文件名字符串长度为11
* @return uint8_t 校验和
*/
static uint8_t fat32_ChkSum(uint8_t *name)
{
uint8_t chksum = 0;
for (uint8_t i = 0; i < 11; ++i)
{
chksum = ((chksum & 1) ? 0x80 : 0) + (chksum >> 1) + *name;
++name;
}
return chksum;
}
/**
* @brief 读取指定簇的FAT表项
*
@ -75,19 +91,19 @@ uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t
// 计算每个扇区内含有的FAT表项数
// FAT每项4bytes
uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂
uint32_t buf[256];
uint32_t *buf = kmalloc(fsbi->bytes_per_sec, 0);
memset(buf, 0, fsbi->bytes_per_sec);
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff);
// 向FAT1和FAT2写入数据
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1,
(uint64_t)&buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
(uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
kfree(buf);
return 0;
}
@ -95,7 +111,7 @@ uint32_t fat32_write_FAT_entry(fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t
* @brief 在父目录中寻找指定的目录项
*
* @param parent_inode 父目录项的inode
* @param dest_inode 搜索目标目录项的inode
* @param dest_dentry 搜索目标目录项
* @return struct vfs_dir_entry_t* 目标目录项
*/
struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dentry)
@ -134,10 +150,10 @@ struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, stru
if (tmp_dEntry->DIR_Attr == ATTR_LONG_NAME)
continue;
// 跳过无效页表项、空闲页表
// 跳过无效目录项、空闲目录
if (tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00 || tmp_dEntry->DIR_Name[0] == 0x05)
continue;
// kdebug("short name [%d] %s\n 33333==[%#02x]", i / 32, tmp_dEntry->DIR_Name, tmp_dEntry->DIR_Name[3]);
// 找到长目录项,位于短目录项之前
struct fat32_LongDirectory_t *tmp_ldEntry = (struct fat32_LongDirectory_t *)tmp_dEntry - 1;
@ -184,6 +200,7 @@ struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, stru
js = 0;
for (int x = 0; x < 8; ++x)
{
// kdebug("value = %#02x", tmp_dEntry->DIR_Name[x]);
switch (tmp_dEntry->DIR_Name[x])
{
case ' ':
@ -349,6 +366,10 @@ find_lookup_success:; // 找到目标dentry
p->attribute |= VFS_ATTR_DEVICE;
dest_dentry->dir_inode = p;
dest_dentry->dir_ops = &fat32_dEntry_ops;
list_init(&dest_dentry->child_node_list);
list_init(&dest_dentry->subdirs_list);
kfree(buf);
return dest_dentry;
}
@ -667,9 +688,13 @@ uint64_t fat32_find_available_cluster(fat32_sb_info_t *fsbi)
{
// 找到空闲簇
if ((buf[j] & 0x0fffffff) == 0)
{
kfree(buf);
return i * ent_per_sec + j;
}
}
}
kfree(buf);
return 0;
}
@ -876,9 +901,262 @@ long fat32_create(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dentry
{
}
// todo: mkdir
int64_t fat32_mkdir(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry, int mode)
/**
* @brief 在父亲inode的目录项簇中寻找连续num个空的目录项
*
* @param parent_inode 父inode
* @param num 请求的目录项数量
* @param mode 操作模式
* @param res_sector 返回信息:缓冲区对应的扇区号
* @param res_cluster 返回信息:缓冲区对应的簇号
* @param res_data_buf_base 返回信息:缓冲区的内存基地址(记得要释放缓冲区内存)
* @return struct fat32_Directory_t* 符合要求的entry的指针指向地址高处的空目录项也就是说有连续num个≤这个指针的空目录项
*/
struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *parent_inode, uint32_t num, uint32_t mode, uint32_t *res_sector, uint64_t *res_cluster, uint64_t *res_data_buf_base)
{
kdebug("find empty_dentry");
struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
uint8_t *buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(buf, 0, fsbi->bytes_per_clus);
// 计算父目录项的起始簇号
uint32_t cluster = finode->first_clus;
struct fat32_Directory_t *tmp_dEntry = NULL;
// 指向最终的有用的dentry的指针
struct fat32_Directory_t *result_dEntry = NULL;
while (true)
{
// 计算父目录项的起始LBA扇区号
uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
// 读取父目录项的起始簇数据
