mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-08 14:16:47 +00:00
新的内存管理模块 (#301)
  实现了具有优秀架构设计的新的内存管理模块,对内核空间和用户空间的内存映射、分配、释放、管理等操作进行了封装,使得内核开发者可以更加方便地进行内存管理。   内存管理模块主要由以下类型的组件组成: - **硬件抽象层(MemoryManagementArch)** - 提供对具体处理器架构的抽象,使得内存管理模块可以在不同的处理器架构上运行 - **页面映射器(PageMapper)**- 提供对虚拟地址和物理地址的映射,以及页表的创建、填写、销毁、权限管理等操作。分为两种类型:内核页表映射器(KernelMapper)和用户页表映射器(位于具体的用户地址空间结构中) - **页面刷新器(PageFlusher)** - 提供对页表的刷新操作(整表刷新、单页刷新、跨核心刷新) - **页帧分配器(FrameAllocator)** - 提供对页帧的分配、释放、管理等操作。具体来说,包括BumpAllocator、BuddyAllocator - **小对象分配器** - 提供对小内存对象的分配、释放、管理等操作。指的是内核里面的SlabAllocator (SlabAllocator的实现目前还没有完成) - **MMIO空间管理器** - 提供对MMIO地址空间的分配、管理操作。(目前这个模块待进一步重构) - **用户地址空间管理机制** - 提供对用户地址空间的管理。 - VMA机制 - 提供对用户地址空间的管理,包括VMA的创建、销毁、权限管理等操作 - 用户映射管理 - 与VMA机制共同作用,管理用户地址空间的映射 - **系统调用层** - 提供对用户空间的内存管理系统调用,包括mmap、munmap、mprotect、mremap等 - **C接口兼容层** - 提供对原有的C代码的接口,是的C代码能够正常运行。 除上面的新增内容以外,其它的更改内容: - 新增二进制加载器,以及elf的解析器 - 解决由于local_irq_save、local_irq_restore函数的汇编不规范导致影响栈行为的bug。 - 解决local_irq_save未关中断的错误。 - 修复sys_gettimeofday对timezone参数的处理的bug
This commit is contained in:
parent
0663027b11
commit
d8ad0a5e77
3
.vscode/settings.json
vendored
3
.vscode/settings.json
vendored
@ -174,7 +174,8 @@
|
||||
"sleep.h": "c",
|
||||
"net.h": "c",
|
||||
"lz4.h": "c",
|
||||
"cmd_test.h": "c"
|
||||
"cmd_test.h": "c",
|
||||
"cmpxchg.h": "c"
|
||||
},
|
||||
"C_Cpp.errorSquiggles": "enabled",
|
||||
"esbonio.sphinx.confDir": "",
|
||||
|
12
Makefile
12
Makefile
@ -61,14 +61,24 @@ clean:
|
||||
cd .. ;\
|
||||
done
|
||||
|
||||
.PHONY: ECHO
|
||||
ECHO:
|
||||
@echo "$@"
|
||||
|
||||
cppcheck-xml:
|
||||
cppcheck kernel user --platform=unix64 --std=c11 -I user/libs/ -I=kernel/ --force -j $(NPROCS) --xml 2> cppcheck.xml
|
||||
|
||||
cppcheck:
|
||||
cppcheck kernel user --platform=unix64 --std=c11 -I user/libs/ -I=kernel/ --force -j $(NPROCS)
|
||||
|
||||
docs: ECHO
|
||||
bash -c "cd docs && make html && cd .."
|
||||
|
||||
clean-docs:
|
||||
bash -c "cd docs && make clean && cd .."
|
||||
|
||||
gdb:
|
||||
gdb -n -x tools/.gdbinit
|
||||
rust-gdb -n -x tools/.gdbinit
|
||||
|
||||
# 写入磁盘镜像
|
||||
write_diskimage:
|
||||
|
15
README.md
15
README.md
@ -1,5 +1,9 @@
|
||||
# DragonOS
|
||||
|
||||
## 打造完全自主可控的数字化未来!
|
||||
|
||||
---
|
||||
|
||||
**Languages** 中文|[English](README_EN.md)
|
||||
|
||||
|
||||
@ -18,6 +22,8 @@
|
||||
|
||||
- 项目文档 **[docs.DragonOS.org](https://docs.dragonos.org)**
|
||||
|
||||
- **了解开发动态、开发任务,请访问DragonOS的zulip社群**: [https://DragonOS.zulipchat.com](https://DragonOS.zulipchat.com)
|
||||
|
||||
- 开源论坛 **[bbs.DragonOS.org](https://bbs.dragonos.org)**
|
||||
|
||||
- 软件镜像站 **[mirrors.DragonOS.org](https://mirrors.DragonOS.org)**
|
||||
@ -42,9 +48,9 @@
|
||||
|
||||
## 如何加入?
|
||||
|
||||
  如果你愿意加入我们,你可以查看GitHub仓库的Project面板,选择近期已规划的功能,对他们进行完善。
|
||||
  如果你愿意加入我们,你可以访问DragonOS的zulip社群,了解开发动态、开发任务: [https://DragonOS.zulipchat.com](https://DragonOS.zulipchat.com)
|
||||
|
||||
  或者,你也可以带着你的创意与想法,和社区的小伙伴一起讨论,为DragonOS创造一些新的功能。
|
||||
  你也可以带着你的创意与想法,和社区的小伙伴一起讨论,为DragonOS创造一些新的功能。
|
||||
|
||||
## 如何与社区建立联系?
|
||||
|
||||
@ -52,9 +58,8 @@
|
||||
|
||||
  或者是加入我们的开发交流QQ群:**115763565**
|
||||
|
||||
  对于正式问题的讨论,我们建议在论坛[bbs.DragonOS.org](https://bbs.dragonos.org/)上的对应板块,使用正式的语言发帖讨论。亦或者是在本仓库的issue下提出问题。
|
||||
  对于正式问题的讨论,我们建议在 **[DragonOS的zulip社群](https://DragonOS.zulipchat.com)** 上的对应板块,使用正式的语言发帖讨论。亦或者是在本仓库的issue下提出问题。
|
||||
|
||||
  在发帖的同时,可以把帖子转发到交流QQ群,这样能使得问题的交流更加高效,也便于问题的归档。
|
||||
|
||||
## 贡献者名单
|
||||
|
||||
@ -68,7 +73,7 @@
|
||||
|
||||
## 赞助
|
||||
|
||||
  DragonOS是一个公益性质的开源项目,但是它的发展离不开资金的支持,如果您愿意的话,可以通过 ** [赞助 - DragonOS](https://dragonos.org/?page_id=37) ** ,从而促进这个项目的发展。所有的赞助者的名单都会被公示。您的每一分赞助,都会为DragonOS的发展作出贡献!
|
||||
  DragonOS是一个公益性质的开源项目,但是它的发展离不开资金的支持,如果您愿意的话,可以通过 **[赞助 - DragonOS](https://dragonos.org/?page_id=37)** ,从而促进这个项目的发展。所有的赞助者的名单都会被公示。您的每一分赞助,都会为DragonOS的发展作出贡献!
|
||||
|
||||
### 赞助的资金都会被用到哪里?
|
||||
|
||||
|
@ -12,6 +12,7 @@
|
||||
|
||||
- Home Page **[DragonOS.org](https://dragonos.org)**
|
||||
- Documentation **[docs.DragonOS.org](https://docs.dragonos.org)**
|
||||
- **To learn about development dynamics and development tasks, please visit DragonOS's zulip community:** [https://DragonOS.zulipchat.com](https://DragonOS.zulipchat.com)
|
||||
- BBS **[bbs.DragonOS.org](https://bbs.dragonos.org)**
|
||||
- Software mirror website **[mirrors.DragonOS.org](https://mirrors.DragonOS.org)**
|
||||
- QQ group **115763565**
|
||||
@ -31,7 +32,7 @@
|
||||
|
||||
## How to join DragonOS ?
|
||||
|
||||
  If you are willing to join us, you can check the project panel of the GitHub repo, select the recently planned functions, and improve them.
|
||||
  If you are willing to join us, you can visit DragonOS's zulip community, learn about development dynamics and development tasks: [https://DragonOS.zulipchat.com](https://DragonOS.zulipchat.com)
|
||||
|
||||
  Or, you can also bring your ideas, discuss with community members, and create some new functions for DragonOS.
|
||||
|
||||
@ -41,9 +42,8 @@
|
||||
|
||||
  Or join our development exchange QQ group: **115763565**
|
||||
|
||||
  For the discussion of formal issues, we suggest that they be discussed in the forum [BBS.Dragonos.org](https://bbs.dragonos.org/) In the corresponding section of the, use formal language to post for discussion. Or ask questions under the issue of the warehouse.
|
||||
  For the discussion of formal issues, we recommend that you use the official language to post on the corresponding section of **[DragonOS's zulip community](https://DragonOS.zulipchat.com)**. Or you can post questions under the issue of this repository.
|
||||
|
||||
  While posting, you can forward the post to the communication QQ group, which can make the communication of problems more efficient and facilitate the archiving of problems.
|
||||
|
||||
## List of contributors
|
||||
|
||||
@ -58,7 +58,7 @@ Maintainer longjin's Email:longjin@DragonOS.org
|
||||
|
||||
## Reward
|
||||
|
||||
  DragonOS is an open source public welfare project, but its development cannot be separated from the support of funds. If you want, you can visit ** [Sponsor - DragonOS](https://dragonos.org/?page_id=37) ** , so as to promote the development of this project. The list of all sponsors will be published. Every bit of your sponsorship will contribute to the development of DragonOS!
|
||||
  DragonOS is an open source public welfare project, but its development cannot be separated from the support of funds. If you want, you can visit **[Sponsor - DragonOS](https://dragonos.org/?page_id=37)** , so as to promote the development of this project. The list of all sponsors will be published. Every bit of your sponsorship will contribute to the development of DragonOS!
|
||||
|
||||
### Where will the sponsorship funds be used?
|
||||
|
||||
|
Binary file not shown.
@ -3,12 +3,50 @@
|
||||
与社区建立联系
|
||||
====================================
|
||||
|
||||
联系方式
|
||||
-------------------------
|
||||
|
||||
社区公共邮箱:contact@DragonOS.org
|
||||
|
||||
DragonOS负责人: longjin
|
||||
DragonOS社区负责人: longjin
|
||||
|
||||
工作邮箱: longjin@DragonOS.org
|
||||
|
||||
开发交流QQ群: 115763565
|
||||
|
||||
DragonOS官网: https://DragonOS.org
|
||||
|
||||
了解开发动态、开发任务,请访问DragonOS的zulip社群: https://DragonOS.zulipchat.com
|
||||
|
||||
|
||||
赞助及捐赠
|
||||
-------------------------
|
||||
|
||||
DragonOS是一个开源项目,我们欢迎任何形式的赞助和捐赠,您的捐赠将用于DragonOS的开发和维护,以及社区的运营。
|
||||
|
||||
您可以通过以下方式赞助和捐赠:
|
||||
|
||||
- 访问DragonOS官网 https://DragonOS.org ,点击页面右上角的“赞助”按钮,进行捐赠
|
||||
- 联系社区负责人,沟通具体的赞助方式等。
|
||||
|
||||
财务及捐赠信息公开
|
||||
-------------------------
|
||||
|
||||
DragonOS社区的捐赠信息将按年进行公开。赞助商、赞助者信息将在收到赞助后,15天内进行公开。
|
||||
|
||||
社区管理、财务及法务主体
|
||||
-------------------------
|
||||
|
||||
DragonOS社区的管理、财务及法务主体为:灵高计算机系统(广州)有限公司。
|
||||
|
||||
我们是一家开源公司,我们坚信,开源能为我国将来的IT,打下更好的基础。我们也通过其他业务创收,投入到DragonOS的研发之中。
|
||||
|
||||
公司负责DragonOS社区的运营、财务、法务事项处理工作。
|
||||
|
||||
地址:广东省广州市番禺区小谷围街广州大学城华南理工大学大学城校区
|
||||
|
||||
邮件:contact@DragonOS.org
|
||||
|
||||
官网:https://ringotek.com.cn
|
||||
|
||||
|
||||
|
@ -233,7 +233,10 @@ make run-docker
|
||||
- Docker编译,并写入磁盘镜像,: `make docker`
|
||||
- Docker编译,写入磁盘镜像,并在QEMU中运行: `make run-docker`
|
||||
- 不编译,直接从已有的磁盘镜像启动: `make qemu`
|
||||
- 清理编译产生的文件: `make clean`
|
||||
- 编译文档: `make docs` (需要手动安装sphinx以及docs下的`requirements.txt`中的依赖)
|
||||
- 清理文档: `make clean-docs`
|
||||
|
||||
:::{note}
|
||||
如果您需要在vnc中运行DragonOS,请在上述命令后加上`-vnc`后缀。如:`make run-vnc`
|
||||
:::
|
||||
:::
|
||||
|
@ -12,10 +12,14 @@
|
||||
|
||||
### 内存管理
|
||||
|
||||
- [x] 页分配器
|
||||
- [x] slab分配器
|
||||
- [x] 页帧分配器
|
||||
- [x] 小对象分配器
|
||||
- [x] VMA
|
||||
- [x] MMIO地址空间自动分配
|
||||
- [x] 页面映射器
|
||||
- [x] 硬件抽象层
|
||||
- [x] 独立的用户地址空间管理机制
|
||||
- [x] C接口兼容层
|
||||
|
||||
### 多核
|
||||
|
||||
@ -31,6 +35,7 @@
|
||||
- [x] exec
|
||||
- [x] 进程睡眠(支持高精度睡眠)
|
||||
- [x] kthread机制
|
||||
- [x] 可扩展二进制加载器
|
||||
|
||||
#### 同步原语
|
||||
|
||||
@ -43,7 +48,10 @@
|
||||
### 调度
|
||||
|
||||
- [x] CFS调度器
|
||||
- [x] 实时调度器(FIFO、RR)
|
||||
- [x] 单核调度
|
||||
- [x] 多核调度
|
||||
- [x] 负载均衡
|
||||
|
||||
### IPC
|
||||
|
||||
@ -56,7 +64,8 @@
|
||||
- [x] fat12/16/32
|
||||
- [x] Devfs
|
||||
- [x] RamFS
|
||||
- [x] procfs
|
||||
- [x] Procfs
|
||||
- [x] Sysfs
|
||||
|
||||
### 异常及中断处理
|
||||
|
||||
@ -95,7 +104,7 @@
|
||||
- [x] ACPI 高级电源配置模块
|
||||
- [x] IDE硬盘
|
||||
- [x] AHCI硬盘
|
||||
- [x] PCI
|
||||
- [x] PCI、PCIe总线
|
||||
- [x] XHCI(usb3.0)
|
||||
- [x] ps/2 键盘
|
||||
- [x] ps/2 鼠标
|
||||
@ -107,6 +116,8 @@
|
||||
- [x] VirtIO网卡
|
||||
- [x] x87FPU
|
||||
- [x] TTY终端
|
||||
- [x] 浮点处理器
|
||||
|
||||
|
||||
## 用户层
|
||||
|
||||
@ -121,9 +132,9 @@
|
||||
- [x] 基于字符串匹配的解析
|
||||
- [x] 基本的几个命令
|
||||
|
||||
### 驱动程序
|
||||
### Http Server
|
||||
|
||||
- [x] ps/2键盘用户态驱动
|
||||
- 使用C编写的简单的Http Server,能够运行静态网站。
|
||||
|
||||
## 软件移植
|
||||
|
||||
@ -132,3 +143,4 @@
|
||||
- [x] gmp 6.2.1 [https://github.com/DragonOS-Community/gmp-6.2.1](https://github.com/DragonOS-Community/gmp-6.2.1)
|
||||
- [x] mpfr 4.1.1 [https://github.com/DragonOS-Community/mpfr](https://github.com/DragonOS-Community/mpfr)
|
||||
- [x] mpc 1.2.1 [https://github.com/DragonOS-Community/mpc](https://github.com/DragonOS-Community/mpc)
|
||||
- [x] relibc [https://github.com/DragonOS-Community/relibc](https://github.com/DragonOS-Community/relibc)
|
||||
|
@ -3,9 +3,11 @@ DragonOS简介
|
||||
|
||||
DragonOS龙操作系统(以下简称“DragonOS”)是一个面向服务器领域的,从0开发内核及用户态环境,并提供Linux兼容性的64位操作系统。它使用Rust与C语言进行编写,并正在逐步淘汰原有的C代码,以在将来提供更好的安全性与可靠性。
|
||||
|
||||
**我们致力于打造完全自主可控的数字化未来!**
|
||||
|
||||
DragonOS的目标是,构建一个完全独立自主的、开源的、高性能及高可靠性的服务器操作系统,为国家数字基础设施建设提供完全独立自主的底层核心动力。
|
||||
|
||||
作为一个社区驱动的开源操作系统,为了促进其发展,避免让其遭受一些不遵守开源协议的商业公司的侵权,我们决定使用GPLv2协议开放源代码,以严格的开源协议来保护DragonOS。
|
||||
作为一个社区驱动的开源操作系统,为了促进开源社区建设,并避免让其遭受一些不遵守开源协议的商业公司的侵权,我们决定使用GPLv2协议开放源代码,以严格的开源协议来保护DragonOS。
|
||||
|
||||
你可能对DragonOS中已经实现了哪些功能感兴趣,您可以转到这里::ref:`功能特性 <_genreal_features>`
|
||||
|
||||
|
@ -1,15 +0,0 @@
|
||||
# 内存分配指南
|
||||
|
||||
DragonOS提供了一些用于内存分配的api。您可以使用*kmalloc*来分配小的内存块,也可以使用*alloc_pages*分配连续的2MB大小的内存页面。
|
||||
|
||||
## 选择合适的内存分配器
|
||||
|
||||
在内核中,最直接、最简单的分配内存的方式就是,使用`kmalloc()`函数进行分配。并且,出于安全起见,除非内存在分配后一定会被覆盖,且您能确保内存中的脏数据一定不会对程序造成影响,在其余情况下,我们建议使用`kzalloc()`进行内存分配,它将会在`kmalloc()`的基础上,把申请到的内存进行清零。
|
||||
|
||||
您可以通过`kmalloc()`函数分配得到32bytes到1MBytes之间的内存对象。并且,这些内存对象具有以下的性质:
|
||||
|
||||
- 内存起始地址及大小按照2次幂对齐。(比如,申请的是80bytes的内存空间,那么获得的内存对象大小为128bytes且内存地址按照128bytes对齐)
|
||||
|
||||
对于需要大量连续内存的分配,可以使用`alloc_pages()`向页面分配器申请连续的内存页。
|
||||
|
||||
当内存空间不再被使用时,那么必须释放他们。若您使用的是`kmalloc()`分配的内存,那么您需要使用`kfree()`释放它。若是使用`alloc_pages()`分配的内存,则需要使用`free_pages()`来释放它们。
|
@ -13,16 +13,3 @@
|
||||
data_structures
|
||||
casting
|
||||
softirq
|
||||
|
||||
内存管理
|
||||
===================
|
||||
|
||||
这里快速讲解了如何在DragonOS中分配、使用内存。以便您能快速的了解这个模块。
|
||||
|
||||
详细的内存管理模块的文档请参见::ref:`memory_management_module`
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
allocate-memory
|
||||
mm-api
|
@ -1,267 +0,0 @@
|
||||
(_core_mm_api)=
|
||||
|
||||
# 内存管理API
|
||||
|
||||
## SLAB内存池
|
||||
|
||||
SLAB内存池提供小内存对象的分配功能。
|
||||
|
||||
### `void *kmalloc(unsigned long size, gfp_t gfp)`
|
||||
|
||||
  获取小块的内存。
|
||||
|
||||
#### 描述
|
||||
|
||||
  kmalloc用于获取那些小于2M内存页大小的内存对象。可分配的内存对象大小为32bytes~1MBytes. 且分配的内存块大小、起始地址按照2的n次幂进行对齐。(比如,申请的是80bytes的内存空间,那么获得的内存对象大小为128bytes且内存地址按照128bytes对齐)
|
||||
|
||||
##### 参数
|
||||
|
||||
**size**
|
||||
|
||||
  内存对象的大小
|
||||
|
||||
**gfp**
|
||||
|
||||
  标志位
|
||||
|
||||
### `void *kzalloc(unsigned long size, gfp_t gfp)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  获取小块的内存,并将其清零。其余功能与kmalloc相同。
|
||||
|
||||
|
||||
##### 参数
|
||||
|
||||
**size**
|
||||
|
||||
  内存对象的大小
|
||||
|
||||
**gfp**
|
||||
|
||||
  标志位
|
||||
|
||||
### `unsigned long kfree(void *address)`
|
||||
|
||||
  释放从slab分配的内存。
|
||||
|
||||
#### 描述
|
||||
|
||||
  该函数用于释放通过kmalloc申请的内存。如果`address`为NULL,则函数被调用后,无事发生。
|
||||
|
||||
  请不要通过这个函数释放那些不是从`kmalloc()`或`kzalloc()`申请的内存,否则将会导致系统崩溃。
|
||||
|
||||
##### 参数
|
||||
|
||||
**address**
|
||||
|
||||
  指向内存对象的起始地址的指针
|
||||
|
||||
## 物理页管理
|
||||
|
||||
DragonOS支持对物理页的直接操作
|
||||
|
||||
### `struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  从物理页管理单元中申请一段连续的物理页
|
||||
|
||||
#### 参数
|
||||
|
||||
**zone_select**
|
||||
|
||||
  要申请的物理页所位于的内存区域
|
||||
|
||||
可选值:
|
||||
|
||||
- `ZONE_DMA` DMA映射专用区域
|
||||
- `ZONE_NORMAL` 正常的物理内存区域,已在页表高地址处映射
|
||||
- `ZONE_UNMAPPED_IN_PGT` 尚未在页表中映射的区域
|
||||
|
||||
**num**
|
||||
|
||||
  要申请的连续物理页的数目,该值应当小于64
|
||||
|
||||
**flags**
|
||||
|
||||
  分配的页面要被设置成的属性
|
||||
|
||||
可选值:
|
||||
|
||||
- `PAGE_PGT_MAPPED` 页面在页表中已被映射
|
||||
- `PAGE_KERNEL_INIT` 内核初始化所占用的页
|
||||
- `PAGE_DEVICE` 设备MMIO映射的内存
|
||||
- `PAGE_KERNEL` 内核层页
|
||||
- `PAGE_SHARED` 共享页
|
||||
|
||||
#### 返回值
|
||||
|
||||
##### 成功
|
||||
|
||||
  成功申请则返回指向起始页面的Page结构体的指针
|
||||
|
||||
##### 失败
|
||||
|
||||
  当ZONE错误或内存不足时,返回`NULL`
|
||||
|
||||
### `void free_pages(struct Page *page, int number)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  从物理页管理单元中释放一段连续的物理页。
|
||||
|
||||
#### 参数
|
||||
|
||||
**page**
|
||||
|
||||
  要释放的第一个物理页的Page结构体
|
||||
|
||||
**number**
|
||||
|
||||
  要释放的连续内存页的数量。该值应小于64
|
||||
|
||||
## 页表管理
|
||||
|
||||
### `int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  将一段物理地址映射到当前页表的指定虚拟地址处
|
||||
|
||||
#### 参数
|
||||
|
||||
**virt_addr_start**
|
||||
|
||||
  虚拟地址的起始地址
|
||||
|
||||
**phys_addr_start**
|
||||
|
||||
  物理地址的起始地址
|
||||
|
||||
**length**
|
||||
|
||||
  要映射的地址空间的长度
|
||||
|
||||
**flags**
|
||||
|
||||
  页表项的属性
|
||||
|
||||
**use4k**
|
||||
|
||||
  使用4级页表,将地址区域映射为若干4K页
|
||||
|
||||
### `int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush, bool use4k)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  将一段物理地址映射到指定页表的指定虚拟地址处
|
||||
|
||||
#### 参数
|
||||
|
||||
**proc_page_table_addr**
|
||||
|
||||
  指定的顶层页表的起始地址
|
||||
|
||||
**is_phys**
|
||||
|
||||
  该顶层页表地址是否为物理地址
|
||||
|
||||
**virt_addr_start**
|
||||
|
||||
  虚拟地址的起始地址
|
||||
|
||||
**phys_addr_start**
|
||||
|
||||
  物理地址的起始地址
|
||||
|
||||
**length**
|
||||
|
||||
  要映射的地址空间的长度
|
||||
|
||||
**flags**
|
||||
|
||||
  页表项的属性
|
||||
|
||||
**user**
|
||||
|
||||
  页面是否为用户态可访问
|
||||
|
||||
**flush**
|
||||
|
||||
  完成映射后,是否刷新TLB
|
||||
|
||||
**use4k**
|
||||
|
||||
  使用4级页表,将地址区域映射为若干4K页
|
||||
|
||||
#### 返回值
|
||||
|
||||
- 映射成功:0
|
||||
- 映射失败:-EFAULT
|
||||
|
||||
### `void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  取消给定页表中的指定地址空间的页表项映射。
|
||||
|
||||
#### 参数
|
||||
|
||||
**proc_page_table_addr**
|
||||
|
||||
  指定的顶层页表的基地址
|
||||
|
||||
**is_phys**
|
||||
|
||||
  该顶层页表地址是否为物理地址
|
||||
|
||||
**virt_addr_start**
|
||||
|
||||
  虚拟地址的起始地址
|
||||
|
||||
**length**
|
||||
|
||||
  要取消映射的地址空间的长度
|
||||
|
||||
### `mm_unmap_addr(virt_addr, length)`
|
||||
|
||||
#### 描述
|
||||
|
||||
  该宏定义用于取消当前进程的页表中的指定地址空间的页表项映射。
|
||||
|
||||
#### 参数
|
||||
|
||||
**virt_addr**
|
||||
|
||||
  虚拟地址的起始地址
|
||||
|
||||
**length**
|
||||
|
||||
  要取消映射的地址空间的长度
|
||||
|
||||
## 内存信息获取
|
||||
|
||||
### `struct mm_stat_t mm_stat()`
|
||||
|
||||
#### 描述
|
||||
|
||||
  获取计算机目前的内存空间使用情况
|
||||
|
||||
#### 参数
|
||||
|
||||
无
|
||||
|
||||
#### 返回值
|
||||
|
||||
  返回值是一个`mm_mstat_t`结构体,该结构体定义于`mm/mm.h`中。其中包含了以下信息(单位均为字节):
|
||||
|
||||
| 参数名 | 解释 |
|
||||
| ---------- | ----------------------- |
|
||||
| total | 计算机的总内存数量大小 |
|
||||
| used | 已使用的内存大小 |
|
||||
| free | 空闲物理页所占的内存大小 |
|
||||
| shared | 共享的内存大小 |
|
||||
| cache_used | 位于slab缓冲区中的已使用的内存大小 |
|
||||
| cache_free | 位于slab缓冲区中的空闲的内存大小 |
|
||||
| available | 系统总空闲内存大小(包括kmalloc缓冲区) |
|
29
docs/kernel/memory_management/allocate-memory.md
Normal file
29
docs/kernel/memory_management/allocate-memory.md
Normal file
@ -0,0 +1,29 @@
|
||||
# 内存分配指南
|
||||
|
||||
  本文将讲述如何在内核中进行内存分配。在开始之前,请您先了解一个基本点:DragonOS的内核使用4KB的页来管理内存,并且具有伙伴分配器和slab分配器。并且对用户空间、内核空间均具有特定的管理机制。
|
||||
|
||||
## 1. 安全的分配内存
|
||||
|
||||
  在默认情况下,KernelAllocator被绑定为全局内存分配器,它会根据请求分配的内存大小,自动选择使用slab还是伙伴分配器。因此,在内核中,使用Rust原生的
|
||||
内存分配函数,或者是创建一个`Box`对象等等,都是安全的。
|
||||
|
||||
|
||||
## 2. 手动管理页帧
|
||||
|
||||
:::{warning}
|
||||
**请格外小心!** 手动管理页帧脱离了Rust的内存安全机制,因此可能会造成内存泄漏或者是内存错误。
|
||||
:::
|
||||
|
||||
  在某些情况下,我们需要手动分配页帧。例如,我们需要在内核中创建一个新的页表,或者是在内核中创建一个新的地址空间。这时候,我们需要手动分配页帧。使用`LockedFrameAllocator`的`allocate()`函数,能够分配在物理地址上连续的页帧。请注意,由于底层使用的是buddy分配器,因此页帧数目必须是2的n次幂,且最大大小不超过1GB。
|
||||
|
||||
  当需要释放页帧的时候,使用`LockedFrameAllocator`的`deallocate()`函数,或者是`deallocate_page_frames()`函数,能够释放在物理地址上连续的页帧。
|
||||
|
||||
  当您需要映射页帧的时候,可使用`KernelMapper::lock()`函数,获得一个内核映射器对象,然后进行映射。由于KernelMapper是对PageMapper的封装,因此您在获取KernelMapper之后,可以使用PageMapper相关接口对内核空间的映射进行管理。
|
||||
|
||||
:::{warning}
|
||||
**千万不要** 使用KernelMapper去映射用户地址空间的内存,这会使得这部分内存脱离用户地址空间的管理,从而导致内存错误。
|
||||
:::
|
||||
|
||||
## 3. 为用户程序分配内存
|
||||
|
||||
  在内核中,您可以使用用户地址空间结构体(`AddressSpace`)的`mmap()`,`map_anonymous()`等函数,为用户程序分配内存。这些函数会自动将用户程序的内存映射到用户地址空间中,并且会自动创建VMA结构体。您可以使用`AddressSpace`的`munmap()`函数,将用户程序的内存从用户地址空间中解除映射,并且销毁VMA结构体。调整权限等操作可以使用`AddressSpace`的`mprotect()`函数。
|
@ -1,14 +1,14 @@
|
||||
.. _memory_management_module:
|
||||
|
||||
====================================
|
||||
内存管理文档
|
||||
内存管理
|
||||
====================================
|
||||
|
||||
这里讲解了内存管理模块的一些设计及实现原理。
|
||||
|
||||
如果你正在寻找使用内存管理模块的方法,请转到::ref:`内存管理API文档 <_core_mm_api>`
|
||||
这里讲解了内存管理模块的一些设计及实现原理,以及相应的接口。
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
intro
|
||||
allocate-memory
|
||||
mmio
|
20
docs/kernel/memory_management/intro.md
Normal file
20
docs/kernel/memory_management/intro.md
Normal file
@ -0,0 +1,20 @@
|
||||
# 内存管理模块简介
|
||||
|
||||
## 1. 概述
|
||||
|
||||
  DragonOS实现了具有优秀架构设计的内存管理模块,对内核空间和用户空间的内存映射、分配、释放、管理等操作进行了封装,使得内核开发者可以更加方便地进行内存管理。
|
||||
|
||||
  DragonOS的内存管理模块主要由以下类型的组件组成:
|
||||
|
||||
- **硬件抽象层(MemoryManagementArch)** - 提供对具体处理器架构的抽象,使得内存管理模块可以在不同的处理器架构上运行
|
||||
- **页面映射器(PageMapper)**- 提供对虚拟地址和物理地址的映射,以及页表的创建、填写、销毁、权限管理等操作。分为两种类型:内核页表映射器(KernelMapper)和用户页表映射器(位于具体的用户地址空间结构中)
|
||||
- **页面刷新器(PageFlusher)** - 提供对页表的刷新操作(整表刷新、单页刷新、跨核心刷新)
|
||||
- **页帧分配器(FrameAllocator)** - 提供对页帧的分配、释放、管理等操作。具体来说,包括BumpAllocator、BuddyAllocator
|
||||
- **小对象分配器** - 提供对小内存对象的分配、释放、管理等操作。指的是内核里面的SlabAllocator (SlabAllocator的实现目前还没有完成)
|
||||
- **MMIO空间管理器** - 提供对MMIO地址空间的分配、管理操作。(目前这个模块待进一步重构)
|
||||
- **用户地址空间管理机制** - 提供对用户地址空间的管理。
|
||||
- VMA机制 - 提供对用户地址空间的管理,包括VMA的创建、销毁、权限管理等操作
|
||||
- 用户映射管理 - 与VMA机制共同作用,管理用户地址空间的映射
|
||||
- **系统调用层** - 提供对用户空间的内存管理系统调用,包括mmap、munmap、mprotect、mremap等
|
||||
- **C接口兼容层** - 提供对原有的C代码的接口,使得C代码能够正常运行。
|
||||
|
@ -5,4 +5,5 @@
|
||||
:maxdepth: 1
|
||||
|
||||
kthread
|
||||
pcb
|
||||
pcb
|
||||
load_binary
|
||||
|
15
docs/kernel/process_management/load_binary.md
Normal file
15
docs/kernel/process_management/load_binary.md
Normal file
@ -0,0 +1,15 @@
|
||||
# 加载程序
|
||||
|
||||
## 1. 二进制程序装载
|
||||
|
||||
  在小节,你将了解DragonOS的二进制程序加载器的原理。
|
||||
|
||||
  DragonOS在装载二进制程序时,执行了“探测-装载”的过程。
|
||||
|
||||
  在探测阶段,DragonOS会读取文件首部,然后依次调用各个二进制加载器的探测函数,判断该二进制程序是否适用于该加载器。如果适用,则使用这个加载器进行装载。
|
||||
|
||||
  在装载阶段,DragonOS会使用上述加载器进行装载。装载器会将二进制程序的各个段映射到内存中,并且得到二进制程序的入口地址。
|
||||
|
||||
:::{note}
|
||||
目前DragonOS不支持动态链接,因此所有的二进制程序都是静态链接的。并且暂时支持的只有ELF加载器。
|
||||
:::
|
@ -22,6 +22,9 @@ smoltcp = { git = "https://github.com/DragonOS-Community/smoltcp.git", rev = "90
|
||||
num-traits = { git = "https://github.com/DragonOS-Community/num-traits.git", rev="1597c1c", default-features = false }
|
||||
num = { version = "0.4.0", default-features = false }
|
||||
num-derive = "0.3"
|
||||
# 一个no_std的hashmap、hashset
|
||||
hashbrown = "0.13.2"
|
||||
elf = { version = "0.7.2", default-features = false }
|
||||
|
||||
# 构建时依赖项
|
||||
[build-dependencies]
|
||||
@ -34,4 +37,8 @@ version = "1.4.0"
|
||||
features = ["spin_no_std"]
|
||||
|
||||
|
||||
# The release profile, used for `cargo build --release`
|
||||
[profile.release]
|
||||
debug = false
|
||||
|
||||
|
||||
|
@ -17,7 +17,7 @@ export ASFLAGS := --64
|
||||
LD_LIST := head.o
|
||||
|
||||
|
||||
kernel_subdirs := common driver process debug arch exception mm smp sched syscall ktest libs ipc io time
|
||||
kernel_subdirs := common driver process debug arch exception smp sched syscall ktest libs ipc io time
|
||||
|
||||
|
||||
|
||||
@ -58,7 +58,8 @@ all: kernel
|
||||
$(LD) -b elf64-x86-64 -z muldefs -o kernel head.o main.o $(shell find . -name "*.o") ../target/x86_64-unknown-none/release/libdragonos_kernel.a ./debug/kallsyms.o -T link.lds
|
||||
@echo "Generating kernel ELF file..."
|
||||
# 生成内核文件
|
||||
$(OBJCOPY) -I elf64-x86-64 -O elf64-x86-64 -R ".comment" -R ".eh_frame" kernel ../../bin/kernel/kernel.elf
|
||||
$(OBJCOPY) -I elf64-x86-64 -O elf64-x86-64 kernel ../../bin/kernel/kernel.elf
|
||||
# $(OBJCOPY) -I elf64-x86-64 -O elf64-x86-64 -R ".comment" -R ".eh_frame" kernel ../../bin/kernel/kernel.elf
|
||||
@echo "Kernel Build Done."
|
||||
|
||||
ECHO:
|
||||
|
@ -1,9 +1,9 @@
|
||||
pub mod x86_64;
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
pub use self::x86_64::pci::pci::X86_64PciArch as PciArch;
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
pub use self::x86_64::*; //公开x86_64架构下的函数,使外界接口统一
|
||||
|
||||
use crate::driver::pci::pci::{BusDeviceFunction, PciAddr, PciError, PciRoot, SegmentGroupNumber};
|
||||
|
||||
/// TraitPciArch Pci架构相关函数,任何架构都应独立实现trait里的函数
|
||||
pub trait TraitPciArch {
|
||||
/// @brief 读取寄存器值,x86_64架构通过读取两个特定io端口实现
|
||||
|
@ -3,8 +3,9 @@ use core::arch::asm;
|
||||
#[inline]
|
||||
pub fn local_irq_save() -> usize {
|
||||
let x: usize;
|
||||
// x86_64::registers::rflags::
|
||||
unsafe {
|
||||
asm!("pushfq ; pop {} ; cli", out(reg) x, options(nostack));
|
||||
asm!("pushfq; pop {}; cli", out(reg) x, options(nomem, preserves_flags));
|
||||
}
|
||||
x
|
||||
}
|
||||
@ -13,6 +14,6 @@ pub fn local_irq_save() -> usize {
|
||||
// 恢复先前保存的rflags的值x
|
||||
pub fn local_irq_restore(x: usize) {
|
||||
unsafe {
|
||||
asm!("push {} ; popfq", in(reg) x, options(nostack));
|
||||
asm!("push {}; popfq", in(reg) x, options(nomem, preserves_flags));
|
||||
}
|
||||
}
|
||||
|
@ -16,7 +16,15 @@ pub fn switch_process(
|
||||
fp_state_save(prev);
|
||||
fp_state_restore(next);
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
let new_address_space = next.address_space().unwrap_or_else(|| {
|
||||
panic!(
|
||||
"switch_process: next process:{} address space is null",
|
||||
next.pid
|
||||
)
|
||||
});
|
||||
unsafe {
|
||||
// 加载页表
|
||||
new_address_space.read().user_mapper.utable.make_current();
|
||||
switch_proc(prev, next);
|
||||
}
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
|
@ -79,7 +79,7 @@ impl FpState {
|
||||
/// @brief 从用户态进入内核时,保存浮点寄存器,并关闭浮点功能
|
||||
pub fn fp_state_save(pcb: &mut process_control_block) {
|
||||
// 该过程中不允许中断
|
||||
let rflags = local_irq_save();
|
||||
let rflags: usize = local_irq_save();
|
||||
|
||||
let fp: &mut FpState = if pcb.fp_state == null_mut() {
|
||||
let f = Box::leak(Box::new(FpState::default()));
|
||||
|
@ -41,14 +41,14 @@ impl InterruptArch for X86_64InterruptArch {
|
||||
fn is_irq_enabled() -> bool {
|
||||
let rflags: u64;
|
||||
unsafe {
|
||||
asm!("pushfq; pop {}", out(reg) rflags);
|
||||
asm!("pushfq; pop {}", out(reg) rflags, options(nomem, preserves_flags));
|
||||
}
|
||||
return rflags & (1 << 9) != 0;
|
||||
}
|
||||
|
||||
unsafe fn save_and_disable_irq() -> IrqFlagsGuard {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
let rflags = local_irq_save() as u64;
|
||||
let rflags = local_irq_save();
|
||||
let flags = IrqFlags::new(rflags);
|
||||
let guard = IrqFlagsGuard::new(flags);
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
@ -57,7 +57,7 @@ impl InterruptArch for X86_64InterruptArch {
|
||||
|
||||
unsafe fn restore_irq(flags: IrqFlags) {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
local_irq_restore(flags.flags() as usize);
|
||||
local_irq_restore(flags.flags());
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
}
|
||||
}
|
||||
|
1
kernel/src/arch/x86_64/libs/mod.rs
Normal file
1
kernel/src/arch/x86_64/libs/mod.rs
Normal file
@ -0,0 +1 @@
|
||||
|
@ -1,28 +1,627 @@
|
||||
pub mod barrier;
|
||||
use crate::include::bindings::bindings::process_control_block;
|
||||
|
||||
use alloc::vec::Vec;
|
||||
use hashbrown::HashSet;
|
||||
use x86::time::rdtsc;
|
||||
use x86_64::registers::model_specific::EferFlags;
|
||||
|
||||
use crate::driver::uart::uart::c_uart_send_str;
|
||||
use crate::include::bindings::bindings::{
|
||||
disable_textui, enable_textui, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
|
||||
video_reinitialize,
|
||||
};
|
||||
use crate::libs::align::page_align_up;
|
||||
use crate::libs::printk::PrintkWriter;
|
||||
use crate::libs::spinlock::SpinLock;
|
||||
|
||||
use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount};
|
||||
use crate::mm::mmio_buddy::mmio_init;
|
||||
use crate::{
|
||||
arch::MMArch,
|
||||
mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
|
||||
};
|
||||
|
||||
use crate::mm::kernel_mapper::KernelMapper;
|
||||
use crate::mm::page::{PageEntry, PageFlags};
|
||||
use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, PhysMemoryArea, VirtAddr};
|
||||
use crate::syscall::SystemError;
|
||||
use crate::{kdebug, kinfo};
|
||||
|
||||
use core::arch::asm;
|
||||
use core::ptr::read_volatile;
|
||||
use core::ffi::c_void;
|
||||
use core::fmt::{Debug, Write};
|
||||
use core::mem::{self};
|
||||
|
||||
use self::barrier::mfence;
|
||||
use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
|
||||
|
||||
/// @brief 切换进程的页表
|
||||
///
|
||||
/// @param 下一个进程的pcb。将会把它的页表切换进来。
|
||||
///
|
||||
/// @return 下一个进程的pcb(把它return的目的主要是为了归还所有权)
|
||||
#[inline(always)]
|
||||
#[allow(dead_code)]
|
||||
pub fn switch_mm(
|
||||
next_pcb: &'static mut process_control_block,
|
||||
) -> &'static mut process_control_block {
|
||||
mfence();
|
||||
// kdebug!("to get pml4t");
|
||||
let pml4t = unsafe { read_volatile(&next_pcb.mm.as_ref().unwrap().pgd) };
|
||||
pub type PageMapper =
|
||||
crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
|
||||
|
||||
/// @brief 用于存储物理内存区域的数组
|
||||
static mut PHYS_MEMORY_AREAS: [PhysMemoryArea; 512] = [PhysMemoryArea {
|
||||
base: PhysAddr::new(0),
|
||||
size: 0,
|
||||
}; 512];
|
||||
|
||||
/// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
|
||||
static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
|
||||
|
||||
/// 内核的第一个页表在pml4中的索引
|
||||
/// 顶级页表的[256, 512)项是内核的页表
|
||||
static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
|
||||
|
||||
static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct X86_64MMBootstrapInfo {
|
||||
kernel_code_start: usize,
|
||||
kernel_code_end: usize,
|
||||
kernel_data_end: usize,
|
||||
kernel_rodata_end: usize,
|
||||
start_brk: usize,
|
||||
}
|
||||
|
||||
impl Debug for X86_64MMBootstrapInfo {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"kernel_code_start: {:x}, kernel_code_end: {:x}, kernel_data_end: {:x}, kernel_rodata_end: {:x}, start_brk: {:x}",
|
||||
self.kernel_code_start, self.kernel_code_end, self.kernel_data_end, self.kernel_rodata_end, self.start_brk)
|
||||
}
|
||||
}
|
||||
|
||||
pub static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
|
||||
|
||||
/// @brief X86_64的内存管理架构结构体
|
||||
#[derive(Debug, Clone, Copy, Hash)]
|
||||
pub struct X86_64MMArch;
|
||||
|
||||
/// XD标志位是否被保留
|
||||
static XD_RESERVED: AtomicBool = AtomicBool::new(false);
|
||||
|
||||
impl MemoryManagementArch for X86_64MMArch {
|
||||
/// 4K页
|
||||
const PAGE_SHIFT: usize = 12;
|
||||
|
||||
/// 每个页表项占8字节,总共有512个页表项
|
||||
const PAGE_ENTRY_SHIFT: usize = 9;
|
||||
|
||||
/// 四级页表(PML4T、PDPT、PDT、PT)
|
||||
const PAGE_LEVELS: usize = 4;
|
||||
|
||||
/// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
|
||||
/// 第[48, 51]位表示保留。因此,有效位的index为52。
|
||||
/// 请注意,第63位是XD位,表示是否允许执行。
|
||||
const ENTRY_ADDRESS_SHIFT: usize = 52;
|
||||
|
||||
const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
|
||||
|
||||
const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
|
||||
|
||||
const ENTRY_FLAG_PRESENT: usize = 1 << 0;
|
||||
|
||||
const ENTRY_FLAG_READONLY: usize = 0;
|
||||
|
||||
const ENTRY_FLAG_READWRITE: usize = 1 << 1;
|
||||
|
||||
const ENTRY_FLAG_USER: usize = 1 << 2;
|
||||
|
||||
const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
|
||||
|
||||
const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
|
||||
|
||||
const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
|
||||
/// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
|
||||
const ENTRY_FLAG_EXEC: usize = 0;
|
||||
|
||||
/// 物理地址与虚拟地址的偏移量
|
||||
/// 0xffff_8000_0000_0000
|
||||
const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
|
||||
|
||||
const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff);
|
||||
const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
|
||||
const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
|
||||
|
||||
/// @brief 获取物理内存区域
|
||||
unsafe fn init() -> &'static [crate::mm::PhysMemoryArea] {
|
||||
extern "C" {
|
||||
fn _text();
|
||||
fn _etext();
|
||||
fn _edata();
|
||||
fn _erodata();
|
||||
fn _end();
|
||||
}
|
||||
|
||||
Self::init_xd_rsvd();
|
||||
|
||||
let bootstrap_info = X86_64MMBootstrapInfo {
|
||||
kernel_code_start: _text as usize,
|
||||
kernel_code_end: _etext as usize,
|
||||
kernel_data_end: _edata as usize,
|
||||
kernel_rodata_end: _erodata as usize,
|
||||
start_brk: _end as usize,
|
||||
};
|
||||
unsafe {
|
||||
BOOTSTRAP_MM_INFO = Some(bootstrap_info);
|
||||
}
|
||||
|
||||
// 初始化物理内存区域(从multiboot2中获取)
|
||||
let areas_count =
|
||||
Self::init_memory_area_from_multiboot2().expect("init memory area failed");
|
||||
c_uart_send_str(0x3f8, "x86 64 init end\n\0".as_ptr());
|
||||
|
||||
return &PHYS_MEMORY_AREAS[0..areas_count];
|
||||
}
|
||||
|
||||
/// @brief 刷新TLB中,关于指定虚拟地址的条目
|
||||
unsafe fn invalidate_page(address: VirtAddr) {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// @brief 刷新TLB中,所有的条目
|
||||
unsafe fn invalidate_all() {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
// 通过设置cr3寄存器,来刷新整个TLB
|
||||
Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// @brief 获取顶级页表的物理地址
|
||||
unsafe fn table(_table_kind: PageTableKind) -> PhysAddr {
|
||||
let paddr: usize;
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
return PhysAddr::new(paddr);
|
||||
}
|
||||
|
||||
/// @brief 设置顶级页表的物理地址到处理器中
|
||||
unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址是否合法
|
||||
fn virt_is_valid(virt: VirtAddr) -> bool {
|
||||
return virt.is_canonical();
|
||||
}
|
||||
|
||||
/// 获取内存管理初始化时,创建的第一个内核页表的地址
|
||||
fn initial_page_table() -> PhysAddr {
|
||||
unsafe {
|
||||
return INITIAL_CR3_VALUE;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 创建新的顶层页表
|
||||
///
|
||||
/// 该函数会创建页表并复制内核的映射到新的页表中
|
||||
///
|
||||
/// @return 新的页表
|
||||
fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
|
||||
let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
|
||||
PageMapper::create(PageTableKind::User, LockedFrameAllocator)
|
||||
.ok_or(SystemError::ENOMEM)?