ahci_operation.transfer(AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
tmp_dEntry = (struct fat32_Directory_t *)buf;
// 计数连续的空目录项
uint32_t count_continuity = 0;
// 查找连续num个空闲目录项
for (int i = 0; (i < fsbi->bytes_per_clus) && count_continuity < num; i += 32, ++tmp_dEntry)
{
if (!(tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00))
{
count_continuity = 0;
continue;
}
if (count_continuity == 0)
result_dEntry = tmp_dEntry;
++count_continuity;
}
// 成功查找到符合要求的目录项
if (count_continuity == num)
{
result_dEntry += (num - 1);
*res_sector = sector;
*res_data_buf_base = (uint64_t)buf;
*res_cluster = cluster;
return result_dEntry;
}
// 当前簇没有发现符合条件的空闲目录项,寻找下一个簇
uint old_cluster = cluster;
cluster = fat32_read_FAT_entry(fsbi, cluster);
if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到符合要求的空目录项
{
// 新增一个簇
cluster = fat32_find_available_cluster(fsbi);
kdebug("try to allocate a new cluster to parent dentry, cluster=%d, old_cluster=%d", cluster, old_cluster);
if (cluster == 0)
{
kerror("Cannot allocate a new cluster!");
while (1)
pause();
}
fat32_write_FAT_entry(fsbi, old_cluster, cluster);
fat32_write_FAT_entry(fsbi, cluster, 0x0ffffff8);
// 将这个新的簇清空
sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus;
void *tmp_buf = kmalloc(fsbi->bytes_per_clus, 0);
memset(tmp_buf, 0, fsbi->bytes_per_clus);
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
kfree(tmp_buf);
}
}
}
/**
* @brief 创建文件夹
* @param inode 父目录的inode
* @param dEntry 新的文件夹的dentry
* @param mode 创建文件夹的mode
*/
int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dEntry, int mode)
{
// 先检查是否有重名的目录项,然后分配一个簇
// 文件系统超级块信息
fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info;
// 父目录项的inode
struct fat32_inode_info_t *parent_inode_info = (struct fat32_inode_info_t *)parent_inode->private_inode_info;
// ======== todo:检验名称的合法性
// ====== 找一块连续的区域放置新的目录项 =====
// 计算总共需要多少个目录项
uint32_t cnt_longname = (dEntry->name_length + 25) / 26;
if (cnt_longname == 0)
cnt_longname = 1;
// 空闲dentry所在的扇区号
uint32_t tmp_dentry_sector = 0;
// 空闲dentry所在的缓冲区的基地址
uint64_t tmp_dentry_clus_buf_addr = 0;
uint64_t tmp_parent_dentry_clus = 0;
// 寻找空闲目录项
struct fat32_Directory_t *empty_fat32_dentry = fat32_find_empty_dentry(parent_inode, cnt_longname + 1, 0, &tmp_dentry_sector, &tmp_parent_dentry_clus, &tmp_dentry_clus_buf_addr);
kdebug("found empty dentry");
// ====== 为新的文件夹分配一个簇 =======
uint32_t new_dir_clus = fat32_find_available_cluster(fsbi);
kdebug("new_dir_clus=%d", new_dir_clus);
fat32_write_FAT_entry(fsbi, new_dir_clus, 0x0ffffff8);
// ====== 填写短目录项
memset(empty_fat32_dentry, 0, sizeof(struct fat32_Directory_t));
{
int tmp_index = 0;
// kdebug("dEntry->name_length=%d", dEntry->name_length);
for (tmp_index = 0; tmp_index < min(8, dEntry->name_length); ++tmp_index)
{
if (dEntry->name[tmp_index] == '.')
break;
empty_fat32_dentry->DIR_Name[tmp_index] = dEntry->name[tmp_index];
}
// 不满的部分使用0x20填充
while (tmp_index < 11)
{
// kdebug("tmp index = %d", tmp_index);
dEntry->name[tmp_index] = 0x20;
++tmp_index;
}
}
empty_fat32_dentry->DIR_Attr = ATTR_DIRECTORY;
empty_fat32_dentry->DIR_FileSize = fsbi->bytes_per_clus;
empty_fat32_dentry->DIR_FstClusHI = (uint16_t)((new_dir_clus >> 16) & 0x0fff);
empty_fat32_dentry->DIR_FstClusLO = (uint16_t)(new_dir_clus & 0xffff);
// 计算校验和
uint8_t short_dentry_ChkSum = fat32_ChkSum(empty_fat32_dentry->DIR_Name);
// todo: 填写短目录项中的时间信息
// ======== 填写长目录项
uint32_t current_name_index = 0;
struct fat32_LongDirectory_t *Ldentry = (struct fat32_LongDirectory_t *)(empty_fat32_dentry - 1);