|
||||
};
|
||||
|
||||
let current_ktable: KernelMapper = KernelMapper::lock();
|
||||
let copy_mapping = |pml4_entry_no| unsafe {
|
||||
let entry: PageEntry<X86_64MMArch> = current_ktable
|
||||
.table()
|
||||
.entry(pml4_entry_no)
|
||||
.unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
|
||||
new_umapper.table().set_entry(pml4_entry_no, entry)
|
||||
};
|
||||
|
||||
// 复制内核的映射
|
||||
for pml4_entry_no in KERNEL_PML4E_NO..512 {
|
||||
copy_mapping(pml4_entry_no);
|
||||
}
|
||||
|
||||
return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
|
||||
}
|
||||
}
|
||||
|
||||
impl X86_64MMArch {
|
||||
unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
|
||||
// 这个数组用来存放内存区域的信息(从C获取)
|
||||
let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
|
||||
c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 begin\n\0".as_ptr());
|
||||
|
||||
let mut mb2_count: u32 = 0;
|
||||
multiboot2_iter(
|
||||
Some(multiboot2_get_memory),
|
||||
&mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
|
||||
&mut mb2_count,
|
||||
);
|
||||
c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 2\n\0".as_ptr());
|
||||
|
||||
let mb2_count = mb2_count as usize;
|
||||
let mut areas_count = 0usize;
|
||||
let mut total_mem_size = 0usize;
|
||||
for i in 0..mb2_count {
|
||||
// Only use the memory area if its type is 1 (RAM)
|
||||
if mb2_mem_info[i].type_ == 1 {
|
||||
// Skip the memory area if its len is 0
|
||||
if mb2_mem_info[i].len == 0 {
|
||||
continue;
|
||||
}
|
||||
total_mem_size += mb2_mem_info[i].len as usize;
|
||||
PHYS_MEMORY_AREAS[areas_count].base = PhysAddr::new(mb2_mem_info[i].addr as usize);
|
||||
PHYS_MEMORY_AREAS[areas_count].size = mb2_mem_info[i].len as usize;
|
||||
areas_count += 1;
|
||||
}
|
||||
}
|
||||
c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 end\n\0".as_ptr());
|
||||
kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
|
||||
|
||||
return Ok(areas_count);
|
||||
}
|
||||
|
||||
fn init_xd_rsvd() {
|
||||
// 读取ia32-EFER寄存器的值
|
||||
let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
|
||||
if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
|
||||
// NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
|
||||
kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
|
||||
XD_RESERVED.store(true, Ordering::Relaxed);
|
||||
}
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// 判断XD标志位是否被保留
|
||||
pub fn is_xd_reserved() -> bool {
|
||||
return XD_RESERVED.load(Ordering::Relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
impl VirtAddr {
|
||||
/// @brief 判断虚拟地址是否合法
|
||||
#[inline(always)]
|
||||
pub fn is_canonical(self) -> bool {
|
||||
let x = self.data() & X86_64MMArch::PHYS_OFFSET;
|
||||
// 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
|
||||
// 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
|
||||
return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 初始化内存管理模块
|
||||
pub fn mm_init() {
|
||||
c_uart_send_str(0x3f8, "mm_init\n\0".as_ptr());
|
||||
PrintkWriter
|
||||
.write_fmt(format_args!("mm_init() called\n"))
|
||||
.unwrap();
|
||||
// printk_color!(GREEN, BLACK, "mm_init() called\n");
|
||||
static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
|
||||
if _CALL_ONCE
|
||||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
|
||||
.is_err()
|
||||
{
|
||||
c_uart_send_str(0x3f8, "mm_init err\n\0".as_ptr());
|
||||
panic!("mm_init() can only be called once");
|
||||
}
|
||||
|
||||
unsafe { X86_64MMArch::init() };
|
||||
kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
|
||||
kdebug!("phys[0]=virt[0x{:x}]", unsafe {
|
||||
MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
|
||||
});
|
||||
|
||||
// 初始化内存管理器
|
||||
unsafe { allocator_init() };
|
||||
// enable mmio
|
||||
mmio_init();
|
||||
// 启用printk的alloc选项
|
||||
PrintkWriter.enable_alloc();
|
||||
}
|
||||
|
||||
unsafe fn allocator_init() {
|
||||
let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
|
||||
let phy_offset =
|
||||
unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
|
||||
|
||||
kdebug!("PhysArea[0..10] = {:?}", &PHYS_MEMORY_AREAS[0..10]);
|
||||
let mut bump_allocator =
|
||||
BumpAllocator::<X86_64MMArch>::new(&PHYS_MEMORY_AREAS, phy_offset.data());
|
||||
kdebug!(
|
||||
"BumpAllocator created, offset={:?}",
|
||||
bump_allocator.offset()
|
||||
);
|
||||
|
||||
// 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
|
||||
// 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
|
||||
// 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
|
||||
let _old_page_table = MMArch::table(PageTableKind::Kernel);
|
||||
|
||||
let new_page_table: PhysAddr;
|
||||
// 使用bump分配器,把所有的内存页都映射到页表
|
||||
{
|
||||
// 用bump allocator创建新的页表
|
||||
let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
|
||||
crate::mm::page::PageMapper::<MMArch, _>::create(
|
||||
PageTableKind::Kernel,
|
||||
&mut bump_allocator,
|
||||
)
|
||||
.expect("Failed to create page mapper");
|
||||
new_page_table = mapper.table().phys();
|
||||
kdebug!("PageMapper created");
|
||||
|
||||
// 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
|
||||
{
|
||||
let table = mapper.table();
|
||||
let empty_entry = PageEntry::<MMArch>::new(0);
|
||||
for i in 0..MMArch::PAGE_ENTRY_NUM {
|
||||
table
|
||||
.set_entry(i, empty_entry)
|
||||
.expect("Failed to empty page table entry");
|
||||
}
|
||||
}
|
||||
kdebug!("Successfully emptied page table");
|
||||
|
||||
for area in PHYS_MEMORY_AREAS.iter() {
|
||||
// kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
|
||||
for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
|
||||
let paddr = area.base.add(i * MMArch::PAGE_SIZE);
|
||||
let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
|
||||
let flags = kernel_page_flags::<MMArch>(vaddr);
|
||||
|
||||
let flusher = mapper
|
||||
.map_phys(vaddr, paddr, flags)
|
||||
.expect("Failed to map frame");
|
||||
// 暂时不刷新TLB
|
||||
flusher.ignore();
|
||||
}
|
||||
}
|
||||
|
||||
// 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
|
||||
LowAddressRemapping::remap_at_low_address(&mut mapper);
|
||||
}
|
||||
|
||||
unsafe {
|
||||
asm!("mov cr3, {}", in(reg) pml4t);
|
||||
INITIAL_CR3_VALUE = new_page_table;
|
||||
}
|
||||
mfence();
|
||||
return next_pcb;
|
||||
kdebug!(
|
||||
"After mapping all physical memory, DragonOS used: {} KB",
|
||||
bump_allocator.offset() / 1024
|
||||
);
|
||||
|
||||
// 初始化buddy_allocator
|
||||
let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
|
||||
|
||||
// 设置全局的页帧分配器
|
||||
unsafe { set_inner_allocator(buddy_allocator) };
|
||||
kinfo!("Successfully initialized buddy allocator");
|
||||
// 关闭显示输出
|
||||
unsafe {
|
||||
disable_textui();
|
||||
}
|
||||
// make the new page table current
|
||||
{
|
||||
let mut binding = INNER_ALLOCATOR.lock();
|
||||
let mut allocator_guard = binding.as_mut().unwrap();
|
||||
kdebug!("To enable new page table.");
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
|
||||
PageTableKind::Kernel,
|
||||
new_page_table,
|
||||
&mut allocator_guard,
|
||||
);
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
mapper.make_current();
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
kdebug!("New page table enabled");
|
||||
}
|
||||
kdebug!("Successfully enabled new page table");
|
||||
// 重置显示输出目标
|
||||
unsafe {
|
||||
video_reinitialize(false);
|
||||
}
|
||||
|
||||
// 打开显示输出
|
||||
unsafe {
|
||||
enable_textui();
|
||||
}
|
||||
kdebug!("Text UI enabled");
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_test_buddy() {
|
||||
test_buddy();
|
||||
}
|
||||
pub fn test_buddy() {
|
||||
// 申请内存然后写入数据然后free掉
|
||||
// 总共申请200MB内存
|
||||
const TOTAL_SIZE: usize = 200 * 1024 * 1024;
|
||||
|
||||
for i in 0..10 {
|
||||
kdebug!("Test buddy, round: {i}");
|
||||
// 存放申请的内存块
|
||||
let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
|
||||
// 存放已经申请的内存块的地址(用于检查重复)
|
||||
let mut addr_set: HashSet<PhysAddr> = HashSet::new();
|
||||
|
||||
let mut allocated = 0usize;
|
||||
|
||||
let mut free_count = 0usize;
|
||||
|
||||
while allocated < TOTAL_SIZE {
|
||||
let mut random_size = 0u64;
|
||||
unsafe { x86::random::rdrand64(&mut random_size) };
|
||||
// 一次最多申请4M
|
||||
random_size = random_size % (1024 * 4096);
|
||||
if random_size == 0 {
|
||||
continue;
|
||||
}
|
||||
let random_size =
|
||||
core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
|
||||
let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
|
||||
// 获取帧
|
||||
let (paddr, allocated_frame_count) =
|
||||
unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
|
||||
assert!(allocated_frame_count.data().is_power_of_two());
|
||||
assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
|
||||
unsafe {
|
||||
assert!(MMArch::phys_2_virt(paddr)
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
|
||||
}
|
||||
allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
|
||||
v.push((paddr, allocated_frame_count));
|
||||
assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
|
||||
|
||||
// 写入数据
|
||||
let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
|
||||
let slice = unsafe {
|
||||
core::slice::from_raw_parts_mut(
|
||||
vaddr.data() as *mut u8,
|
||||
allocated_frame_count.data() * MMArch::PAGE_SIZE,
|
||||
)
|
||||
};
|
||||
for i in 0..slice.len() {
|
||||
slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
|
||||
}
|
||||
|
||||
// 随机释放一个内存块
|
||||
if v.len() > 0 {
|
||||
let mut random_index = 0u64;
|
||||
unsafe { x86::random::rdrand64(&mut random_index) };
|
||||
// 70%概率释放
|
||||
if random_index % 10 > 7 {
|
||||
continue;
|
||||
}
|
||||
random_index = random_index % v.len() as u64;
|
||||
let random_index = random_index as usize;
|
||||
let (paddr, allocated_frame_count) = v.remove(random_index);
|
||||
assert!(addr_set.remove(&paddr));
|
||||
unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
|
||||
free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
kdebug!(
|
||||
"Allocated {} MB memory, release: {} MB, no release: {} bytes",
|
||||
allocated / 1024 / 1024,
|
||||
free_count / 1024 / 1024,
|
||||
(allocated - free_count)
|
||||
);
|
||||
|
||||
kdebug!("Now, to release buddy memory");
|
||||
// 释放所有的内存
|
||||
for (paddr, allocated_frame_count) in v {
|
||||
unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
|
||||
assert!(addr_set.remove(&paddr));
|
||||
free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
|
||||
}
|
||||
|
||||
kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
|
||||
}
|
||||
}
|
||||
/// 全局的页帧分配器
|
||||
#[derive(Debug, Clone, Copy, Hash)]
|
||||
pub struct LockedFrameAllocator;
|
||||
|
||||
impl FrameAllocator for LockedFrameAllocator {
|
||||
unsafe fn allocate(
|
||||
&mut self,
|
||||
count: crate::mm::allocator::page_frame::PageFrameCount,
|
||||
) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
|
||||
return allocator.allocate(count);
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn free(
|
||||
&mut self,
|
||||
address: crate::mm::PhysAddr,
|
||||
count: crate::mm::allocator::page_frame::PageFrameCount,
|
||||
) {
|
||||
assert!(count.data().is_power_of_two());
|
||||
if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
|
||||
return allocator.free(address, count);
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn usage(&self) -> crate::mm::allocator::page_frame::PageFrameUsage {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取内核地址默认的页面标志
|
||||
pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
|
||||
let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
|
||||
|
||||
if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
|
||||
// Remap kernel code execute
|
||||
return PageFlags::new().set_execute(true).set_write(true);
|
||||
} else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
|
||||
// Remap kernel rodata read only
|
||||
return PageFlags::new().set_execute(true);
|
||||
} else {
|
||||
return PageFlags::new().set_write(true).set_execute(true);
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
|
||||
static FLAG: AtomicBool = AtomicBool::new(false);
|
||||
if FLAG
|
||||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
|
||||
.is_err()
|
||||
{
|
||||
panic!("Cannot set inner allocator twice!");
|
||||
}
|
||||
*INNER_ALLOCATOR.lock() = Some(allocator);
|
||||
}
|
||||
|
||||
/// 低地址重映射的管理器
|
||||
///
|
||||
/// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
|
||||
pub struct LowAddressRemapping;
|
||||
|
||||
impl LowAddressRemapping {
|
||||
// 映射32M
|
||||
const REMAP_SIZE: usize = 32 * 1024 * 1024;
|
||||
|
||||
pub unsafe fn remap_at_low_address(
|
||||
mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
|
||||
) {
|
||||
for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
|
||||
let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
|
||||
let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
|
||||
let flags = kernel_page_flags::<MMArch>(vaddr);
|
||||
|
||||
let flusher = mapper
|
||||
.map_phys(vaddr, paddr, flags)
|
||||
.expect("Failed to map frame");
|
||||
// 暂时不刷新TLB
|
||||
flusher.ignore();
|
||||
}
|
||||
}
|
||||
|
||||
/// 取消低地址的映射
|
||||
pub unsafe fn unmap_at_low_address(flush: bool) {
|
||||
let mut mapper = KernelMapper::lock();
|
||||
assert!(mapper.as_mut().is_some());
|
||||
for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
|
||||
let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
|
||||
let flusher = mapper
|
||||
.as_mut()
|
||||
.unwrap()
|
||||
.unmap(vaddr, true)
|
||||
.expect("Failed to unmap frame");
|
||||
if flush == false {
|
||||
flusher.ignore();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_mm_init() {
|
||||
mm_init();
|
||||
}
|
||||
|
@ -4,6 +4,7 @@ pub mod context;
|
||||
pub mod cpu;
|
||||
pub mod fpu;
|
||||
pub mod interrupt;
|
||||
pub mod libs;
|
||||
pub mod mm;
|
||||
pub mod msi;
|
||||
pub mod pci;
|
||||
@ -11,4 +12,9 @@ pub mod rand;
|
||||
pub mod sched;
|
||||
pub mod syscall;
|
||||
|
||||
pub use self::pci::pci::X86_64PciArch as PciArch;
|
||||
|
||||
/// 导出内存管理的Arch结构体
|
||||
pub use self::mm::X86_64MMArch as MMArch;
|
||||
|
||||
pub use interrupt::X86_64InterruptArch as CurrentIrqArch;
|
||||
|
@ -12,7 +12,7 @@ pub fn ia64_pci_get_arch_msi_message_address(processor: u16) -> u32 {
|
||||
/// @return MSI Message Address
|
||||
pub fn ia64_pci_get_arch_msi_message_data(
|
||||
vector: u16,
|
||||
processor: u16,
|
||||
_processor: u16,
|
||||
trigger: TriggerMode,
|
||||
) -> u32 {
|
||||
match trigger {
|
||||
|
@ -1,24 +1,27 @@
|
||||
use core::ffi::c_void;
|
||||
use core::{ffi::c_void, panic};
|
||||
|
||||
use alloc::{string::String, vec::Vec};
|
||||
|
||||
use crate::{
|
||||
arch::{asm::current::current_pcb, CurrentIrqArch},
|
||||
exception::InterruptArch,
|
||||
filesystem::vfs::MAX_PATHLEN,
|
||||
include::bindings::bindings::{
|
||||
pt_regs, set_system_trap_gate, verify_area, CLONE_FS, CLONE_SIGNAL, CLONE_VM, PAGE_4K_SIZE,
|
||||
pt_regs, set_system_trap_gate, CLONE_FS, CLONE_SIGNAL, CLONE_VM, USER_CS, USER_DS,
|
||||
},
|
||||
ipc::signal::sys_rt_sigreturn,
|
||||
kinfo,
|
||||
syscall::{Syscall, SystemError, SYS_EXECVE, SYS_FORK, SYS_RT_SIGRETURN, SYS_VFORK},
|
||||
mm::{ucontext::AddressSpace, verify_area, VirtAddr},
|
||||
process::exec::{load_binary_file, ExecParam, ExecParamFlags},
|
||||
syscall::{
|
||||
user_access::{check_and_clone_cstr, check_and_clone_cstr_array},
|
||||
Syscall, SystemError, SYS_EXECVE, SYS_FORK, SYS_RT_SIGRETURN, SYS_VFORK,
|
||||
},
|
||||
};
|
||||
|
||||
use super::{asm::ptrace::user_mode, mm::barrier::mfence};
|
||||
|
||||
extern "C" {
|
||||
fn do_fork(regs: *mut pt_regs, clone_flags: u64, stack_start: u64, stack_size: u64) -> u64;
|
||||
fn c_sys_execve(
|
||||
path: *const u8,
|
||||
argv: *const *const u8,
|
||||
envp: *const *const u8,
|
||||
regs: &mut pt_regs,
|
||||
) -> u64;
|
||||
|
||||
fn syscall_int();
|
||||
}
|
||||
@ -71,23 +74,34 @@ pub extern "C" fn syscall_handler(regs: &mut pt_regs) -> () {
|
||||
|
||||
// 权限校验
|
||||
if from_user
|
||||
&& (unsafe { !verify_area(path_ptr as u64, PAGE_4K_SIZE as u64) }
|
||||
|| unsafe { !verify_area(argv_ptr as u64, PAGE_4K_SIZE as u64) })
|
||||
|| unsafe { !verify_area(env_ptr as u64, PAGE_4K_SIZE as u64) }
|
||||
&& (verify_area(VirtAddr::new(path_ptr), MAX_PATHLEN).is_err()
|
||||
|| verify_area(VirtAddr::new(argv_ptr), MAX_PATHLEN).is_err()
|
||||
|| verify_area(VirtAddr::new(env_ptr), MAX_PATHLEN).is_err())
|
||||
{
|
||||
syscall_return!(SystemError::EFAULT.to_posix_errno() as u64, regs);
|
||||
} else {
|
||||
syscall_return!(
|
||||
unsafe {
|
||||
c_sys_execve(
|
||||
unsafe {
|
||||
// kdebug!("syscall: execve\n");
|
||||
syscall_return!(
|
||||
rs_do_execve(
|
||||
path_ptr as *const u8,
|
||||
argv_ptr as *const *const u8,
|
||||
env_ptr as *const *const u8,
|
||||
regs,
|
||||
)
|
||||
},
|
||||
regs
|
||||
);
|
||||
regs
|
||||
),
|
||||
regs
|
||||
);
|
||||
// let path = String::from("/bin/about.elf");
|
||||
// let argv = vec![String::from("/bin/about.elf")];
|
||||
// let envp = vec![String::from("PATH=/bin")];
|
||||
// let r = tmp_rs_execve(path, argv, envp, regs);
|
||||
// kdebug!("syscall: execve r: {:?}\n", r);
|
||||
|
||||
// syscall_return!(
|
||||
// r.map(|_| 0).unwrap_or_else(|e| e.to_posix_errno() as usize),
|
||||
// regs
|
||||
// )
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -104,7 +118,147 @@ pub extern "C" fn syscall_handler(regs: &mut pt_regs) -> () {
|
||||
|
||||
/// 系统调用初始化
|
||||
pub fn arch_syscall_init() -> Result<(), SystemError> {
|
||||
kinfo!("arch_syscall_init\n");
|
||||
// kinfo!("arch_syscall_init\n");
|
||||
unsafe { set_system_trap_gate(0x80, 0, syscall_int as *mut c_void) }; // 系统调用门
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_do_execve(
|
||||
path: *const u8,
|
||||
argv: *const *const u8,
|
||||
envp: *const *const u8,
|
||||
regs: &mut pt_regs,
|
||||
) -> usize {
|
||||
if path.is_null() {
|
||||
return SystemError::EINVAL.to_posix_errno() as usize;
|
||||
}
|
||||
|
||||
let x = || {
|
||||
let path: String = check_and_clone_cstr(path, Some(MAX_PATHLEN))?;
|
||||
let argv: Vec<String> = check_and_clone_cstr_array(argv)?;
|
||||
let envp: Vec<String> = check_and_clone_cstr_array(envp)?;
|
||||
Ok((path, argv, envp))
|
||||
};
|
||||
let r: Result<(String, Vec<String>, Vec<String>), SystemError> = x();
|
||||
if let Err(e) = r {
|
||||
panic!("Failed to execve: {:?}", e);
|
||||
}
|
||||
let (path, argv, envp) = r.unwrap();
|
||||
|
||||
return tmp_rs_execve(path, argv, envp, regs)
|
||||
.map(|_| 0)
|
||||
.unwrap_or_else(|e| {
|
||||
panic!(
|
||||
"Failed to execve, pid: {} error: {:?}",
|
||||
current_pcb().pid,
|
||||
e
|
||||
)
|
||||
});
|
||||
}
|
||||
|
||||
/// 执行第一个用户进程的函数(只应该被调用一次)
|
||||
///
|
||||
/// 当进程管理重构完成后,这个函数应该被删除。调整为别的函数。
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_exec_init_process(regs: &mut pt_regs) -> usize {
|
||||
let path = String::from("/bin/shell.elf");
|
||||
let argv = vec![String::from("/bin/shell.elf")];
|
||||
let envp = vec![String::from("PATH=/bin")];
|
||||
let r = tmp_rs_execve(path, argv, envp, regs);
|
||||
// kdebug!("rs_exec_init_process: r: {:?}\n", r);
|
||||
return r.map(|_| 0).unwrap_or_else(|e| e.to_posix_errno() as usize);
|
||||
}
|
||||
|
||||
/// 临时的execve系统调用实现,以后要把它改为普通的系统调用。
|
||||
///
|
||||
/// 现在放在这里的原因是,还没有重构中断管理模块,未实现TrapFrame这个抽象,
|
||||
/// 导致我们必须手动设置中断返回时,各个寄存器的值,这个过程很繁琐,所以暂时放在这里。
|
||||
fn tmp_rs_execve(
|
||||
path: String,
|
||||
argv: Vec<String>,
|
||||
envp: Vec<String>,
|
||||
regs: &mut pt_regs,
|
||||
) -> Result<(), SystemError> {
|
||||
// kdebug!(
|
||||
// "tmp_rs_execve: path: {:?}, argv: {:?}, envp: {:?}\n",
|
||||
// path,
|
||||
// argv,
|
||||
// envp
|
||||
// );
|
||||
// 关中断,防止在设置地址空间的时候,发生中断,然后进调度器,出现错误。
|
||||
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||||
// 暂存原本的用户地址空间的引用(因为如果在切换页表之前释放了它,可能会造成内存use after free)
|
||||
let old_address_space = current_pcb().address_space();
|
||||
// 在pcb中原来的用户地址空间
|
||||
unsafe {
|
||||
current_pcb().drop_address_space();
|
||||
}
|
||||
// 创建新的地址空间并设置为当前地址空间
|
||||
let address_space = AddressSpace::new(true).expect("Failed to create new address space");
|
||||
unsafe {
|
||||
current_pcb().set_address_space(address_space.clone());
|
||||
}
|
||||
assert!(
|
||||
AddressSpace::is_current(&address_space),
|
||||
"Failed to set address space"
|
||||
);
|
||||
// kdebug!("Switch to new address space");
|
||||
|
||||
// 切换到新的用户地址空间
|
||||
unsafe { address_space.read().user_mapper.utable.make_current() };
|
||||
|
||||
drop(old_address_space);
|
||||
drop(irq_guard);
|
||||
// kdebug!("to load binary file");
|
||||
let mut param = ExecParam::new(path.as_str(), address_space.clone(), ExecParamFlags::EXEC);
|
||||
// 加载可执行文件
|
||||
let load_result = load_binary_file(&mut param)
|
||||
.unwrap_or_else(|e| panic!("Failed to load binary file: {:?}, path: {:?}", e, path));
|
||||
// kdebug!("load binary file done");
|
||||
|
||||
param.init_info_mut().args = argv;
|
||||
param.init_info_mut().envs = envp;
|
||||
|
||||
// 把proc_init_info写到用户栈上
|
||||
|
||||
let (user_sp, argv_ptr) = unsafe {
|
||||
param
|
||||
.init_info()
|
||||
.push_at(
|
||||
address_space
|
||||
.write()
|
||||
.user_stack_mut()
|
||||
.expect("No user stack found"),
|
||||
)
|
||||
.expect("Failed to push proc_init_info to user stack")
|
||||
};
|
||||
|
||||
// kdebug!("write proc_init_info to user stack done");
|
||||
|
||||
// (兼容旧版libc)把argv的指针写到寄存器内
|
||||
// TODO: 改写旧版libc,不再需要这个兼容
|
||||
regs.rdi = param.init_info().args.len() as u64;
|
||||
regs.rsi = argv_ptr.data() as u64;
|
||||
|
||||
// 设置系统调用返回时的寄存器状态
|
||||
// TODO: 中断管理重构后,这里的寄存器状态设置要删掉!!!改为对trap frame的设置。要增加架构抽象。
|
||||
regs.rsp = user_sp.data() as u64;
|
||||
regs.rbp = user_sp.data() as u64;
|
||||
regs.rip = load_result.entry_point().data() as u64;
|
||||
|
||||
regs.cs = USER_CS as u64 | 3;
|
||||
regs.ds = USER_DS as u64 | 3;
|
||||
regs.ss = USER_DS as u64 | 3;
|
||||
regs.es = 0;
|
||||
regs.rflags = 0x200;
|
||||
regs.rax = 1;
|
||||
|
||||
// kdebug!("regs: {:?}\n", regs);
|
||||
|
||||
// kdebug!(
|
||||
// "tmp_rs_execve: done, load_result.entry_point()={:?}",
|
||||
// load_result.entry_point()
|
||||
// );
|
||||
return Ok(());
|
||||
}
|
||||
|
@ -9,6 +9,7 @@
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include <arch/x86_64/include/asm/cmpxchg.h>
|
||||
|
||||
#define atomic_read(atomic) ((atomic)->value) // 读取原子变量
|
||||
#define atomic_set(atomic,val) (((atomic)->value) = (val)) // 设置原子变量的初始值
|
||||
@ -97,3 +98,10 @@ inline void atomic_clear_mask(atomic_t *ato, long mask)
|
||||
: "r"(mask)
|
||||
: "memory");
|
||||
}
|
||||
|
||||
// cmpxchgq 比较并交换
|
||||
inline long atomic_cmpxchg(atomic_t *ato, long oldval, long newval)
|
||||
{
|
||||
bool success = arch_try_cmpxchg(&ato->value, &oldval, &newval);
|
||||
return success ? oldval : newval;
|
||||
}
|
@ -44,7 +44,8 @@ void acpi_iter_SDT(bool (*_fun)(const struct acpi_system_description_table_heade
|
||||
ul *ent = &(xsdt->Entry);
|
||||
for (int i = 0; i < acpi_XSDT_Entry_num; ++i)
|
||||
{
|
||||
mm_map_phys_addr(acpi_description_header_base + PAGE_2M_SIZE * i, (*(ent + i)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
|
||||
// mm_map_phys_addr(acpi_description_header_base + PAGE_2M_SIZE * i, (*(ent + i)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
|
||||
rs_map_phys(acpi_description_header_base + PAGE_2M_SIZE * i, (*(ent + i)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||||
sdt_header = (struct acpi_system_description_table_header_t *)((ul)(acpi_description_header_base + PAGE_2M_SIZE * i));
|
||||
|
||||
if (_fun(sdt_header, _data) == true)
|
||||
@ -173,13 +174,14 @@ void acpi_init()
|
||||
ul rsdt_phys_base = rsdpv2->rsdp1.RsdtAddress & PAGE_2M_MASK;
|
||||
acpi_RSDT_offset = rsdpv2->rsdp1.RsdtAddress - rsdt_phys_base;
|
||||
|
||||
//申请mmio空间
|
||||
// 申请mmio空间
|
||||
uint64_t size = 0;
|
||||
mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_rsdt_virt_addr_base, &size);
|
||||
|
||||
//映射rsdt表
|
||||
// 映射rsdt表
|
||||
paddr = (uint64_t)rsdt_phys_base;
|
||||
mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr);
|
||||
// mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr);
|
||||
rs_map_phys(acpi_rsdt_virt_addr_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||||
|
||||
// rsdt表虚拟地址
|
||||
rsdt = (struct acpi_RSDT_Structure_t *)(acpi_rsdt_virt_addr_base + acpi_RSDT_offset);
|
||||
@ -192,7 +194,7 @@ void acpi_init()
|
||||
printk_color(ORANGE, BLACK, "RSDT Length=%dbytes.\n", rsdt->header.Length);
|
||||
printk_color(ORANGE, BLACK, "RSDT Entry num=%d\n", acpi_RSDT_Entry_num);
|
||||
|
||||
//申请mmio空间
|
||||
// 申请mmio空间
|
||||
mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_description_header_base, &size);
|
||||
|
||||
// 映射所有的Entry的物理地址
|
||||
@ -201,23 +203,27 @@ void acpi_init()
|
||||
acpi_RSDT_entry_phys_base = MASK_HIGH_32bit(acpi_RSDT_entry_phys_base);
|
||||
|
||||
paddr = (uint64_t)acpi_RSDT_entry_phys_base;
|
||||
mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr);
|
||||
// mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr);
|
||||
rs_map_phys(acpi_description_header_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||||
}
|
||||
else if (rsdpv1->RsdtAddress != (uint)0x00UL)
|
||||
{
|
||||
// rsdt表物理地址
|
||||
ul rsdt_phys_base = rsdpv1->RsdtAddress & PAGE_2M_MASK;
|
||||
acpi_RSDT_offset = rsdpv1->RsdtAddress - rsdt_phys_base;
|
||||
|
||||
|
||||
kdebug("rsdpv1->RsdtAddress=%#018lx", rsdpv1->RsdtAddress);
|
||||
//申请mmio空间
|
||||
// 申请mmio空间
|
||||
uint64_t size = 0;
|
||||
mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_rsdt_virt_addr_base, &size);
|
||||
// acpi_rsdt_virt_addr_base = 0xffffb00000000000UL;
|
||||
kdebug("ACPI: mmio created. acpi_rsdt_virt_addr_base = %#018lx,size= %#010lx", acpi_rsdt_virt_addr_base, size);
|
||||
|
||||
// kdebug("acpi_rsdt_virt_addr_base = %#018lx,size= %#010lx", acpi_rsdt_virt_addr_base, size);
|
||||
//映射rsdt表
|
||||
// 映射rsdt表
|
||||
paddr = (uint64_t)rsdt_phys_base;
|
||||
mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr);
|
||||
// mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr);
|
||||
rs_map_phys(acpi_rsdt_virt_addr_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||||
// rsdt表虚拟地址
|
||||
rsdt = (struct acpi_RSDT_Structure_t *)(acpi_rsdt_virt_addr_base + acpi_RSDT_offset);
|
||||
kdebug("RSDT mapped!");
|
||||
@ -231,7 +237,7 @@ void acpi_init()
|
||||
printk_color(ORANGE, BLACK, "RSDT Length=%dbytes.\n", rsdt->header.Length);
|
||||
printk_color(ORANGE, BLACK, "RSDT Entry num=%d\n", acpi_RSDT_Entry_num);
|
||||
|
||||
//申请mmio空间
|
||||
// 申请mmio空间
|
||||
mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_description_header_base, &size);
|
||||
|
||||
// 映射所有的Entry的物理地址
|
||||
@ -240,9 +246,9 @@ void acpi_init()
|
||||
acpi_RSDT_entry_phys_base = MASK_HIGH_32bit(acpi_RSDT_entry_phys_base);
|
||||
|
||||
paddr = (uint64_t)acpi_RSDT_entry_phys_base;
|
||||
mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr);
|
||||
// kinfo("entry mapped!");
|
||||
|
||||
// mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr);
|
||||
rs_map_phys(acpi_description_header_base, paddr, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||||
kinfo("entry mapped!");
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -71,7 +71,7 @@ impl CharDeviceStruct {
|
||||
/// name: 字符设备名
|
||||
/// char: 字符设备实例
|
||||
/// @return: 实例
|
||||
///
|
||||
///
|
||||
#[allow(dead_code)]
|
||||
pub fn new(dev_t: DeviceNumber, minorct: usize, name: &'static str) -> Self {
|
||||
Self {
|
||||
@ -84,7 +84,7 @@ impl CharDeviceStruct {
|
||||
/// @brief: 获取起始次设备号
|
||||
/// @parameter: None
|
||||
/// @return: 起始设备号
|
||||
///
|
||||
///
|
||||
#[allow(dead_code)]
|
||||
pub fn device_number(&self) -> DeviceNumber {
|
||||
self.dev_t
|
||||
@ -93,7 +93,7 @@ impl CharDeviceStruct {
|
||||
/// @brief: 获取起始次设备号
|
||||
/// @parameter: None
|
||||
/// @return: 起始设备号
|
||||
///
|
||||
///
|
||||
#[allow(dead_code)]
|
||||
pub fn base_minor(&self) -> usize {
|
||||
self.dev_t.minor()
|
||||
@ -122,7 +122,7 @@ impl CharDevOps {
|
||||
|
||||
/// @brief: 动态获取主设备号
|
||||
/// @parameter: None
|
||||
/// @return: 如果成功,返回主设备号,否则,返回错误码
|
||||
/// @return: 如果成功,返回主设备号,否则,返回错误码
|
||||
#[allow(dead_code)]
|
||||
fn find_dynamic_major() -> Result<usize, SystemError> {
|
||||
let chardevs = CHARDEVS.0.lock();
|
||||
@ -171,7 +171,7 @@ impl CharDevOps {
|
||||
/// @parameter: baseminor: 主设备号
|
||||
/// count: 次设备号数量
|
||||
/// name: 字符设备名
|
||||
/// @return: 如果注册成功,返回,否则,返回false
|
||||
/// @return: 如果注册成功,返回,否则,返回false
|
||||
#[allow(dead_code)]
|
||||
pub fn alloc_chardev_region(
|
||||
baseminor: usize,
|
||||
|
@ -1,3 +1,5 @@
|
||||
use alloc::{collections::BTreeMap, string::String, sync::Arc};
|
||||
|
||||
use crate::{
|
||||
filesystem::{
|
||||
sysfs::{
|
||||
@ -9,7 +11,6 @@ use crate::{
|
||||
libs::spinlock::SpinLock,
|
||||
syscall::SystemError,
|
||||
};
|
||||
use alloc::{collections::BTreeMap, string::String, sync::Arc};
|
||||
use core::{any::Any, fmt::Debug};
|
||||
|
||||
pub mod bus;
|
||||
|
@ -26,7 +26,7 @@ void ahci_cpp_init(uint32_t *count_ahci_devices, struct pci_device_structure_hea
|
||||
|
||||
// 映射ABAR
|
||||
uint32_t bar5 = gen_devs[0]->BAR5;
|
||||
mm_map_phys_addr(AHCI_MAPPING_BASE, (ul)(bar5)&PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
|
||||
rs_map_phys(AHCI_MAPPING_BASE, (ul)(bar5)&PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||||
|
||||
kinfo("ABAR mapped!");
|
||||
}
|
||||
|
@ -86,8 +86,8 @@ void apic_io_apic_init()
|
||||
|
||||
// kdebug("(ul)apic_ioapic_map.virtual_index_addr=%#018lx", (ul)apic_ioapic_map.virtual_index_addr);
|
||||
// 填写页表,完成地址映射
|
||||
mm_map_phys_addr((ul)apic_ioapic_map.virtual_index_addr, apic_ioapic_map.addr_phys, PAGE_2M_SIZE,
|
||||
PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
|
||||
rs_map_phys((ul)apic_ioapic_map.virtual_index_addr, apic_ioapic_map.addr_phys, PAGE_2M_SIZE,
|
||||
PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD);
|
||||
|
||||
// 设置IO APIC ID 为0x0f000000
|
||||
*apic_ioapic_map.virtual_index_addr = 0x00;
|
||||
@ -278,8 +278,8 @@ void apic_local_apic_init()
|
||||
uint64_t ia32_apic_base = rdmsr(0x1b);
|
||||
// kdebug("apic base=%#018lx", (ia32_apic_base & 0x1FFFFFFFFFF000));
|
||||
// 映射Local APIC 寄存器地址
|
||||
mm_map_phys_addr(APIC_LOCAL_APIC_VIRT_BASE_ADDR, (ia32_apic_base & 0x1FFFFFFFFFFFFF), PAGE_2M_SIZE,
|
||||
PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
|
||||
// todo:
|
||||
rs_map_phys(APIC_LOCAL_APIC_VIRT_BASE_ADDR, (ia32_apic_base & 0x1FFFFFFFFFF000), PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD);
|
||||
uint a, b, c, d;
|
||||
|
||||
cpu_cpuid(1, 0, &a, &b, &c, &d);
|
||||
@ -357,6 +357,7 @@ void apic_local_apic_init()
|
||||
*/
|
||||
int apic_init()
|
||||
{
|
||||
kinfo("Initializing APIC...");
|
||||
// 初始化中断门, 中断使用rsp0防止在软中断时发生嵌套,然后处理器重新加载导致数据被抹掉
|
||||
for (int i = 32; i <= 55; ++i)
|
||||
set_intr_gate(i, 0, interrupt_table[i - 32]);
|
||||
@ -396,6 +397,7 @@ int apic_init()
|
||||
RCBA_vaddr = 0;
|
||||
kwarn("Cannot get RCBA address. RCBA_phys=%#010lx", RCBA_phys);
|
||||
}
|
||||
kinfo("APIC initialized.");
|
||||
sti();
|
||||
return 0;
|
||||
}
|
||||
|
@ -96,7 +96,7 @@ static __always_inline int __msix_map_table(struct pci_device_structure_header_t
|
||||
// pci_dev->msix_mmio_vaddr, bar, pci_dev->msix_offset, pci_dev->msix_table_size, pci_dev->msix_mmio_size);
|
||||
|
||||
// 将msix table映射到页表
|
||||
mm_map(&initial_mm, pci_dev->msix_mmio_vaddr, pci_dev->msix_mmio_size, bar);
|
||||
rs_map_phys(pci_dev->msix_mmio_vaddr, bar, pci_dev->msix_mmio_size, PAGE_KERNEL_PAGE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -3,15 +3,17 @@
|
||||
|
||||
use super::pci_irq::{IrqType, PciIrqError};
|
||||
use crate::arch::{PciArch, TraitPciArch};
|
||||
use crate::include::bindings::bindings::{
|
||||
initial_mm, mm_map, mm_struct, PAGE_2M_SIZE, VM_DONTCOPY, VM_IO,
|
||||
};
|
||||
use crate::include::bindings::bindings::{PAGE_2M_SIZE, VM_DONTCOPY, VM_IO};
|
||||
use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
|
||||
use crate::mm::mmio_buddy::MMIO_POOL;
|
||||
use crate::mm::kernel_mapper::KernelMapper;
|
||||
use crate::mm::mmio_buddy::mmio_pool;
|
||||
use crate::mm::page::PageFlags;
|
||||
use crate::mm::{PhysAddr, VirtAddr};
|
||||
use crate::{kdebug, kerror, kinfo, kwarn};
|
||||
use alloc::vec::Vec;
|
||||
use alloc::{boxed::Box, collections::LinkedList};
|
||||
use bitflags::bitflags;
|
||||
|
||||
use core::{
|
||||
convert::TryFrom,
|
||||
fmt::{self, Debug, Display, Formatter},
|
||||
@ -632,20 +634,27 @@ impl PciRoot {
|
||||
let virtsize_ptr = &mut virtsize as *mut u64;
|
||||
let size = bus_number_double * PAGE_2M_SIZE;
|
||||
unsafe {
|
||||
let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
|
||||
if let Err(_) =
|
||||
MMIO_POOL.create_mmio(size, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr)
|
||||
{
|
||||
if let Err(_) = mmio_pool().create_mmio(
|
||||
size as usize,
|
||||
(VM_IO | VM_DONTCOPY) as u64,
|
||||
vaddr_ptr,
|
||||
virtsize_ptr,
|
||||
) {
|
||||
kerror!("Create mmio failed when initing ecam");
|
||||
return Err(PciError::CreateMmioError);
|
||||
};
|
||||
|
||||
//kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
|
||||
mm_map(
|
||||
initial_mm_ptr,
|
||||
virtaddress,
|
||||
size as u64,
|
||||
self.physical_address_base,
|
||||
);
|
||||
let vaddr = VirtAddr::new(virtaddress as usize);
|
||||
let paddr = PhysAddr::new(self.physical_address_base as usize);
|
||||
// kdebug!("pci root: map: vaddr={vaddr:?}, paddr={paddr:?}, size={size}");
|
||||
let page_flags = PageFlags::mmio_flags();
|
||||
let mut kernel_mapper = KernelMapper::lock();
|
||||
// todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错
|
||||
assert!(kernel_mapper
|
||||
.map_phys_with_size(vaddr, paddr, size as usize, page_flags, true)
|
||||
.is_ok());
|
||||
drop(kernel_mapper);
|
||||
}
|
||||
self.mmio_base = Some(virtaddress as *mut u32);
|
||||
Ok(0)
|
||||
@ -1302,8 +1311,9 @@ impl Display for BarInfo {
|
||||
}
|
||||
}
|
||||
}
|
||||
//todo 增加对桥的bar的支持
|
||||