for (int i = 1; i <= cnt_longname; ++i, --Ldentry)
{
Ldentry->LDIR_Ord = i;
for (int j = 0; j < 5; ++j, ++current_name_index)
{
if (current_name_index < dEntry->name_length)
Ldentry->LDIR_Name1[j] = dEntry->name[current_name_index];
else
Ldentry->LDIR_Name1[j] = 0xffff;
}
for (int j = 0; j < 6; ++j, ++current_name_index)
{
if (current_name_index < dEntry->name_length)
Ldentry->LDIR_Name2[j] = dEntry->name[current_name_index];
else
Ldentry->LDIR_Name2[j] = 0xffff;
}
for (int j = 0; j < 2; ++j, ++current_name_index)
{
if (current_name_index < dEntry->name_length)
Ldentry->LDIR_Name3[j] = dEntry->name[current_name_index];
else
Ldentry->LDIR_Name3[j] = 0xffff;
}
Ldentry->LDIR_Attr = ATTR_LONG_NAME;
Ldentry->LDIR_FstClusLO = 0;
Ldentry->LDIR_Type = 0;
Ldentry->LDIR_Chksum = short_dentry_ChkSum;
}
// 最后一个长目录项的ord要|=0x40
Ldentry->LDIR_Ord = 0xe5 | 0x40;
// ====== 将目录项写回磁盘
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, tmp_dentry_sector, fsbi->sec_per_clus, tmp_dentry_clus_buf_addr, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
// ====== 初始化新的文件夹的目录项 =====
{
void *buf = kmalloc(fsbi->bytes_per_clus, 0);
struct fat32_Directory_t *new_dir_dentries = (struct fat32_Directory_t *)buf;
memset((void *)new_dir_dentries, 0, fsbi->bytes_per_clus);
// 新增 . 目录项
new_dir_dentries->DIR_Attr = ATTR_DIRECTORY;
new_dir_dentries->DIR_FileSize = 0;
new_dir_dentries->DIR_Name[0] = '.';
for (int i = 1; i < 11; ++i)
new_dir_dentries->DIR_Name[i] = 0x20;
new_dir_dentries->DIR_FstClusHI = empty_fat32_dentry->DIR_FstClusHI;
new_dir_dentries->DIR_FstClusLO = empty_fat32_dentry->DIR_FstClusLO;
// 新增 .. 目录项
++new_dir_dentries;
new_dir_dentries->DIR_Attr = ATTR_DIRECTORY;
new_dir_dentries->DIR_FileSize = 0;
new_dir_dentries->DIR_Name[0] = '.';
new_dir_dentries->DIR_Name[1] = '.';
for (int i = 2; i < 11; ++i)
new_dir_dentries->DIR_Name[i] = 0x20;
new_dir_dentries->DIR_FstClusHI = (unsigned short)(parent_inode_info->first_clus >> 16) & 0x0fff;
new_dir_dentries->DIR_FstClusLO = (unsigned short)(parent_inode_info->first_clus) & 0xffff;
// 写入磁盘
uint64_t sector = fsbi->first_data_sector + (new_dir_clus - 2) * fsbi->sec_per_clus;
ahci_operation.transfer(AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf, fsbi->ahci_ctrl_num, fsbi->ahci_port_num);
}
// ===== 初始化inode ====
struct vfs_index_node_t *finode = (struct vfs_index_node_t *)kmalloc(sizeof(struct vfs_index_node_t), 0);
memset(finode, 0, sizeof(struct vfs_index_node_t));
finode->attribute = VFS_ATTR_DIR;
finode->blocks = fsbi->sec_per_clus;
finode->file_ops = &fat32_file_ops;
finode->file_size = fsbi->bytes_per_clus;
finode->inode_ops = &fat32_inode_ops;
finode->sb = parent_inode->sb;
finode->private_inode_info = (fat32_inode_info_t *)kmalloc(sizeof(fat32_inode_info_t), 0);
memset(finode->private_inode_info, 0, sizeof(fat32_inode_info_t));
fat32_inode_info_t *p = (fat32_inode_info_t *)finode->private_inode_info;
p->first_clus = new_dir_clus;
p->dEntry_location_clus = tmp_parent_dentry_clus;
p->dEntry_location_clus_offset = empty_fat32_dentry - (struct fat32_Directory_t *)tmp_dentry_clus_buf_addr;
// todo: 填写fat32_inode_info的信息
// 初始化dentry信息
list_init(&dEntry->child_node_list);
list_init(&dEntry->subdirs_list);
dEntry->dir_ops = &fat32_dEntry_ops;
dEntry->dir_inode = finode;
// 注意parent字段需要在调用函数的地方进行设置
// 注意需要将当前dentry加入父目录的subdirs_list
// 释放在find empty dentry中动态申请的缓冲区
kfree((void *)tmp_dentry_clus_buf_addr);
return 0;
}
// todo: rmdir