// todo 增加对桥的bar的支持
|
||||
pub trait PciDeviceBar {}
|
||||
|
||||
///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息
|
||||
#[derive(Clone, Debug, Eq, PartialEq)]
|
||||
pub struct PciStandardDeviceBar {
|
||||
@ -1409,10 +1419,11 @@ pub fn pci_bar_init(
|
||||
let vaddr_ptr = &mut virtaddress as *mut u64;
|
||||
let mut virtsize: u64 = 0;
|
||||
let virtsize_ptr = &mut virtsize as *mut u64;
|
||||
let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
|
||||
//kdebug!("size want={:#x}", size);
|
||||
if let Err(_) = MMIO_POOL.create_mmio(
|
||||
size,
|
||||
|
||||
let size_want = size as usize;
|
||||
|
||||
if let Err(_) = mmio_pool().create_mmio(
|
||||
size_want,
|
||||
(VM_IO | VM_DONTCOPY) as u64,
|
||||
vaddr_ptr,
|
||||
virtsize_ptr,
|
||||
@ -1421,7 +1432,20 @@ pub fn pci_bar_init(
|
||||
return Err(PciError::CreateMmioError);
|
||||
};
|
||||
//kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
|
||||
mm_map(initial_mm_ptr, virtaddress, size as u64, address);
|
||||
let vaddr = VirtAddr::new(virtaddress as usize);
|
||||
let paddr = PhysAddr::new(address as usize);
|
||||
let page_flags = PageFlags::new()
|
||||
.set_write(true)
|
||||
.set_execute(true)
|
||||
.set_page_cache_disable(true)
|
||||
.set_page_write_through(true);
|
||||
kdebug!("Pci bar init: vaddr={vaddr:?}, paddr={paddr:?}, size_want={size_want}, page_flags={page_flags:?}");
|
||||
let mut kernel_mapper = KernelMapper::lock();
|
||||
// todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错
|
||||
assert!(kernel_mapper
|
||||
.map_phys_with_size(vaddr, paddr, size_want, page_flags, true)
|
||||
.is_ok());
|
||||
drop(kernel_mapper);
|
||||
}
|
||||
bar_info = BarInfo::Memory {
|
||||
address_type,
|
||||
|
@ -6,16 +6,14 @@ use core::ptr::NonNull;
|
||||
use alloc::ffi::CString;
|
||||
use alloc::vec::Vec;
|
||||
|
||||
use super::pci::{HeaderType, PciDeviceStructure, PciDeviceStructureGeneralDevice, PciError};
|
||||
use super::pci::{PciDeviceStructure, PciDeviceStructureGeneralDevice, PciError};
|
||||
use crate::arch::msi::{ia64_pci_get_arch_msi_message_address, ia64_pci_get_arch_msi_message_data};
|
||||
use crate::arch::{PciArch, TraitPciArch};
|
||||
use crate::include::bindings::bindings::{
|
||||
c_irq_install, c_irq_uninstall, pt_regs, ul, EAGAIN, EINVAL,
|
||||
};
|
||||
use crate::libs::volatile::{
|
||||
volread, volwrite, ReadOnly, Volatile, VolatileReadable, VolatileWritable, WriteOnly,
|
||||
};
|
||||
use crate::{kdebug, kerror, kinfo, kwarn};
|
||||
use crate::libs::volatile::{volread, volwrite, Volatile, VolatileReadable, VolatileWritable};
|
||||
|
||||
/// MSIX表的一项
|
||||
#[repr(C)]
|
||||
struct MsixEntry {
|
||||
@ -268,7 +266,7 @@ pub trait PciInterrupt: PciDeviceStructure {
|
||||
return Err(PciError::PciIrqError(PciIrqError::PciDeviceNotSupportIrq));
|
||||
}
|
||||
/// @brief 获取指定数量的中断号 todo 需要中断重构支持
|
||||
fn irq_alloc(num: u16) -> Option<Vec<u16>> {
|
||||
fn irq_alloc(_num: u16) -> Option<Vec<u16>> {
|
||||
None
|
||||
}
|
||||
/// @brief 进行PCI设备中断的安装
|
||||
|
@ -2,7 +2,7 @@ use super::super::base::device::Device;
|
||||
use crate::{
|
||||
driver::base::{
|
||||
char::CharDevice,
|
||||
device::{driver::Driver, DeviceState, DeviceType, IdTable, KObject},
|
||||
device::{driver::Driver, DeviceState, DeviceType, IdTable, KObject},
|
||||
platform::{
|
||||
self, platform_device::PlatformDevice, platform_driver::PlatformDriver, CompatibleTable,
|
||||
},
|
||||
|
@ -34,16 +34,10 @@ void init_frame_buffer()
|
||||
{
|
||||
kinfo("Re-mapping VBE frame buffer...");
|
||||
|
||||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||||
|
||||
struct multiboot_tag_framebuffer_info_t info;
|
||||
int reserved;
|
||||
|
||||
video_frame_buffer_info.vaddr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
|
||||
mm_map_proc_page_table(global_CR3, true, video_frame_buffer_info.vaddr, __fb_info.framebuffer_addr,
|
||||
video_frame_buffer_info.size, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false, true, false);
|
||||
|
||||
flush_tlb();
|
||||
rs_map_phys(video_frame_buffer_info.vaddr, __fb_info.framebuffer_addr, video_frame_buffer_info.size, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD);
|
||||
|
||||
kinfo("VBE frame buffer successfully Re-mapped!");
|
||||
}
|
||||
|
||||
@ -119,7 +113,6 @@ int video_reinitialize(bool level) // 这个函数会在main.c调用, 保证 vid
|
||||
// 启用屏幕刷新软中断
|
||||
rs_register_softirq_video();
|
||||
rs_raise_softirq(VIDEO_REFRESH_SIRQ);
|
||||
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -189,8 +182,10 @@ int video_init()
|
||||
video_frame_buffer_info.width * video_frame_buffer_info.height * ((video_frame_buffer_info.bit_depth + 7) / 8);
|
||||
// 先临时映射到该地址,稍后再重新映射
|
||||
video_frame_buffer_info.vaddr = 0xffff800003000000;
|
||||
mm_map_phys_addr(video_frame_buffer_info.vaddr, __fb_info.framebuffer_addr, video_frame_buffer_info.size,
|
||||
PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false);
|
||||
char init_text1[] = "Video driver to map.\n";
|
||||
for (int i = 0; i < sizeof(init_text1) - 1; ++i)
|
||||
c_uart_send(COM1, init_text1[i]);
|
||||
rs_pseudo_map_phys(video_frame_buffer_info.vaddr, __fb_info.framebuffer_addr, video_frame_buffer_info.size);
|
||||
|
||||
io_mfence();
|
||||
char init_text2[] = "Video driver initialized.\n";
|
||||
|
@ -1,59 +1,101 @@
|
||||
/// 为virtio-drivers库提供的操作系统接口
|
||||
use crate::include::bindings::bindings::{
|
||||
alloc_pages, free_pages, memory_management_struct, Page, PAGE_2M_SHIFT, PAGE_2M_SIZE,
|
||||
PAGE_OFFSET, PAGE_SHARED, ZONE_NORMAL,
|
||||
use crate::arch::mm::kernel_page_flags;
|
||||
|
||||
use crate::arch::MMArch;
|
||||
|
||||
use crate::mm::kernel_mapper::KernelMapper;
|
||||
use crate::mm::page::PageFlags;
|
||||
use crate::mm::{
|
||||
allocator::page_frame::{
|
||||
allocate_page_frames, deallocate_page_frames, PageFrameCount, PhysPageFrame,
|
||||
},
|
||||
MemoryManagementArch, PhysAddr, VirtAddr,
|
||||
};
|
||||
use crate::mm::virt_2_phys;
|
||||
use core::mem::size_of;
|
||||
use core::ptr::NonNull;
|
||||
use virtio_drivers::{BufferDirection, Hal, PhysAddr, PAGE_SIZE};
|
||||
use virtio_drivers::{BufferDirection, Hal, PAGE_SIZE};
|
||||
|
||||
pub struct HalImpl;
|
||||
unsafe impl Hal for HalImpl {
|
||||
/// @brief 申请用于DMA的内存页
|
||||
/// @param pages 页数(4k一页)
|
||||
/// @return PhysAddr 获得的内存页的初始物理地址
|
||||
fn dma_alloc(pages: usize, _direction: BufferDirection) -> (PhysAddr, NonNull<u8>) {
|
||||
let page_num = (pages * PAGE_SIZE - 1 + PAGE_2M_SIZE as usize) / PAGE_2M_SIZE as usize;
|
||||
fn dma_alloc(
|
||||
pages: usize,
|
||||
_direction: BufferDirection,
|
||||
) -> (virtio_drivers::PhysAddr, NonNull<u8>) {
|
||||
let page_num = PageFrameCount::new(
|
||||
((pages * PAGE_SIZE + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE).next_power_of_two(),
|
||||
);
|
||||
unsafe {
|
||||
let pa = alloc_pages(ZONE_NORMAL, page_num as i32, PAGE_SHARED as u64);
|
||||
let page = *pa;
|
||||
//kdebug!("alloc pages num:{},Phyaddr={:#x}",pages,page.addr_phys);
|
||||
(
|
||||
page.addr_phys as PhysAddr,
|
||||
NonNull::new((page.addr_phys as PhysAddr + PAGE_OFFSET as usize) as _).unwrap(),
|
||||
)
|
||||
let (paddr, count) =
|
||||
allocate_page_frames(page_num).expect("VirtIO Impl: alloc page failed");
|
||||
let virt = MMArch::phys_2_virt(paddr).unwrap();
|
||||
// 清空这块区域,防止出现脏数据
|
||||
core::ptr::write_bytes(virt.data() as *mut u8, 0, count.data() * MMArch::PAGE_SIZE);
|
||||
|
||||
let dma_flags: PageFlags<MMArch> = PageFlags::mmio_flags();
|
||||
|
||||
let mut kernel_mapper = KernelMapper::lock();
|
||||
let kernel_mapper = kernel_mapper.as_mut().unwrap();
|
||||
let flusher = kernel_mapper
|
||||
.remap(virt, dma_flags)
|
||||
.expect("VirtIO Impl: remap failed");
|
||||
flusher.flush();
|
||||
return (
|
||||
paddr.data(),
|
||||
NonNull::new(MMArch::phys_2_virt(paddr).unwrap().data() as _).unwrap(),
|
||||
);
|
||||
}
|
||||
}
|
||||
/// @brief 释放用于DMA的内存页
|
||||
/// @param paddr 起始物理地址 pages 页数(4k一页)
|
||||
/// @return i32 0表示成功
|
||||
unsafe fn dma_dealloc(paddr: PhysAddr, _vaddr: NonNull<u8>, pages: usize) -> i32 {
|
||||
let page_num = (pages * PAGE_SIZE - 1 + PAGE_2M_SIZE as usize) / PAGE_2M_SIZE as usize;
|
||||
unsafe fn dma_dealloc(
|
||||
paddr: virtio_drivers::PhysAddr,
|
||||
vaddr: NonNull<u8>,
|
||||
pages: usize,
|
||||
) -> i32 {
|
||||
let page_count = PageFrameCount::new(
|
||||
((pages * PAGE_SIZE + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE).next_power_of_two(),
|
||||
);
|
||||
|
||||
// 恢复页面属性
|
||||
let vaddr = VirtAddr::new(vaddr.as_ptr() as *mut u8 as usize);
|
||||
let mut kernel_mapper = KernelMapper::lock();
|
||||
let kernel_mapper = kernel_mapper.as_mut().unwrap();
|
||||
let flusher = kernel_mapper
|
||||
.remap(vaddr, kernel_page_flags(vaddr))
|
||||
.expect("VirtIO Impl: remap failed");
|
||||
flusher.flush();
|
||||
|
||||
unsafe {
|
||||
let pa = (memory_management_struct.pages_struct as usize
|
||||
+ (paddr >> PAGE_2M_SHIFT) * size_of::<Page>()) as *mut Page;
|
||||
//kdebug!("free pages num:{},Phyaddr={}",page_num,paddr);
|
||||
free_pages(pa, page_num as i32);
|
||||
deallocate_page_frames(PhysPageFrame::new(PhysAddr::new(paddr)), page_count);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/// @brief mmio物理地址转换为虚拟地址,不需要使用
|
||||
/// @param paddr 起始物理地址
|
||||
/// @return NonNull<u8> 虚拟地址的指针
|
||||
unsafe fn mmio_phys_to_virt(_paddr: PhysAddr, _size: usize) -> NonNull<u8> {
|
||||
unsafe fn mmio_phys_to_virt(_paddr: virtio_drivers::PhysAddr, _size: usize) -> NonNull<u8> {
|
||||
NonNull::new((0) as _).unwrap()
|
||||
}
|
||||
/// @brief 与真实物理设备共享
|
||||
/// @param buffer 要共享的buffer _direction:设备到driver或driver到设备
|
||||
/// @return buffer在内存中的物理地址
|
||||
unsafe fn share(buffer: NonNull<[u8]>, _direction: BufferDirection) -> PhysAddr {
|
||||
let vaddr = buffer.as_ptr() as *mut u8 as usize;
|
||||
unsafe fn share(
|
||||
buffer: NonNull<[u8]>,
|
||||
_direction: BufferDirection,
|
||||
) -> virtio_drivers::PhysAddr {
|
||||
let vaddr = VirtAddr::new(buffer.as_ptr() as *mut u8 as usize);
|
||||
//kdebug!("virt:{:x}", vaddr);
|
||||
// Nothing to do, as the host already has access to all memory.
|
||||
virt_2_phys(vaddr)
|
||||
return MMArch::virt_2_phys(vaddr).unwrap().data();
|
||||
}
|
||||
/// @brief 停止共享(让主机可以访问全部内存的话什么都不用做)
|
||||
unsafe fn unshare(_paddr: PhysAddr, _buffer: NonNull<[u8]>, _direction: BufferDirection) {
|
||||
unsafe fn unshare(
|
||||
_paddr: virtio_drivers::PhysAddr,
|
||||
_buffer: NonNull<[u8]>,
|
||||
_direction: BufferDirection,
|
||||
) {
|
||||
// Nothing to do, as the host already has access to all memory and we didn't copy the buffer
|
||||
// anywhere else.
|
||||
}
|
||||
|
@ -19,15 +19,15 @@ pub trait InterruptArch: Send + Sync {
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct IrqFlags {
|
||||
flags: u64,
|
||||
flags: usize,
|
||||
}
|
||||
|
||||
impl IrqFlags {
|
||||
pub fn new(flags: u64) -> Self {
|
||||
pub fn new(flags: usize) -> Self {
|
||||
IrqFlags { flags }
|
||||
}
|
||||
|
||||
pub fn flags(&self) -> u64 {
|
||||
pub fn flags(&self) -> usize {
|
||||
self.flags
|
||||
}
|
||||
}
|
||||
|
@ -46,6 +46,7 @@ pub fn softirq_init() -> Result<(), SystemError> {
|
||||
cpu_pending[i as usize] = VecStatus::default();
|
||||
}
|
||||
}
|
||||
kinfo!("Softirq initialized.");
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,7 @@ use alloc::{
|
||||
};
|
||||
|
||||
use crate::{
|
||||
arch::asm::current::current_pcb,
|
||||
filesystem::vfs::{
|
||||
core::{generate_inode_id, ROOT_INODE},
|
||||
FileType,
|
||||
@ -168,13 +169,15 @@ impl ProcFSInode {
|
||||
.to_owned(),
|
||||
);
|
||||
|
||||
// 当前进程运行过程中占用内存的峰值
|
||||
let hiwater_vm: u64 =
|
||||
unsafe { *(*pcb.mm).vmas }.vm_end - unsafe { *(*pcb.mm).vmas }.vm_start;
|
||||
let binding = current_pcb().address_space().unwrap();
|
||||
let address_space_guard = binding.read();
|
||||
// todo: 当前进程运行过程中占用内存的峰值
|
||||
let hiwater_vm: u64 = 0;
|
||||
// 进程代码段的大小
|
||||
let text = (address_space_guard.end_code - address_space_guard.start_code) / 1024;
|
||||
// 进程数据段的大小
|
||||
let text: u64 = unsafe { *pcb.mm }.code_addr_end - unsafe { *pcb.mm }.code_addr_start;
|
||||
// 进程代码的大小
|
||||
let data: u64 = unsafe { *pcb.mm }.data_addr_end - unsafe { *pcb.mm }.data_addr_start;
|
||||
let data = (address_space_guard.end_data - address_space_guard.start_data) / 1024;
|
||||
drop(address_space_guard);
|
||||
|
||||
pdata.append(
|
||||
&mut format!("\nVmPeak:\t{} kB", hiwater_vm)
|
||||
|
@ -1,9 +1,5 @@
|
||||
use super::{LockedSysFSInode, SYS_BUS_INODE};
|
||||
use crate::{
|
||||
filesystem::vfs::IndexNode,
|
||||
kdebug,
|
||||
syscall::SystemError,
|
||||
};
|
||||
use crate::{filesystem::vfs::IndexNode, kdebug, syscall::SystemError};
|
||||
use alloc::sync::Arc;
|
||||
|
||||
/// @brief: 注册bus,在sys/bus下生成文件夹
|
||||
@ -58,20 +54,15 @@ pub fn sys_bus_init(
|
||||
/// @parameter bus_name: 总线名
|
||||
/// name: 设备名
|
||||
/// @return: 操作成功,返回device inode,操作失败,返回错误码
|
||||
pub fn bus_driver_register(
|
||||
bus_name: &str,
|
||||
name: &str,
|
||||
) -> Result<Arc<dyn IndexNode>, SystemError> {
|
||||
pub fn bus_driver_register(bus_name: &str, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
|
||||
match SYS_BUS_INODE().find(bus_name) {
|
||||
Ok(platform) => match platform.find("drivers") {
|
||||
Ok(device) => {
|
||||
device
|
||||
.as_any_ref()
|
||||
.downcast_ref::<LockedSysFSInode>()
|
||||
.ok_or(SystemError::E2BIG)
|
||||
.unwrap()
|
||||
.add_dir(name)
|
||||
}
|
||||
Ok(device) => device
|
||||
.as_any_ref()
|
||||
.downcast_ref::<LockedSysFSInode>()
|
||||
.ok_or(SystemError::E2BIG)
|
||||
.unwrap()
|
||||
.add_dir(name),
|
||||
Err(_) => return Err(SystemError::EXDEV),
|
||||
},
|
||||
Err(_) => return Err(SystemError::EXDEV),
|
||||
@ -82,20 +73,15 @@ pub fn bus_driver_register(
|
||||
/// @parameter bus_name: 总线名
|
||||
/// name: 驱动名
|
||||
/// @return: 操作成功,返回drivers inode,操作失败,返回错误码
|
||||
pub fn bus_device_register(
|
||||
bus_name: &str,
|
||||
name: &str,
|
||||
) -> Result<Arc<dyn IndexNode>, SystemError> {
|
||||
pub fn bus_device_register(bus_name: &str, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
|
||||
match SYS_BUS_INODE().find(bus_name) {
|
||||
Ok(platform) => match platform.find("devices") {
|
||||
Ok(device) => {
|
||||
device
|
||||
.as_any_ref()
|
||||
.downcast_ref::<LockedSysFSInode>()
|
||||
.ok_or(SystemError::E2BIG)
|
||||
.unwrap()
|
||||
.add_dir(name)
|
||||
}
|
||||
Ok(device) => device
|
||||
.as_any_ref()
|
||||
.downcast_ref::<LockedSysFSInode>()
|
||||
.ok_or(SystemError::E2BIG)
|
||||
.unwrap()
|
||||
.add_dir(name),
|
||||
Err(_) => return Err(SystemError::EXDEV),
|
||||
},
|
||||
Err(_) => return Err(SystemError::EXDEV),
|
||||
|
@ -22,7 +22,7 @@
|
||||
#define VFS_DPT_MBR 0 // MBR分区表
|
||||
#define VFS_DPT_GPT 1 // GPT分区表
|
||||
|
||||
#define VFS_MAX_PATHLEN 1024
|
||||
#define VFS_MAX_PATHLEN 4096
|
||||
|
||||
/**
|
||||
* @brief inode的属性
|
||||
|
@ -173,7 +173,7 @@ impl File {
|
||||
///
|
||||
/// @param origin 调整的起始位置
|
||||
pub fn lseek(&mut self, origin: SeekFrom) -> Result<usize, SystemError> {
|
||||
let file_type = self.inode.metadata().unwrap().file_type;
|
||||
let file_type = self.inode.metadata()?.file_type;
|
||||
match file_type {
|
||||
FileType::Pipe | FileType::CharDevice => {
|
||||
return Err(SystemError::ESPIPE);
|
||||
|
@ -255,7 +255,7 @@ ENTRY(_start64)
|
||||
movq $0x1b, %rcx // 根据IA32_APIC_BASE.BSP[8]标志位判断处理器是否为apu
|
||||
rdmsr
|
||||
bt $8, %rax
|
||||
jnc load_cr3
|
||||
jnc load_apu_cr3
|
||||
|
||||
// 2. 设置临时页表
|
||||
// 最高级
|
||||
@ -263,7 +263,11 @@ ENTRY(_start64)
|
||||
mov $__PDPTE, %ebx
|
||||
or $0x3, %ebx
|
||||
mov %ebx, 0(%eax)
|
||||
mov %ebx, 256(%eax)
|
||||
|
||||
mov $__PML4E, %eax
|
||||
// 加256个表项, 映射高地址
|
||||
add $2048, %eax
|
||||
mov %ebx, 0(%eax)
|
||||
|
||||
// 次级
|
||||
mov $__PDPTE, %eax
|
||||
@ -271,6 +275,28 @@ ENTRY(_start64)
|
||||
or $0x3, %ebx
|
||||
mov %ebx, 0(%eax)
|
||||
|
||||
// 次低级
|
||||
mov $__PDE, %eax
|
||||
mov $50, %ecx
|
||||
mov $__PT_S, %ebx
|
||||
or $0x3, %ebx
|
||||
.fill_pde_64:
|
||||
mov %ebx, 0(%eax)
|
||||
add $0x1000, %ebx
|
||||
add $8, %eax
|
||||
loop .fill_pde_64
|
||||
|
||||
// 最低级
|
||||
// 循环 512*50=25600 次,填满50页
|
||||
mov $25600, %ecx
|
||||
mov $__PT_S, %eax
|
||||
mov $0x3, %ebx
|
||||
.fill_pt_64:
|
||||
mov %ebx, 0(%eax)
|
||||
add $0x1000, %ebx
|
||||
add $8, %eax
|
||||
loop .fill_pt_64
|
||||
|
||||
|
||||
// ==== 加载CR3寄存器
|
||||
|
||||
@ -279,7 +305,20 @@ load_cr3:
|
||||
movq $__PML4E, %rax //设置页目录基地址
|
||||
|
||||
movq %rax, %cr3
|
||||
|
||||
jmp to_switch_seg
|
||||
|
||||
load_apu_cr3:
|
||||
// 由于内存管理模块重置了页表,因此ap核心初始化的时候,需要使用新的内核页表。
|
||||
// 这个页表的值由smp模块设置到__APU_START_CR3变量中
|
||||
|
||||
// 加载__APU_START_CR3中的值
|
||||
movq $__APU_START_CR3, %rax
|
||||
movq 0(%rax), %rax
|
||||
movq %rax, %cr3
|
||||
jmp to_switch_seg
|
||||
|
||||
to_switch_seg:
|
||||
|
||||
movq switch_seg(%rip), %rax
|
||||
// 由于ljmp和lcall在GAS中不受支持,因此我们需要先伪造函数调用现场,通过lret的方式,给它跳转过去。才能更新cs寄存器
|
||||
// 实在是太妙了!Amazing!
|
||||
@ -481,73 +520,23 @@ ENTRY(head_stack_start)
|
||||
|
||||
// 初始化页表
|
||||
.align 0x1000 //设置为4k对齐
|
||||
//.org 0x1000 //设置页表位置为内核执行头程序的0x1000处
|
||||
|
||||
__PML4E:
|
||||
.quad 0x103007 // 用户访问,可读写,已存在, 地址在31~12位
|
||||
.fill 255,8,0
|
||||
.quad 0x103003
|
||||
.fill 255,8,0
|
||||
|
||||
.org 0x2000
|
||||
|
||||
.skip 0x1000
|
||||
__PDPTE:
|
||||
.skip 0x1000
|
||||
|
||||
.quad 0x104003 // 用户访问,可读写,已存在
|
||||
.fill 511,8,0
|
||||
|
||||
.org 0x3000
|
||||
|
||||
// 三级页表
|
||||
__PDE:
|
||||
.skip 0x1000
|
||||
|
||||
.quad 0x000083 // 用户访问,可读写,已存在
|
||||
.quad 0x200083
|
||||
.quad 0x400083
|
||||
.quad 0x600083
|
||||
.quad 0x800083
|
||||
.quad 0xa00083
|
||||
.quad 0xc00083
|
||||
.quad 0xe00083
|
||||
.quad 0x1000083
|
||||
.quad 0x1200083
|
||||
.quad 0x1400083
|
||||
.quad 0x1600083
|
||||
.quad 0x1800083
|
||||
.quad 0x1a00083
|
||||
.quad 0x1c00083
|
||||
.quad 0x1e00083
|
||||
.quad 0x2000083
|
||||
.quad 0x2200083
|
||||
.quad 0x2400083
|
||||
.quad 0x2600083
|
||||
.quad 0x2800083
|
||||
.quad 0x2a00083
|
||||
.quad 0x2c00083
|
||||
.quad 0x2e00083
|
||||
.quad 0x3000083
|
||||
.quad 0x3200083
|
||||
.quad 0x3400083
|
||||
.quad 0x3600083
|
||||
// 预留50个四级页表,总共表示100M的内存空间。这50个页表占用200KB的空间
|
||||
__PT_S:
|
||||
.skip 0x32000
|
||||
|
||||
|
||||
.quad 0xe0000083 /*虚拟地址0x 3000000 初始情况下,帧缓冲区映射到这里*/
|
||||
.quad 0xe0200083
|
||||
.quad 0xe0400083
|
||||
.quad 0xe0600083 /*0x1000000*/
|
||||
.quad 0xe0800083
|
||||
.quad 0xe0a00083
|
||||
.quad 0xe0c00083
|
||||
.quad 0xe0e00083
|
||||
.quad 0xe1000083
|
||||
.quad 0xe1200083
|
||||
.quad 0xe1400083
|
||||
.quad 0xe1600083
|
||||
.quad 0xe1800083
|
||||
.quad 0xe1a00083
|
||||
.quad 0xe1c00083
|
||||
.quad 0xe1e00083
|
||||
.fill 468,8,0
|
||||
|
||||
.global __APU_START_CR3
|
||||
__APU_START_CR3:
|
||||
.quad 0
|
||||
|
||||
// GDT表
|
||||
|
||||
|
@ -32,6 +32,7 @@
|
||||
#include <common/unistd.h>
|
||||
#include <driver/disk/ahci/ahci.h>
|
||||
#include <driver/disk/ahci/ahci_rust.h>
|
||||
#include <driver/multiboot2/multiboot2.h>
|
||||
#include <driver/pci/pci.h>
|
||||
#include <driver/video/video.h>
|
||||
#include <driver/virtio/virtio.h>
|
||||
@ -49,4 +50,4 @@
|
||||
#include <time/clocksource.h>
|
||||
#include <time/sleep.h>
|
||||
#include <driver/pci/pci_irq.h>
|
||||
#include <common/errno.h>
|
||||
#include <common/errno.h>
|
||||
|
@ -133,7 +133,7 @@ fn signal_send_sig_info(
|
||||
// 信号符合要求,可以发送
|
||||
|
||||
let mut retval = Err(SystemError::ESRCH);
|
||||
let mut flags: u64 = 0;
|
||||
let mut flags: usize = 0;
|
||||
// 如果上锁成功,则发送信号
|
||||
if !lock_process_sighand(target_pcb, &mut flags).is_none() {
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
@ -153,7 +153,7 @@ fn signal_send_sig_info(
|
||||
/// @return 指向sighand_struct的可变引用
|
||||
fn lock_process_sighand<'a>(
|
||||
pcb: &'a mut process_control_block,
|
||||
flags: &mut u64,
|
||||
flags: &mut usize,
|
||||
) -> Option<&'a mut sighand_struct> {
|
||||
// kdebug!("lock_process_sighand");
|
||||
|
||||
@ -175,10 +175,10 @@ fn lock_process_sighand<'a>(
|
||||
/// @brief 对pcb的sighand结构体中的siglock进行放锁,并恢复之前存储的rflags
|
||||
/// @param pcb 目标pcb
|
||||
/// @param flags 用来保存rflags的变量,将这个值恢复到rflags寄存器中
|
||||
fn unlock_process_sighand(pcb: &mut process_control_block, flags: u64) {
|
||||
fn unlock_process_sighand(pcb: &mut process_control_block, flags: usize) {
|
||||
let lock = unsafe { &mut (*pcb.sighand).siglock };
|
||||
|
||||
spin_unlock_irqrestore(lock, &flags);
|
||||
spin_unlock_irqrestore(lock, flags);
|
||||
}
|
||||
|
||||
/// @brief 判断是否需要强制发送信号,然后发送信号
|
||||
|
@ -1,13 +1,18 @@
|
||||
#![no_std] // <1>
|
||||
#![no_main] // <1>
|
||||
#![feature(alloc_error_handler)]
|
||||
#![feature(allocator_api)]
|
||||
#![feature(arbitrary_self_types)]
|
||||
#![feature(const_mut_refs)]
|
||||
#![feature(core_intrinsics)] // <2>
|
||||
#![feature(core_intrinsics)]
|
||||
#![feature(c_void_variant)]
|
||||
#![feature(drain_filter)] // 允许Vec的drain_filter特性
|
||||
#![feature(drain_filter)]
|
||||
#![feature(panic_info_message)]
|
||||
#![feature(ptr_internals)]
|
||||
#![feature(trait_upcasting)]
|
||||
#![feature(slice_ptr_get)]
|
||||
#![feature(vec_into_raw_parts)]
|
||||
|
||||
#[allow(non_upper_case_globals)]
|
||||
#[allow(non_camel_case_types)]
|
||||
#[allow(non_snake_case)]
|
||||
@ -37,6 +42,7 @@ mod time;
|
||||
extern crate alloc;
|
||||
#[macro_use]
|
||||
extern crate bitflags;
|
||||
extern crate elf;
|
||||
#[macro_use]
|
||||
extern crate lazy_static;
|
||||
extern crate num;
|
||||
@ -44,11 +50,10 @@ extern crate num;
|
||||
extern crate num_derive;
|
||||
extern crate smoltcp;
|
||||
extern crate thingbuf;
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
extern crate x86;
|
||||
|
||||
use mm::allocator::KernelAllocator;
|
||||
use crate::mm::allocator::kernel_allocator::KernelAllocator;
|
||||
|
||||
// <3>
|
||||
use crate::{
|
||||
@ -59,7 +64,7 @@ use crate::{
|
||||
|
||||
// 声明全局的slab分配器
|
||||
#[cfg_attr(not(test), global_allocator)]
|
||||
pub static KERNEL_ALLOCATOR: KernelAllocator = KernelAllocator {};
|
||||
pub static KERNEL_ALLOCATOR: KernelAllocator = KernelAllocator;
|
||||
|
||||
/// 全局的panic处理函数
|
||||
#[panic_handler]
|
||||
|
@ -3,7 +3,7 @@
|
||||
|
||||
use core::{alloc::GlobalAlloc, fmt::Debug, ptr::Unique};
|
||||
|
||||
use crate::{syscall::SystemError, KERNEL_ALLOCATOR};
|
||||
use crate::{arch::MMArch, mm::MemoryManagementArch, syscall::SystemError, KERNEL_ALLOCATOR};
|
||||
|
||||
/// # AlignedBox
|
||||
///
|
||||
@ -112,3 +112,29 @@ impl<T: Clone + SafeForZero, const ALIGN: usize> Clone for AlignedBox<T, ALIGN>
|
||||
pub unsafe trait SafeForZero {}
|
||||
|
||||
unsafe impl<const NUM: usize> SafeForZero for [u8; NUM] {}
|
||||
|
||||
/// 将给定的地址按照页面大小,向上对齐。
|
||||
///
|
||||
/// 参数 `addr`:要对齐的地址。
|
||||
///
|
||||
/// 返回值:对齐后的地址。
|
||||
pub fn page_align_up(addr: usize) -> usize {
|
||||
let page_size = MMArch::PAGE_SIZE;
|
||||
return (addr + page_size - 1) & (!(page_size - 1));
|
||||
}
|
||||
|
||||
/// ## 检查是否对齐
|
||||
///
|
||||
/// 检查给定的值是否对齐到给定的对齐要求。
|
||||
///
|
||||
/// ## 参数
|
||||
/// - `value`:要检查的值
|
||||
/// - `align`:对齐要求,必须是2的幂次方,且不为0,否则运行时panic
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果对齐则返回`true`,否则返回`false`
|
||||
pub fn check_aligned(value: usize, align: usize) -> bool {
|
||||
assert!(align != 0 && align.is_power_of_two());
|
||||
return value & (align - 1) == 0;
|
||||
}
|
||||
|
785
kernel/src/libs/elf.rs
Normal file
785
kernel/src/libs/elf.rs
Normal file
@ -0,0 +1,785 @@
|
||||
use core::{
|
||||
cmp::min,
|
||||
intrinsics::{likely, unlikely},
|
||||
ops::Range,
|
||||
};
|
||||
|
||||
use alloc::vec::Vec;
|
||||
use elf::{endian::AnyEndian, file::FileHeader, segment::ProgramHeader};
|
||||
|
||||
use crate::{
|
||||
arch::MMArch,
|
||||
current_pcb,
|
||||
io::SeekFrom,
|
||||
kerror,
|
||||
libs::align::page_align_up,
|
||||
mm::{
|
||||
allocator::page_frame::{PageFrameCount, VirtPageFrame},
|
||||
syscall::{MapFlags, ProtFlags},
|
||||
ucontext::InnerAddressSpace,
|
||||
MemoryManagementArch, VirtAddr,
|
||||
},
|
||||
process::{
|
||||
abi::AtType,
|
||||
exec::{BinaryLoader, BinaryLoaderResult, ExecError, ExecLoadMode, ExecParam},
|
||||
},
|
||||
syscall::{
|
||||
user_access::{clear_user, copy_to_user},
|
||||
SystemError,
|
||||
},
|
||||
};
|
||||
|
||||
use super::rwlock::RwLockWriteGuard;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct ElfLoader;
|
||||
|
||||
pub const ELF_LOADER: ElfLoader = ElfLoader::new();
|
||||
|
||||
impl ElfLoader {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
pub const ELF_PAGE_SIZE: usize = MMArch::PAGE_SIZE;
|
||||
|
||||
/// 读取文件的缓冲区大小
|
||||
pub const FILE_READ_BUF_SIZE: usize = 512 * 1024;
|
||||
|
||||
pub const fn new() -> Self {
|
||||
Self
|
||||
}
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
pub fn probe_x86_64(
|
||||
&self,
|
||||
param: &ExecParam,
|
||||
ehdr: &FileHeader<AnyEndian>,
|
||||
) -> Result<(), ExecError> {
|
||||
// 只支持 64 位的 ELF 文件
|
||||
if ehdr.class != elf::file::Class::ELF64 {
|
||||
return Err(ExecError::WrongArchitecture);
|
||||
}
|
||||
|
||||
// 判断架构是否匹配
|
||||
if ElfMachine::from(ehdr.e_machine) != ElfMachine::X86_64 {
|
||||
return Err(ExecError::WrongArchitecture);
|
||||
}
|
||||
|
||||
// 判断是否以可执行文件的形式加载
|
||||
if param.load_mode() == ExecLoadMode::Exec {
|
||||
// 检查文件类型是否为可执行文件
|
||||
if ElfType::from(ehdr.e_type) != ElfType::Executable {
|
||||
return Err(ExecError::NotExecutable);
|
||||
}
|
||||
} else {
|
||||
return Err(ExecError::NotSupported);
|
||||
}
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
/// 设置用户堆空间,映射[start, end)区间的虚拟地址,并把brk指针指向end
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `user_vm_guard` - 用户虚拟地址空间
|
||||
/// - `start` - 本次映射的起始地址
|
||||
/// - `end` - 本次映射的结束地址(不包含)
|
||||
/// - `prot_flags` - 本次映射的权限
|
||||
fn set_elf_brk(
|
||||
&self,
|
||||
user_vm_guard: &mut RwLockWriteGuard<'_, InnerAddressSpace>,
|
||||
start: VirtAddr,
|
||||
end: VirtAddr,
|
||||
prot_flags: ProtFlags,
|
||||
) -> Result<(), ExecError> {
|
||||
let start = self.elf_page_start(start);
|
||||
let end = self.elf_page_align_up(end);
|
||||
// kdebug!("set_elf_brk: start={:?}, end={:?}", start, end);
|
||||
if end > start {
|
||||
let r = user_vm_guard.map_anonymous(
|
||||
start,
|
||||
end - start,
|
||||
prot_flags,
|
||||
MapFlags::MAP_ANONYMOUS | MapFlags::MAP_FIXED_NOREPLACE,
|
||||
false,
|
||||
);
|
||||
if r.is_err() {
|
||||
kerror!("set_elf_brk: map_anonymous failed, err={:?}", r);
|
||||
return Err(ExecError::OutOfMemory);
|
||||
}
|
||||
}
|
||||
user_vm_guard.elf_brk_start = end;
|
||||
user_vm_guard.elf_brk = end;
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
/// 计算addr在ELF PAGE内的偏移
|
||||
fn elf_page_offset(&self, addr: VirtAddr) -> usize {
|
||||
addr.data() & (Self::ELF_PAGE_SIZE - 1)
|
||||
}
|
||||
|
||||
fn elf_page_start(&self, addr: VirtAddr) -> VirtAddr {
|
||||
VirtAddr::new(addr.data() & (!(Self::ELF_PAGE_SIZE - 1)))
|
||||
}
|
||||
|
||||
fn elf_page_align_up(&self, addr: VirtAddr) -> VirtAddr {
|
||||
VirtAddr::new((addr.data() + Self::ELF_PAGE_SIZE - 1) & (!(Self::ELF_PAGE_SIZE - 1)))
|
||||
}
|
||||
|
||||
/// 根据ELF的p_flags生成对应的ProtFlags
|
||||
fn make_prot(&self, p_flags: u32, _has_interpreter: bool, _is_interpreter: bool) -> ProtFlags {
|
||||
let mut prot = ProtFlags::empty();
|
||||
if p_flags & elf::abi::PF_R != 0 {
|
||||
prot |= ProtFlags::PROT_READ;
|
||||
}
|
||||
if p_flags & elf::abi::PF_W != 0 {
|
||||
prot |= ProtFlags::PROT_WRITE;
|
||||
}
|
||||
if p_flags & elf::abi::PF_X != 0 {
|
||||
prot |= ProtFlags::PROT_EXEC;
|
||||
}
|
||||
|
||||
// todo: 增加与架构相关的处理
|
||||
// ref: https://opengrok.ringotek.cn/xref/linux-5.19.10/fs/binfmt_elf.c?r=&mo=22652&fi=824#572
|
||||
|
||||
return prot;
|
||||
}
|
||||
|
||||
/// 加载ELF文件到用户空间
|
||||
///
|
||||
/// 参考Linux的elf_map函数
|
||||
/// https://opengrok.ringotek.cn/xref/linux-5.19.10/fs/binfmt_elf.c?r=&mo=22652&fi=824#365
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `user_vm_guard`:用户空间地址空间
|
||||
/// - `param`:执行参数
|
||||
/// - `phent`:ELF文件的ProgramHeader
|
||||
/// - `addr_to_map`:当前段应该被加载到的内存地址
|
||||
/// - `prot`:保护标志
|
||||
/// - `map_flags`:映射标志
|
||||
/// - `total_size`:ELF文件的总大小
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// - `Ok((VirtAddr, bool))`:如果成功加载,则bool值为true,否则为false. VirtAddr为加载的地址
|
||||
fn load_elf_segment(
|
||||
&self,
|
||||
user_vm_guard: &mut RwLockWriteGuard<'_, InnerAddressSpace>,
|
||||
param: &mut ExecParam,
|
||||
phent: &ProgramHeader,
|
||||
mut addr_to_map: VirtAddr,
|
||||
prot: &ProtFlags,
|
||||
map_flags: &MapFlags,
|
||||
total_size: usize,
|
||||
) -> Result<(VirtAddr, bool), SystemError> {
|
||||
// kdebug!("load_elf_segment: addr_to_map={:?}", addr_to_map);
|
||||
|
||||
// 映射位置的偏移量(页内偏移)
|
||||
let beginning_page_offset = self.elf_page_offset(addr_to_map);
|
||||
addr_to_map = self.elf_page_start(addr_to_map);
|
||||
// 计算要映射的内存的大小
|
||||
let map_size = phent.p_filesz as usize
|
||||
+ self.elf_page_offset(VirtAddr::new(phent.p_vaddr as usize))
|
||||
+ beginning_page_offset;
|
||||
let map_size = self.elf_page_align_up(VirtAddr::new(map_size)).data();
|
||||
// 当前段在文件中的大小
|
||||
let seg_in_file_size = phent.p_filesz as usize;
|
||||
// 当前段在文件中的偏移量
|
||||
let file_offset = phent.p_offset as usize;
|
||||
|
||||
// 如果当前段的大小为0,则直接返回.
|
||||
// 段在文件中的大小为0,是合法的,但是段在内存中的大小不能为0
|
||||
if map_size == 0 {
|
||||
return Ok((addr_to_map, true));
|
||||
}
|
||||
|
||||
let map_err_handler = |err: SystemError| {
|
||||
if err == SystemError::EEXIST {
|
||||
kerror!(
|
||||
"Pid: {}, elf segment at {:p} overlaps with existing mapping",
|
||||
current_pcb().pid,
|
||||
addr_to_map.as_ptr::<u8>()
|
||||
);
|
||||
}
|
||||
err
|
||||
};
|
||||
// 由于后面需要把ELF文件的内容加载到内存,因此暂时把当前段的权限设置为可写
|
||||
let tmp_prot = if !prot.contains(ProtFlags::PROT_WRITE) {
|
||||
*prot | ProtFlags::PROT_WRITE
|
||||
} else {
|
||||
*prot
|
||||
};
|
||||
|
||||
// 映射到的虚拟地址。请注意,这个虚拟地址是user_vm_guard这个地址空间的虚拟地址。不一定是当前进程地址空间的
|
||||
let map_addr: VirtAddr;
|
||||
|
||||
// total_size is the size of the ELF (interpreter) image.
|
||||
// The _first_ mmap needs to know the full size, otherwise
|
||||
// randomization might put this image into an overlapping
|
||||
// position with the ELF binary image. (since size < total_size)
|
||||
// So we first map the 'big' image - and unmap the remainder at
|
||||
// the end. (which unmap is needed for ELF images with holes.)
|
||||
if total_size != 0 {
|
||||
let total_size = self.elf_page_align_up(VirtAddr::new(total_size)).data();
|
||||
|
||||
// kdebug!("total_size={}", total_size);
|
||||
|
||||
map_addr = user_vm_guard
|
||||
.map_anonymous(addr_to_map, total_size, tmp_prot, *map_flags, false)
|
||||
.map_err(map_err_handler)?
|
||||
.virt_address();
|
||||
// kdebug!("map ok: addr_to_map={:?}", addr_to_map);
|
||||
|
||||
let to_unmap = map_addr + map_size;
|
||||
let to_unmap_size = total_size - map_size;
|
||||
|
||||
// kdebug!("to_unmap={:?}, to_unmap_size={}", to_unmap, to_unmap_size);
|
||||
user_vm_guard.munmap(
|
||||
VirtPageFrame::new(to_unmap),
|
||||
PageFrameCount::from_bytes(to_unmap_size).unwrap(),
|
||||
)?;
|
||||
|
||||
// 加载文件到内存
|
||||
self.do_load_file(
|
||||
map_addr + beginning_page_offset,
|
||||
seg_in_file_size,
|
||||
file_offset,
|
||||
param,
|
||||
)?;
|
||||
if tmp_prot != *prot {
|
||||
user_vm_guard.mprotect(
|
||||
VirtPageFrame::new(map_addr),
|
||||
PageFrameCount::from_bytes(page_align_up(map_size)).unwrap(),
|
||||
*prot,
|
||||
)?;
|
||||
}
|
||||
} else {
|
||||
// kdebug!("total size = 0");
|
||||
|
||||
map_addr = user_vm_guard
|
||||
.map_anonymous(addr_to_map, map_size, tmp_prot, *map_flags, false)?
|
||||
.virt_address();
|
||||
// kdebug!(
|
||||
// "map ok: addr_to_map={:?}, map_addr={map_addr:?},beginning_page_offset={beginning_page_offset:?}",
|
||||
// addr_to_map
|
||||
// );
|
||||
|
||||
// 加载文件到内存
|
||||
self.do_load_file(
|
||||
map_addr + beginning_page_offset,
|
||||
seg_in_file_size,
|
||||
file_offset,
|
||||
param,
|
||||
)?;
|
||||
|
||||
if tmp_prot != *prot {
|
||||
user_vm_guard.mprotect(
|
||||
VirtPageFrame::new(map_addr),
|
||||
PageFrameCount::from_bytes(page_align_up(map_size)).unwrap(),
|
||||
*prot,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
// kdebug!("load_elf_segment OK: map_addr={:?}", map_addr);
|
||||
return Ok((map_addr, true));
|
||||
}
|
||||
|
||||
/// 加载ELF文件到用户空间
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `vaddr`:要加载到的虚拟地址
|
||||
/// - `size`:要加载的大小
|
||||
/// - `offset_in_file`:在文件内的偏移量
|
||||
/// - `param`:执行参数
|
||||
fn do_load_file(
|
||||
&self,
|
||||
mut vaddr: VirtAddr,
|
||||
size: usize,
|
||||
offset_in_file: usize,
|
||||
param: &mut ExecParam,
|
||||
) -> Result<(), SystemError> {
|
||||
let file = param.file_mut();
|
||||
if (file.metadata()?.size as usize) < offset_in_file + size {
|
||||
return Err(SystemError::ENOEXEC);
|
||||
}
|
||||
let buf_size = min(size, Self::FILE_READ_BUF_SIZE);
|
||||
let mut buf = vec![0u8; buf_size];
|
||||
|
||||
let mut remain = size;
|
||||
|
||||
file.lseek(SeekFrom::SeekSet(offset_in_file as i64))?;
|
||||
|
||||
while remain > 0 {
|
||||
let read_size = min(remain, buf_size);
|
||||
file.read(read_size, &mut buf[..read_size])?;
|
||||
// kdebug!("copy_to_user: vaddr={:?}, read_size = {read_size}", vaddr);
|
||||
unsafe {
|
||||
copy_to_user(vaddr, &buf[..read_size]).map_err(|_| SystemError::EFAULT)?;
|
||||
}
|
||||
|
||||
vaddr += read_size;
|
||||
remain -= read_size;
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
/// 我们需要显式的把数据段之后剩余的内存页都清零。
|
||||
fn pad_zero(&self, elf_bss: VirtAddr) -> Result<(), SystemError> {
|
||||
let nbyte = self.elf_page_offset(elf_bss);
|
||||
if nbyte > 0 {
|
||||
let nbyte = Self::ELF_PAGE_SIZE - nbyte;
|
||||
unsafe { clear_user(elf_bss, nbyte).map_err(|_| SystemError::EFAULT) }?;
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
/// 创建auxv
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `param`:执行参数
|
||||
/// - `entrypoint_vaddr`:程序入口地址
|
||||
/// - `phdr_vaddr`:程序头表地址
|
||||
/// - `elf_header`:ELF文件头
|
||||
fn create_auxv(
|
||||
&self,
|
||||
param: &mut ExecParam,
|
||||
entrypoint_vaddr: VirtAddr,
|
||||
phdr_vaddr: Option<VirtAddr>,
|
||||
ehdr: &elf::file::FileHeader<AnyEndian>,
|
||||
) -> Result<(), ExecError> {
|
||||
let phdr_vaddr = phdr_vaddr.unwrap_or(VirtAddr::new(0));
|
||||
|
||||
let init_info = param.init_info_mut();
|
||||
init_info
|
||||
.auxv
|
||||
.insert(AtType::PhEnt as u8, ehdr.e_phentsize as usize);
|
||||
init_info
|
||||
.auxv
|
||||
.insert(AtType::PageSize as u8, MMArch::PAGE_SIZE);
|
||||
init_info.auxv.insert(AtType::Phdr as u8, phdr_vaddr.data());
|
||||
init_info
|
||||
.auxv
|
||||
.insert(AtType::PhNum as u8, ehdr.e_phnum as usize);
|
||||
init_info
|
||||
.auxv
|
||||
.insert(AtType::Entry as u8, entrypoint_vaddr.data());
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
/// 解析文件的ehdr
|
||||
fn parse_ehdr(data: &[u8]) -> Result<FileHeader<AnyEndian>, elf::ParseError> {
|
||||
let ident_buf = data.get_bytes(0..elf::abi::EI_NIDENT)?;
|
||||
let ident = elf::file::parse_ident::<AnyEndian>(ident_buf)?;
|
||||
|
||||
let tail_start = elf::abi::EI_NIDENT;
|
||||
let tail_end = match ident.1 {
|
||||
elf::file::Class::ELF32 => tail_start + elf::file::ELF32_EHDR_TAILSIZE,
|
||||
elf::file::Class::ELF64 => tail_start + elf::file::ELF64_EHDR_TAILSIZE,
|
||||
};
|
||||
let tail_buf = data.get_bytes(tail_start..tail_end)?;
|
||||
|
||||
let ehdr: FileHeader<_> = FileHeader::parse_tail(ident, tail_buf)?;
|
||||
return Ok(ehdr);
|
||||
}
|
||||
|
||||
/// 解析文件的program header table
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `param`:执行参数
|
||||
/// - `ehdr`:文件头
|
||||
/// - `data_buf`:用于缓存SegmentTable的Vec。
|
||||
/// 这是因为SegmentTable的生命周期与data_buf一致。初始化这个Vec的大小为0即可。
|
||||
///
|
||||
/// ## 说明
|
||||
///
|
||||
/// 这个函数由elf库的`elf::elf_bytes::find_phdrs`修改而来。
|
||||
fn parse_segments<'a>(
|
||||
param: &mut ExecParam,
|
||||
ehdr: &FileHeader<AnyEndian>,
|
||||
data_buf: &'a mut Vec<u8>,
|
||||
) -> Result<Option<elf::segment::SegmentTable<'a, AnyEndian>>, elf::ParseError> {
|
||||
// It's Ok to have no program headers
|
||||
if ehdr.e_phoff == 0 {
|
||||
return Ok(None);
|
||||
}
|
||||
let file = param.file_mut();
|
||||
// If the number of segments is greater than or equal to PN_XNUM (0xffff),
|
||||
// e_phnum is set to PN_XNUM, and the actual number of program header table
|
||||
// entries is contained in the sh_info field of the section header at index 0.