View File

@ -489,7 +489,13 @@ uint64_t sys_chdir(struct pt_regs *regs)
return -EFAULT;
// 计算输入的路径长度
int dest_path_len = strnlen_user(dest_path, PAGE_4K_SIZE);
int dest_path_len;
if (regs->cs & USER_CS)
{
dest_path_len = strnlen_user(dest_path, PAGE_4K_SIZE);
}
else
dest_path_len = strnlen(dest_path, PAGE_4K_SIZE);
// 长度小于等于0
if (dest_path_len <= 0)
@ -504,9 +510,13 @@ uint64_t sys_chdir(struct pt_regs *regs)
return -ENOMEM;
memset(path, 0, dest_path_len + 1);
if (regs->cs & USER_CS)
{
// 将字符串从用户空间拷贝进来, +1是为了拷贝结尾的\0
strncpy_from_user(path, dest_path, dest_path_len + 1);
}
else
strncpy(path, dest_path, dest_path_len + 1);
struct vfs_dir_entry_t *dentry = vfs_path_walk(path, 0);
@ -605,7 +615,7 @@ uint64_t sys_wait4(struct pt_regs *regs)
uint64_t pid = regs->r8;
int *status = (int *)regs->r9;
int options = regs->r10;
void *rusage = (void*)regs->r11;
void *rusage = (void *)regs->r11;
struct process_control_block *proc = NULL;
struct process_control_block *child_proc = NULL;
@ -651,7 +661,7 @@ uint64_t sys_wait4(struct pt_regs *regs)
* @param exit_code 退出返回码
* @return uint64_t
*/
uint64_t sys_exit(struct pt_regs * regs)
uint64_t sys_exit(struct pt_regs *regs)
{
return process_do_exit(regs->r8);
}
@ -689,5 +699,6 @@ system_call_t system_call_table[MAX_SYSTEM_CALL_NUM] =
[14] = sys_execve,
[15] = sys_wait4,
[16] = sys_exit,
[17 ... 254] = system_call_not_exists,
[17] = sys_mkdir,
[18 ... 254] = system_call_not_exists,
[255] = sys_ahci_end_req};

View File

@ -74,6 +74,15 @@ uint64_t sys_brk(struct pt_regs *regs);
*/
uint64_t sys_sbrk(struct pt_regs *regs);
/**
* @brief 创建文件夹
* 在VFS.c中实现
* @param path(r8) 路径
* @param mode(r9) 模式
* @return uint64_t
*/
uint64_t sys_mkdir(struct pt_regs * regs);
ul sys_ahci_end_req(struct pt_regs *regs);
// 系统调用的内核入口程序

View File

@ -27,5 +27,6 @@
#define SYS_EXECVE 14 // 执行新的应用程序
#define SYS_WAIT4 15 // 等待进程退出
#define SYS_EXIT 16 // 进程退出
#define SYS_MKDIR 17 // 创建文件夹
#define SYS_AHCI_END_REQ 255 // AHCI DMA请求结束end_request的系统调用

View File

@ -5,7 +5,7 @@
#include <libKeyboard/keyboard.h>
#include <libc/string.h>
#include <libc/stddef.h>
#include <libc/sys/stat.h>
#include "cmd.h"
#define pause_cpu() asm volatile("pause\n\t");
@ -73,7 +73,9 @@ int main()
int kb_fd = open(kb_file_path, 0);
// printf("keyboard fd = %d\n", kb_fd);
print_ascii_logo();
printf("before mkdir\n");
mkdir("/aaac", 0);
printf("after mkdir\n");
main_loop(kb_fd);
while (1)
;

View File

@ -1,8 +1,11 @@
all: wait.o
all: wait.o stat.o
CFLAGS += -I .
wait.o: wait.c
gcc $(CFLAGS) -c wait.c -o wait.o
stat.o: stat.c
gcc $(CFLAGS) -c stat.c -o stat.o

View File

@ -0,0 +1,7 @@
#include "stat.h"
#include<libsystem/syscall.h>
int mkdir(const char *path, mode_t mode)
{
return syscall_invoke(SYS_MKDIR, (uint64_t)path, (uint64_t)mode, 0,0,0,0,0,0);
}

View File

@ -0,0 +1,4 @@
#pragma once
#include <libc/sys/types.h>
int mkdir(const char *path, mode_t mode);

View File

@ -21,6 +21,7 @@
#define SYS_EXECVE 14 // 执行新的应用程序
#define SYS_WAIT4 15 // 等待进程退出
#define SYS_EXIT 16 // 进程退出
#define SYS_MKDIR 17 // 创建文件夹
/**
* @brief 用户态系统调用函数