|
||||
let mut phnum = ehdr.e_phnum as usize;
|
||||
if phnum == elf::abi::PN_XNUM as usize {
|
||||
let shoff: usize = ehdr.e_shoff.try_into()?;
|
||||
|
||||
// 从磁盘读取shdr的前2个entry
|
||||
file.lseek(SeekFrom::SeekSet(shoff as i64))
|
||||
.map_err(|_| elf::ParseError::BadOffset(shoff as u64))?;
|
||||
let shdr_buf_size = ehdr.e_shentsize * 2;
|
||||
let mut shdr_buf = vec![0u8; shdr_buf_size as usize];
|
||||
file.read(shdr_buf_size as usize, &mut shdr_buf)
|
||||
.map_err(|_| elf::ParseError::BadOffset(shoff as u64))?;
|
||||
|
||||
let mut offset = 0;
|
||||
let shdr0 = <elf::section::SectionHeader as elf::parse::ParseAt>::parse_at(
|
||||
ehdr.endianness,
|
||||
ehdr.class,
|
||||
&mut offset,
|
||||
&shdr_buf,
|
||||
)?;
|
||||
phnum = shdr0.sh_info.try_into()?;
|
||||
}
|
||||
|
||||
// Validate phentsize before trying to read the table so that we can error early for corrupted files
|
||||
let entsize = <ProgramHeader as elf::parse::ParseAt>::validate_entsize(
|
||||
ehdr.class,
|
||||
ehdr.e_phentsize as usize,
|
||||
)?;
|
||||
let phoff: usize = ehdr.e_phoff.try_into()?;
|
||||
let size = entsize
|
||||
.checked_mul(phnum)
|
||||
.ok_or(elf::ParseError::IntegerOverflow)?;
|
||||
phoff
|
||||
.checked_add(size)
|
||||
.ok_or(elf::ParseError::IntegerOverflow)?;
|
||||
|
||||
// 读取program header table
|
||||
|
||||
file.lseek(SeekFrom::SeekSet(phoff as i64))
|
||||
.map_err(|_| elf::ParseError::BadOffset(phoff as u64))?;
|
||||
data_buf.clear();
|
||||
data_buf.resize(size, 0);
|
||||
|
||||
file.read(size, data_buf)
|
||||
.expect("read program header table failed");
|
||||
let buf = data_buf.get_bytes(0..size)?;
|
||||
|
||||
return Ok(Some(elf::segment::SegmentTable::new(
|
||||
ehdr.endianness,
|
||||
ehdr.class,
|
||||
buf,
|
||||
)));
|
||||
}
|
||||
}
|
||||
|
||||
impl BinaryLoader for ElfLoader {
|
||||
fn probe(self: &'static Self, param: &ExecParam, buf: &[u8]) -> Result<(), ExecError> {
|
||||
// let elf_bytes =
|
||||
// ElfBytes::<AnyEndian>::minimal_parse(buf).map_err(|_| ExecError::NotExecutable)?;
|
||||
|
||||
let ehdr = Self::parse_ehdr(buf).map_err(|_| ExecError::NotExecutable)?;
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
return self.probe_x86_64(param, &ehdr);
|
||||
|
||||
#[cfg(not(target_arch = "x86_64"))]
|
||||
unimplemented!("Unsupported architecture");
|
||||
}
|
||||
|
||||
fn load(
|
||||
self: &'static Self,
|
||||
param: &mut ExecParam,
|
||||
head_buf: &[u8],
|
||||
) -> Result<BinaryLoaderResult, ExecError> {
|
||||
// 解析elf文件头
|
||||
let ehdr = Self::parse_ehdr(head_buf).map_err(|_| ExecError::NotExecutable)?;
|
||||
|
||||
// 参考linux-5.19的load_elf_binary函数
|
||||
// https://opengrok.ringotek.cn/xref/linux-5.19.10/fs/binfmt_elf.c?r=&mo=22652&fi=824#1034
|
||||
|
||||
let elf_type = ElfType::from(ehdr.e_type);
|
||||
// kdebug!("ehdr = {:?}", ehdr);
|
||||
|
||||
let binding = param.vm().clone();
|
||||
let mut user_vm = binding.write();
|
||||
|
||||
// todo: 增加对user stack上的内存是否具有可执行权限的处理(方法:寻找phdr里面的PT_GNU_STACK段)
|
||||
|
||||
// todo: 增加对动态链接的处理
|
||||
|
||||
// kdebug!("to parse segments");
|
||||
// 加载ELF文件并映射到用户空间
|
||||
let mut phdr_buf = Vec::new();
|
||||
let loadable_sections = Self::parse_segments(param, &ehdr, &mut phdr_buf)
|
||||
.map_err(|_| ExecError::ParseError)?
|
||||
.ok_or(ExecError::ParseError)?
|
||||
.iter()
|
||||
.filter(|seg| seg.p_type == elf::abi::PT_LOAD);
|
||||
|
||||
// kdebug!("loadable_sections = {:?}", loadable_sections);
|
||||
|
||||
let mut elf_brk = VirtAddr::new(0);
|
||||
let mut elf_bss = VirtAddr::new(0);
|
||||
let mut start_code: Option<VirtAddr> = None;
|
||||
let mut end_code: Option<VirtAddr> = None;
|
||||
let mut start_data: Option<VirtAddr> = None;
|
||||
let mut end_data: Option<VirtAddr> = None;
|
||||
|
||||
// 加载的时候的偏移量(这个偏移量在加载动态链接段的时候产生,由于还没有动态链接,因此暂时不可变。)
|
||||
// 请不要删除load_bias! 以免到时候写动态链接的时候忘记了。
|
||||
let load_bias = 0usize;
|
||||
let mut bss_prot_flags = ProtFlags::empty();
|
||||
// 是否是第一个加载的段
|
||||
let mut first_pt_load = true;
|
||||
// program header的虚拟地址
|
||||
let mut phdr_vaddr: Option<VirtAddr> = None;
|
||||
for seg_to_load in loadable_sections {
|
||||
// kdebug!("seg_to_load = {:?}", seg_to_load);
|
||||
if unlikely(elf_brk > elf_bss) {
|
||||
// kdebug!(
|
||||
// "to set brk, elf_brk = {:?}, elf_bss = {:?}",
|
||||
// elf_brk,
|
||||
// elf_bss
|
||||
// );
|
||||
self.set_elf_brk(
|
||||
&mut user_vm,
|
||||
elf_bss + load_bias,
|
||||
elf_brk + load_bias,
|
||||
bss_prot_flags,
|
||||
)?;
|
||||
let nbyte = self.elf_page_offset(elf_bss);
|
||||
if nbyte > 0 {
|
||||
let nbyte = min(Self::ELF_PAGE_SIZE - nbyte, elf_brk - elf_bss);
|
||||
unsafe {
|
||||
// This bss-zeroing can fail if the ELF file specifies odd protections.
|
||||
// So we don't check the return value.
|
||||
clear_user(elf_bss + load_bias, nbyte).ok();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 生成ProtFlags.
|
||||
// TODO: 当有了动态链接之后,需要根据情况设置这里的has_interpreter
|
||||
let elf_prot_flags = self.make_prot(seg_to_load.p_flags, false, false);
|
||||
|
||||
let mut elf_map_flags = MapFlags::MAP_PRIVATE;
|
||||
|
||||
let vaddr = VirtAddr::new(seg_to_load.p_vaddr as usize);
|
||||
|
||||
if !first_pt_load {
|
||||
elf_map_flags.insert(MapFlags::MAP_FIXED_NOREPLACE);
|
||||
} else if elf_type == ElfType::Executable {
|
||||
/*
|
||||
* This logic is run once for the first LOAD Program
|
||||
* Header for ET_EXEC binaries. No special handling
|
||||
* is needed.
|
||||
*/
|
||||
elf_map_flags.insert(MapFlags::MAP_FIXED_NOREPLACE);
|
||||
} else if elf_type == ElfType::DSO {
|
||||
// TODO: 支持动态链接
|
||||
unimplemented!("DragonOS currently does not support dynamic linking!");
|
||||
}
|
||||
|
||||
// 加载这个段到用户空间
|
||||
// todo: 引入动态链接后,这里的total_size要按照实际的填写,而不一定是0
|
||||
|
||||
let e = self
|
||||
.load_elf_segment(
|
||||
&mut user_vm,
|
||||
param,
|
||||
&seg_to_load,
|
||||
vaddr + load_bias,
|
||||
&elf_prot_flags,
|
||||
&elf_map_flags,
|
||||
0,
|
||||
)
|
||||
.map_err(|e| match e {
|
||||
SystemError::EFAULT => ExecError::BadAddress(None),
|
||||
SystemError::ENOMEM => ExecError::OutOfMemory,
|
||||
_ => ExecError::Other(format!("load_elf_segment failed: {:?}", e)),
|
||||
})?;
|
||||
|
||||
// 如果地址不对,那么就报错
|
||||
if !e.1 {
|
||||
return Err(ExecError::BadAddress(Some(e.0)));
|
||||
}
|
||||
|
||||
if first_pt_load {
|
||||
first_pt_load = false;
|
||||
if elf_type == ElfType::DSO {
|
||||
// todo: 在这里增加对load_bias和reloc_func_desc的更新代码
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
// kdebug!("seg_to_load.p_offset={}", seg_to_load.p_offset);
|
||||
// kdebug!("e_phoff={}", ehdr.e_phoff);
|
||||
// kdebug!("seg_to_load.p_filesz={}", seg_to_load.p_filesz);
|
||||
// Figure out which segment in the file contains the Program Header Table,
|
||||
// and map to the associated virtual address.
|
||||
if (seg_to_load.p_offset <= ehdr.e_phoff)
|
||||
&& (ehdr.e_phoff < (seg_to_load.p_offset + seg_to_load.p_filesz))
|
||||
{
|
||||
phdr_vaddr = Some(VirtAddr::new(
|
||||
(ehdr.e_phoff - seg_to_load.p_offset + seg_to_load.p_vaddr) as usize,
|
||||
));
|
||||
}
|
||||
|
||||
let p_vaddr = VirtAddr::new(seg_to_load.p_vaddr as usize);
|
||||
if (seg_to_load.p_flags & elf::abi::PF_X) != 0 {
|
||||
if start_code.is_none() || start_code.as_ref().unwrap() > &p_vaddr {
|
||||
start_code = Some(p_vaddr);
|
||||
}
|
||||
}
|
||||
|
||||
if start_data.is_none()
|
||||
|| (start_data.is_some() && start_data.as_ref().unwrap() > &p_vaddr)
|
||||
{
|
||||
start_data = Some(p_vaddr);
|
||||
}
|
||||
|
||||
// 如果程序段要加载的目标地址不在用户空间内,或者是其他不合法的情况,那么就报错
|
||||
if !p_vaddr.check_user()
|
||||
|| seg_to_load.p_filesz > seg_to_load.p_memsz
|
||||
|| seg_to_load.p_memsz > MMArch::USER_END_VADDR.data() as u64
|
||||
{
|
||||
// kdebug!("ERR: p_vaddr={p_vaddr:?}");
|
||||
return Err(ExecError::InvalidParemeter);
|
||||
}
|
||||
|
||||
drop(p_vaddr);
|
||||
|
||||
// end vaddr of this segment(code+data+bss)
|
||||
let seg_end_vaddr_f = self.elf_page_align_up(VirtAddr::new(
|
||||
(seg_to_load.p_vaddr + seg_to_load.p_filesz) as usize,
|
||||
));
|
||||
|
||||
if seg_end_vaddr_f > elf_bss {
|
||||
elf_bss = seg_end_vaddr_f;
|
||||
}
|
||||
|
||||
if ((seg_to_load.p_flags & elf::abi::PF_X) != 0)
|
||||
&& (end_code.is_none()
|
||||
|| (end_code.is_some() && end_code.as_ref().unwrap() < &seg_end_vaddr_f))
|
||||
{
|
||||
end_code = Some(seg_end_vaddr_f);
|
||||
}
|
||||
|
||||
if end_data.is_none()
|
||||
|| (end_data.is_some() && end_data.as_ref().unwrap() < &seg_end_vaddr_f)
|
||||
{
|
||||
end_data = Some(seg_end_vaddr_f);
|
||||
}
|
||||
|
||||
drop(seg_end_vaddr_f);
|
||||
|
||||
let seg_end_vaddr = VirtAddr::new((seg_to_load.p_vaddr + seg_to_load.p_memsz) as usize);
|
||||
|
||||
if seg_end_vaddr > elf_brk {
|
||||
bss_prot_flags = elf_prot_flags;
|
||||
elf_brk = seg_end_vaddr;
|
||||
}
|
||||
}
|
||||
// kdebug!("elf load: phdr_vaddr={phdr_vaddr:?}");
|
||||
let program_entrypoint = VirtAddr::new(ehdr.e_entry as usize + load_bias);
|
||||
let phdr_vaddr = if phdr_vaddr.is_some() {
|
||||
Some(phdr_vaddr.unwrap() + load_bias)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
elf_bss += load_bias;
|
||||
elf_brk += load_bias;
|
||||
start_code = start_code.map(|v| v + load_bias);
|
||||
end_code = end_code.map(|v| v + load_bias);
|
||||
start_data = start_data.map(|v| v + load_bias);
|
||||
end_data = end_data.map(|v| v + load_bias);
|
||||
|
||||
// kdebug!(
|
||||
// "to set brk: elf_bss: {:?}, elf_brk: {:?}, bss_prot_flags: {:?}",
|
||||
// elf_bss,
|
||||
// elf_brk,
|
||||
// bss_prot_flags
|
||||
// );
|
||||
self.set_elf_brk(&mut user_vm, elf_bss, elf_brk, bss_prot_flags)?;
|
||||
|
||||
if likely(elf_bss != elf_brk) && unlikely(self.pad_zero(elf_bss).is_err()) {
|
||||
// kdebug!("elf_bss = {elf_bss:?}, elf_brk = {elf_brk:?}");
|
||||
return Err(ExecError::BadAddress(Some(elf_bss)));
|
||||
}
|
||||
// todo: 动态链接:增加加载interpreter的代码
|
||||
// kdebug!("to create auxv");
|
||||
|
||||
self.create_auxv(param, program_entrypoint, phdr_vaddr, &ehdr)?;
|
||||
|
||||
// kdebug!("auxv create ok");
|
||||
user_vm.start_code = start_code.unwrap_or(VirtAddr::new(0));
|
||||
user_vm.end_code = end_code.unwrap_or(VirtAddr::new(0));
|
||||
user_vm.start_data = start_data.unwrap_or(VirtAddr::new(0));
|
||||
user_vm.end_data = end_data.unwrap_or(VirtAddr::new(0));
|
||||
|
||||
let result = BinaryLoaderResult::new(program_entrypoint);
|
||||
// kdebug!("elf load OK!!!");
|
||||
return Ok(result);
|
||||
}
|
||||
}
|
||||
|
||||
/// Elf机器架构,对应于e_machine字段。在ABI中,以EM_开头的常量是e_machine字段的值。
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
pub enum ElfMachine {
|
||||
I386,
|
||||
AArch32,
|
||||
AArch64,
|
||||
X86_64,
|
||||
RiscV,
|
||||
/// 龙芯架构
|
||||
LoongArch,
|
||||
/// 未知架构
|
||||
Unknown,
|
||||
}
|
||||
|
||||
impl From<u16> for ElfMachine {
|
||||
fn from(machine: u16) -> Self {
|
||||
match machine {
|
||||
0x03 => Self::I386,
|
||||
0x28 => Self::AArch32,
|
||||
0xb7 => Self::AArch64,
|
||||
0x3e => Self::X86_64,
|
||||
0xf3 => Self::RiscV,
|
||||
0x102 => Self::LoongArch,
|
||||
// 未知架构
|
||||
_ => Self::Unknown,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Elf文件类型,对应于e_type字段。在ABI中,以ET_开头的常量是e_type字段的值。
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
pub enum ElfType {
|
||||
/// 可重定位文件
|
||||
Relocatable,
|
||||
/// 可执行文件
|
||||
Executable,
|
||||
/// 动态链接库
|
||||
DSO,
|
||||
/// 核心转储文件
|
||||
Core,
|
||||
/// 未知类型
|
||||
Unknown,
|
||||
}
|
||||
|
||||
impl From<u16> for ElfType {
|
||||
fn from(elf_type: u16) -> Self {
|
||||
match elf_type {
|
||||
0x01 => Self::Relocatable,
|
||||
0x02 => Self::Executable,
|
||||
0x03 => Self::DSO,
|
||||
0x04 => Self::Core,
|
||||
_ => Self::Unknown,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Simple convenience extension trait to wrap get() with .ok_or(SliceReadError)
|
||||
trait ReadBytesExt<'data> {
|
||||
fn get_bytes(self, range: Range<usize>) -> Result<&'data [u8], elf::ParseError>;
|
||||
}
|
||||
impl<'data> ReadBytesExt<'data> for &'data [u8] {
|
||||
fn get_bytes(self, range: Range<usize>) -> Result<&'data [u8], elf::ParseError> {
|
||||
let start = range.start;
|
||||
let end = range.end;
|
||||
self.get(range)
|
||||
.ok_or(elf::ParseError::SliceReadError((start, end)))
|
||||
}
|
||||
}
|
@ -44,10 +44,10 @@ static struct scm_buffer_info_t *__create_buffer(uint64_t type)
|
||||
buf->width = video_frame_buffer_info.width;
|
||||
buf->size = video_frame_buffer_info.size;
|
||||
|
||||
struct Page *p = alloc_pages(ZONE_NORMAL, PAGE_2M_ALIGN(video_frame_buffer_info.size) / PAGE_2M_SIZE, 0);
|
||||
if (p == NULL)
|
||||
void* buf_vaddr = kzalloc(video_frame_buffer_info.size, 0);
|
||||
if (buf_vaddr == NULL)
|
||||
goto failed;
|
||||
buf->vaddr = (uint64_t)phys_2_virt(p->addr_phys);
|
||||
buf->vaddr = buf_vaddr;
|
||||
return buf;
|
||||
failed:;
|
||||
kfree(buf);
|
||||
@ -74,7 +74,7 @@ static int __destroy_buffer(struct scm_buffer_info_t *buf)
|
||||
return -EINVAL;
|
||||
|
||||
// 释放内存页
|
||||
free_pages(Phy_to_2M_Page(virt_2_phys(buf->vaddr)), PAGE_2M_ALIGN(video_frame_buffer_info.size) / PAGE_2M_SIZE);
|
||||
kfree((void*)buf->vaddr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -295,7 +295,35 @@ int scm_framework_enable(struct scm_ui_framework_t *ui)
|
||||
}
|
||||
else
|
||||
__current_framework = ui;
|
||||
ui->ui_ops->enable(NULL);
|
||||
spin_unlock(&scm_screen_own_lock);
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 禁用某个ui框架,将它的帧缓冲区从屏幕上移除
|
||||
*
|
||||
* @param ui 要禁用的ui框架
|
||||
* @return int 返回码
|
||||
*/
|
||||
int scm_framework_disable(struct scm_ui_framework_t *ui)
|
||||
{
|
||||
if (ui->buf->vaddr == NULL)
|
||||
return -EINVAL;
|
||||
spin_lock(&scm_screen_own_lock);
|
||||
if (ui != __current_framework)
|
||||
return -EINVAL;
|
||||
int retval = 0;
|
||||
if (__scm_double_buffer_enabled == true)
|
||||
{
|
||||
retval = video_set_refresh_target(NULL);
|
||||
if (retval == 0)
|
||||
__current_framework = NULL;
|
||||
}
|
||||
else
|
||||
__current_framework = NULL;
|
||||
|
||||
ui->ui_ops->disable(NULL);
|
||||
spin_unlock(&scm_screen_own_lock);
|
||||
return retval;
|
||||
}
|
||||
@ -307,7 +335,7 @@ int scm_framework_enable(struct scm_ui_framework_t *ui)
|
||||
void scm_reinit()
|
||||
{
|
||||
scm_enable_alloc();
|
||||
video_reinitialize(false);
|
||||
// video_reinitialize(false);
|
||||
|
||||
// 遍历当前所有使用帧缓冲区的框架,更新地址
|
||||
// 逐个检查已经注册了的ui框架,将其缓冲区更改为双缓冲
|
||||
|
@ -115,4 +115,6 @@ int scm_enable_double_buffer();
|
||||
* @param ui 要启动的ui框架
|
||||
* @return int 返回码
|
||||
*/
|
||||
int scm_framework_enable(struct scm_ui_framework_t *ui);
|
||||
int scm_framework_enable(struct scm_ui_framework_t *ui);
|
||||
|
||||
int scm_framework_disable(struct scm_ui_framework_t *ui);
|
@ -21,6 +21,9 @@ static struct textui_private_info_t __private_info = {0};
|
||||
static struct List __windows_list;
|
||||
static spinlock_t change_lock;
|
||||
|
||||
// 用于标记是否允许输出到屏幕
|
||||
static atomic_t __put_window_enable_flag = {1};
|
||||
|
||||
/**
|
||||
* @brief 初始化window对象
|
||||
*
|
||||
@ -69,7 +72,7 @@ static int __textui_init_window(struct textui_window_t *window, uint8_t flags, u
|
||||
int textui_install_handler(struct scm_buffer_info_t *buf)
|
||||
{
|
||||
// return printk_init(buf);
|
||||
c_uart_send_str(COM1, "textui_install_handler");
|
||||
c_uart_send_str(COM1, "textui_install_handler\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -81,11 +84,14 @@ int textui_uninstall_handler(void *args)
|
||||
int textui_enable_handler(void *args)
|
||||
{
|
||||
c_uart_send_str(COM1, "textui_enable_handler\n");
|
||||
atomic_cmpxchg(&__put_window_enable_flag, 0, 1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int textui_disable_handler(void *args)
|
||||
{
|
||||
c_uart_send_str(COM1, "textui_disable_handler\n");
|
||||
atomic_set(&__put_window_enable_flag, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -215,6 +221,13 @@ int textui_putchar_window(struct textui_window_t *window, uint16_t character, ui
|
||||
// uint64_t rflags = 0; // 加锁后rflags存储到这里
|
||||
spin_lock_no_preempt(&window->lock);
|
||||
c_uart_send(COM1, character);
|
||||
// 如果禁止输出,直接返回
|
||||
if(atomic_read(&__put_window_enable_flag) == 0)
|
||||
{
|
||||
spin_unlock_no_preempt(&window->lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (unlikely(character == '\n'))
|
||||
{
|
||||
// 换行时还需要输出\r
|
||||
@ -346,3 +359,14 @@ int textui_init()
|
||||
c_uart_send_str(COM1, "text ui initialized\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void enable_textui()
|
||||
{
|
||||
scm_framework_enable(&textui_framework);
|
||||
}
|
||||
|
||||
void disable_textui()
|
||||
{
|
||||
scm_framework_disable(&textui_framework);
|
||||
}
|
@ -180,4 +180,8 @@ uint32_t __textui_get_current_window_id();
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
int textui_init();
|
||||
int textui_init();
|
||||
|
||||
void enable_textui();
|
||||
|
||||
void disable_textui();
|
||||
|
@ -1,6 +1,7 @@
|
||||
pub mod align;
|
||||
pub mod atomic;
|
||||
pub mod casting;
|
||||
pub mod elf;
|
||||
pub mod ffi_convert;
|
||||
#[macro_use]
|
||||
pub mod int_like;
|
||||
|
@ -594,7 +594,9 @@ static char *write_float_point_num(char *str, double num, int field_width, int p
|
||||
int printk_color(unsigned int FRcolor, unsigned int BKcolor, const char *fmt, ...)
|
||||
{
|
||||
uint64_t rflags;
|
||||
io_mfence();
|
||||
spin_lock_irqsave(&__printk_lock, rflags);
|
||||
io_mfence();
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
char buf[4096]; // vsprintf()的缓冲区
|
||||
@ -610,7 +612,9 @@ int printk_color(unsigned int FRcolor, unsigned int BKcolor, const char *fmt, ..
|
||||
// 输出
|
||||
textui_putchar(current, FRcolor, BKcolor);
|
||||
}
|
||||
io_mfence();
|
||||
spin_unlock_irqrestore(&__printk_lock, rflags);
|
||||
io_mfence();
|
||||
return i;
|
||||
}
|
||||
|
||||
|
@ -1,8 +1,15 @@
|
||||
#![allow(unused)]
|
||||
use crate::include::bindings::bindings::{printk_color, BLACK, WHITE};
|
||||
use crate::{
|
||||
driver::uart::uart::c_uart_send_str,
|
||||
include::bindings::bindings::{printk_color, BLACK, WHITE},
|
||||
};
|
||||
use ::core::ffi::c_char;
|
||||
use alloc::vec::Vec;
|
||||
use core::fmt;
|
||||
use core::{
|
||||
fmt::{self, Write},
|
||||
intrinsics::{likely, unlikely},
|
||||
sync::atomic::{AtomicBool, Ordering},
|
||||
};
|
||||
|
||||
// ====== 定义颜色 ======
|
||||
/// 白色
|
||||
@ -52,15 +59,15 @@ macro_rules! printk_color {
|
||||
#[macro_export]
|
||||
macro_rules! kdebug {
|
||||
($($arg:tt)*) => {
|
||||
$crate::libs::printk::PrintkWriter.__write_string((alloc::fmt::format(format_args!("[ DEBUG ] ({}:{})\t", file!(), line!()))+
|
||||
alloc::fmt::format(format_args!($($arg)*)).as_str() + "\n").as_str())
|
||||
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("[ DEBUG ] ({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)))
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! kinfo {
|
||||
($($arg:tt)*) => {
|
||||
$crate::libs::printk::PrintkWriter.__write_string((alloc::string::String::from("[ INFO ] ")+ alloc::fmt::format(format_args!($($arg)*)).as_str() + "\n").as_str())
|
||||
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("[ INFO ] ({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)))
|
||||
}
|
||||
}
|
||||
|
||||
@ -68,7 +75,7 @@ macro_rules! kinfo {
|
||||
macro_rules! kwarn {
|
||||
($($arg:tt)*) => {
|
||||
$crate::libs::printk::PrintkWriter.__write_string_color($crate::libs::printk::COLOR_YELLOW, $crate::libs::printk::COLOR_BLACK, "[ WARN ] ");
|
||||
$crate::libs::printk::PrintkWriter.__write_string((alloc::fmt::format(format_args!($($arg)*)) + "\n").as_str())
|
||||
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)));
|
||||
}
|
||||
}
|
||||
|
||||
@ -76,8 +83,7 @@ macro_rules! kwarn {
|
||||
macro_rules! kerror {
|
||||
($($arg:tt)*) => {
|
||||
$crate::libs::printk::PrintkWriter.__write_string_color($crate::libs::printk::COLOR_RED, $crate::libs::printk::COLOR_BLACK, "[ ERROR ] ");
|
||||
$crate::libs::printk::PrintkWriter.__write_string((alloc::fmt::format(format_args!("({}:{})\t", file!(), line!())) +
|
||||
alloc::fmt::format(format_args!($($arg)*)).as_str() + "\n").as_str())
|
||||
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)));
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,17 +91,29 @@ macro_rules! kerror {
|
||||
macro_rules! kBUG {
|
||||
($($arg:tt)*) => {
|
||||
$crate::libs::printk::PrintkWriter.__write_string_color($crate::libs::printk::COLOR_RED, $crate::libs::printk::COLOR_BLACK, "[ BUG ] ");
|
||||
$crate::libs::printk::PrintkWriter.__write_string((alloc::fmt::format(format_args!("({}:{})\t", file!(), line!())) +
|
||||
alloc::fmt::format(format_args!($($arg)*)).as_str() + "\n").as_str())
|
||||
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)));
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PrintkWriter;
|
||||
|
||||
/// 由于内存管理初始化完成之前,无法使用动态内存分配,所以需要在内存管理初始化完成之后才能使用动态内存分配
|
||||
static ALLOW_ALLOC_ATOMIC: AtomicBool = AtomicBool::new(false);
|
||||
static mut ALLOW_ALLOC_BOOL: bool = false;
|
||||
|
||||
impl PrintkWriter {
|
||||
#[inline]
|
||||
pub fn __write_fmt(&mut self, args: fmt::Arguments) {
|
||||
self.write_fmt(args);
|
||||
}
|
||||
|
||||
/// 调用C语言编写的printk_color,并输出白底黑字(暂时只支持ascii字符)
|
||||
/// @param str: 要写入的字符
|
||||
pub fn __write_string(&mut self, s: &str) {
|
||||
if unlikely(!self.allow_alloc()) {
|
||||
self.__write_string_on_stack(s);
|
||||
return;
|
||||
}
|
||||
let str_to_print = self.__utf8_to_ascii(s);
|
||||
unsafe {
|
||||
printk_color(WHITE, BLACK, str_to_print.as_ptr() as *const c_char);
|
||||
@ -103,12 +121,36 @@ impl PrintkWriter {
|
||||
}
|
||||
|
||||
pub fn __write_string_color(&self, fr_color: u32, bk_color: u32, s: &str) {
|
||||
if unlikely(!self.allow_alloc()) {
|
||||
self.__write_string_on_stack(s);
|
||||
return;
|
||||
}
|
||||
|
||||
let str_to_print = self.__utf8_to_ascii(s);
|
||||
unsafe {
|
||||
printk_color(fr_color, bk_color, str_to_print.as_ptr() as *const c_char);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn allow_alloc(&self) -> bool {
|
||||
// 由于allow_alloc只可能由false变为true
|
||||
// 因此采用两种方式读取它,一种是原子操作,一种是普通的bool,以优化性能。
|
||||
if likely(unsafe { ALLOW_ALLOC_BOOL }) {
|
||||
return true;
|
||||
} else {
|
||||
return ALLOW_ALLOC_ATOMIC.load(Ordering::SeqCst);
|
||||
}
|
||||
}
|
||||
|
||||
/// 允许动态内存分配
|
||||
pub fn enable_alloc(&self) {
|
||||
ALLOW_ALLOC_ATOMIC.store(true, Ordering::SeqCst);
|
||||
unsafe {
|
||||
ALLOW_ALLOC_BOOL = true;
|
||||
}
|
||||
}
|
||||
|
||||
/// 将s这个utf8字符串,转换为ascii字符串
|
||||
/// @param s 待转换的utf8字符串
|
||||
/// @return Vec<u8> 转换结束后的Ascii字符串
|
||||
@ -125,6 +167,46 @@ impl PrintkWriter {
|
||||
ascii_str.push(b'\0');
|
||||
return ascii_str;
|
||||
}
|
||||
|
||||
fn __write_string_on_stack(&self, s: &str) {
|
||||
let s_len = s.len();
|
||||
assert!(s_len < 1024, "s_len is too long");
|
||||
let mut str_to_print: [u8; 1024] = [0; 1024];
|
||||
let mut i = 0;
|
||||
for byte in s.bytes() {
|
||||
match byte {
|
||||
0..=127 => {
|
||||
str_to_print[i] = byte;
|
||||
i += 1;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
str_to_print[i] = b'\0';
|
||||
unsafe {
|
||||
printk_color(WHITE, BLACK, str_to_print.as_ptr() as *const c_char);
|
||||
}
|
||||
}
|
||||
|
||||
fn __write_string_color_on_stack(&self, fr_color: u32, bk_color: u32, s: &str) {
|
||||
let s_len = s.len();
|
||||
assert!(s_len < 1024, "s_len is too long");
|
||||
let mut str_to_print: [u8; 1024] = [0; 1024];
|
||||
let mut i = 0;
|
||||
for byte in s.bytes() {
|
||||
match byte {
|
||||
0..=127 => {
|
||||
str_to_print[i] = byte;
|
||||
i += 1;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
str_to_print[i] = b'\0';
|
||||
unsafe {
|
||||
printk_color(fr_color, bk_color, str_to_print.as_ptr() as *const c_char);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 为Printk Writer实现core::fmt::Write, 使得能够借助Rust自带的格式化组件,格式化字符并输出
|
||||
|
@ -7,7 +7,10 @@ use core::{
|
||||
sync::atomic::{AtomicU32, Ordering},
|
||||
};
|
||||
|
||||
use crate::syscall::SystemError;
|
||||
use crate::{
|
||||
process::preempt::{preempt_disable, preempt_enable},
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
///RwLock读写锁
|
||||
|
||||
@ -110,6 +113,15 @@ impl<T> RwLock<T> {
|
||||
#[inline]
|
||||
/// @brief 尝试获取READER守卫
|
||||
pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
|
||||
preempt_disable();
|
||||
let r = self.inner_try_read();
|
||||
if r.is_none() {
|
||||
preempt_enable();
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
fn inner_try_read(&self) -> Option<RwLockReadGuard<T>> {
|
||||
let reader_value = self.current_reader();
|
||||
//得到自增后的reader_value, 包括了尝试获得READER守卫的进程
|
||||
let value;
|
||||
@ -165,6 +177,18 @@ impl<T> RwLock<T> {
|
||||
#[inline]
|
||||
/// @brief 尝试获得WRITER守卫
|
||||
pub fn try_write(&self) -> Option<RwLockWriteGuard<T>> {
|
||||
preempt_disable();
|
||||
let r = self.inner_try_write();
|
||||
if r.is_none() {
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
return r;
|
||||
} //当架构为arm时,有些代码需要作出调整compare_exchange=>compare_exchange_weak
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
#[allow(dead_code)]
|
||||
fn inner_try_write(&self) -> Option<RwLockWriteGuard<T>> {
|
||||
let res: bool = self
|
||||
.lock
|
||||
.compare_exchange(0, WRITER, Ordering::Acquire, Ordering::Relaxed)
|
||||
@ -178,7 +202,7 @@ impl<T> RwLock<T> {
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
} //当架构为arm时,有些代码需要作出调整compare_exchange=>compare_exchange_weak
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[inline]
|
||||
@ -196,8 +220,18 @@ impl<T> RwLock<T> {
|
||||
#[inline]
|
||||
/// @brief 尝试获得UPGRADER守卫
|
||||
pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T>> {
|
||||
//获得UPGRADER守卫不需要查看读者位
|
||||
//如果获得读者锁失败,不需要撤回fetch_or的原子操作
|
||||
preempt_disable();
|
||||
let r = self.inner_try_upgradeable_read();
|
||||
if r.is_none() {
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
fn inner_try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T>> {
|
||||
// 获得UPGRADER守卫不需要查看读者位
|
||||
// 如果获得读者锁失败,不需要撤回fetch_or的原子操作
|
||||
if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
|
||||
return Some(RwLockUpgradableGuard {
|
||||
inner: self,
|
||||
@ -318,7 +352,7 @@ impl<'rwlock, T> RwLockUpgradableGuard<'rwlock, T> {
|
||||
|
||||
let inner: &RwLock<T> = self.inner;
|
||||
|
||||
//自动移去UPGRADED比特位
|
||||
// 自动移去UPGRADED比特位
|
||||
mem::drop(self);
|
||||
|
||||
RwLockReadGuard {
|
||||
@ -422,6 +456,7 @@ impl<'rwlock, T> Drop for RwLockReadGuard<'rwlock, T> {
|
||||
fn drop(&mut self) {
|
||||
debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
|
||||
self.lock.fetch_sub(READER, Ordering::Release);
|
||||
preempt_enable();
|
||||
}
|
||||
}
|
||||
|
||||
@ -432,6 +467,7 @@ impl<'rwlock, T> Drop for RwLockUpgradableGuard<'rwlock, T> {
|
||||
UPGRADED
|
||||
);
|
||||
self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
|
||||
preempt_enable();
|
||||
//这里为啥要AcqRel? Release应该就行了?
|
||||
}
|
||||
}
|
||||
@ -442,5 +478,7 @@ impl<'rwlock, T> Drop for RwLockWriteGuard<'rwlock, T> {
|
||||
self.inner
|
||||
.lock
|
||||
.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
|
||||
|
||||
preempt_enable();
|
||||
}
|
||||
}
|
||||
|
@ -13,8 +13,8 @@ use crate::syscall::SystemError;
|
||||
|
||||
/// @brief 保存中断状态到flags中,关闭中断,并对自旋锁加锁
|
||||
#[inline]
|
||||
pub fn spin_lock_irqsave(lock: *mut spinlock_t, flags: &mut u64) {
|
||||
*flags = local_irq_save() as u64;
|
||||
pub fn spin_lock_irqsave(lock: *mut spinlock_t, flags: &mut usize) {
|
||||
*flags = local_irq_save();
|
||||
unsafe {
|
||||
spin_lock(lock);
|
||||
}
|
||||
@ -22,12 +22,11 @@ pub fn spin_lock_irqsave(lock: *mut spinlock_t, flags: &mut u64) {
|
||||
|
||||
/// @brief 恢复rflags以及中断状态并解锁自旋锁
|
||||
#[inline]
|
||||
pub fn spin_unlock_irqrestore(lock: *mut spinlock_t, flags: &u64) {
|
||||
pub fn spin_unlock_irqrestore(lock: *mut spinlock_t, flags: usize) {
|
||||
unsafe {
|
||||
spin_unlock(lock);
|
||||
}
|
||||
// kdebug!("123");
|
||||
local_irq_restore(*flags as usize);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
/// 判断一个自旋锁是否已经被加锁
|
||||
@ -129,27 +128,27 @@ impl RawSpinlock {
|
||||
}
|
||||
|
||||
/// @brief 保存中断状态到flags中,关闭中断,并对自旋锁加锁
|
||||
pub fn lock_irqsave(&self, flags: &mut u64) {
|
||||
*flags = local_irq_save() as u64;
|
||||
pub fn lock_irqsave(&self, flags: &mut usize) {
|
||||
*flags = local_irq_save();
|
||||
self.lock();
|
||||
}
|
||||
|
||||
/// @brief 恢复rflags以及中断状态并解锁自旋锁
|
||||
pub fn unlock_irqrestore(&self, flags: &u64) {
|
||||
pub fn unlock_irqrestore(&self, flags: usize) {
|
||||
self.unlock();
|
||||
local_irq_restore(*flags as usize);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
/// @brief 尝试保存中断状态到flags中,关闭中断,并对自旋锁加锁
|
||||
/// @return 加锁成功->true
|
||||
/// 加锁失败->false
|
||||
#[inline(always)]
|
||||
pub fn try_lock_irqsave(&self, flags: &mut u64) -> bool {
|
||||
*flags = local_irq_save() as u64;
|
||||
pub fn try_lock_irqsave(&self, flags: &mut usize) -> bool {
|
||||
*flags = local_irq_save();
|
||||
if self.try_lock() {
|
||||
return true;
|
||||
}
|
||||
local_irq_restore(*flags as usize);
|
||||
local_irq_restore(*flags);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -168,7 +167,7 @@ pub struct SpinLock<T> {
|
||||
#[derive(Debug)]
|
||||
pub struct SpinLockGuard<'a, T: 'a> {
|
||||
lock: &'a SpinLock<T>,
|
||||
flag: u64,
|
||||
flag: usize,
|
||||
}
|
||||
|
||||
/// 向编译器保证,SpinLock在线程之间是安全的.
|
||||
@ -194,7 +193,8 @@ impl<T> SpinLock<T> {
|
||||
}
|
||||
|
||||
pub fn lock_irqsave(&self) -> SpinLockGuard<T> {
|
||||
let mut flags: u64 = 0;
|
||||
let mut flags: usize = 0;
|
||||
|
||||
self.lock.lock_irqsave(&mut flags);
|
||||
// 加锁成功,返回一个守卫
|
||||
return SpinLockGuard {
|
||||
@ -214,7 +214,7 @@ impl<T> SpinLock<T> {
|
||||
}
|
||||
|
||||
pub fn try_lock_irqsave(&self) -> Result<SpinLockGuard<T>, SystemError> {
|
||||
let mut flags: u64 = 0;
|
||||
let mut flags: usize = 0;
|
||||
if self.lock.try_lock_irqsave(&mut flags) {
|
||||
return Ok(SpinLockGuard {
|
||||
lock: self,
|
||||
@ -245,7 +245,7 @@ impl<T> DerefMut for SpinLockGuard<'_, T> {
|
||||
impl<T> Drop for SpinLockGuard<'_, T> {
|
||||
fn drop(&mut self) {
|
||||
if self.flag != 0 {
|
||||
self.lock.lock.unlock_irqrestore(&self.flag);
|
||||
self.lock.lock.unlock_irqrestore(self.flag);
|
||||
} else {
|
||||
self.lock.lock.unlock();
|
||||
}
|
||||
|
@ -37,6 +37,7 @@
|
||||
|
||||
extern int rs_tty_init();
|
||||
extern void rs_softirq_init();
|
||||
extern void rs_mm_init();
|
||||
|
||||
ul bsp_idt_size, bsp_gdt_size;
|
||||
|
||||
@ -93,7 +94,8 @@ void system_initialize()
|
||||
sys_vector_init();
|
||||
|
||||
// 初始化内存管理单元
|
||||
mm_init();
|
||||
// mm_init();
|
||||
rs_mm_init();
|
||||
|
||||
// 内存管理单元初始化完毕后,需要立即重新初始化显示驱动。
|
||||
// 原因是,系统启动初期,framebuffer被映射到48M地址处,
|
||||
@ -115,9 +117,10 @@ void system_initialize()
|
||||
// ===========================
|
||||
|
||||
acpi_init();
|
||||
|
||||
// 初始化中断模块
|
||||
io_mfence();
|
||||
sched_init();
|
||||
io_mfence();
|
||||
// 初始化中断模块
|
||||
irq_init();
|
||||
|
||||
// softirq_init();
|
||||
@ -125,9 +128,8 @@ void system_initialize()
|
||||
|
||||
current_pcb->cpu_id = 0;
|
||||
current_pcb->preempt_count = 0;
|
||||
|
||||
syscall_init();
|
||||
|
||||
syscall_init();
|
||||
io_mfence();
|
||||
|
||||
rs_timekeeping_init();
|
||||
@ -139,36 +141,44 @@ void system_initialize()
|
||||
rs_jiffies_init();
|
||||
io_mfence();
|
||||
|
||||
io_mfence();
|
||||
vfs_init();
|
||||
rs_tty_init();
|
||||
io_mfence();
|
||||
// 由于进程管理模块依赖于文件系统,因此必须在文件系统初始化完毕后再初始化进程管理模块
|
||||
// 并且,因为smp的IDLE进程的初始化依赖于进程管理模块,
|
||||
// 因此必须在进程管理模块初始化完毕后再初始化smp。
|
||||
io_mfence();
|
||||
|
||||
process_init();
|
||||
|
||||
io_mfence();
|
||||
rs_clocksource_boot_finish();
|
||||
|
||||
io_mfence();
|
||||
|
||||
cpu_init();
|
||||
|
||||
ps2_keyboard_init();
|
||||
io_mfence();
|
||||
|
||||
pci_init();
|
||||
|
||||
rs_pci_init();
|
||||
|
||||
// 这里必须加内存屏障,否则会出错
|
||||
io_mfence();
|
||||
smp_init();
|
||||
io_mfence();
|
||||
|
||||
vfs_init();
|
||||
rs_tty_init();
|
||||
|
||||
cpu_init();
|
||||
ps2_keyboard_init();
|
||||
// tty_init();
|
||||
// ps2_mouse_init();
|
||||
// ata_init();
|
||||
pci_init();
|
||||
rs_pci_init();
|
||||
io_mfence();
|
||||
|
||||
// test_slab();
|
||||
// test_mm();
|
||||
|
||||
// process_init();
|
||||
HPET_init();
|
||||
|
||||
io_mfence();
|
||||
HPET_measure_freq();
|
||||
io_mfence();
|
||||
// current_pcb->preempt_count = 0;
|
||||
// kdebug("cpu_get_core_crysral_freq()=%ld", cpu_get_core_crysral_freq());
|
||||
|
||||
process_init();
|
||||
// 启用double buffer
|
||||
// scm_enable_double_buffer(); // 因为时序问题, 该函数调用被移到 initial_kernel_thread
|
||||
io_mfence();
|
||||
@ -180,10 +190,6 @@ void system_initialize()
|
||||
|
||||
apic_timer_init();
|
||||
io_mfence();
|
||||
|
||||
// 这里不能删除,否则在O1会报错
|
||||
// while (1)
|
||||
// pause();
|
||||
}
|
||||
|
||||
// 操作系统内核从这里开始执行
|
||||
|
@ -1,27 +0,0 @@
|
||||
|
||||
CFLAGS += -I .
|
||||
|
||||
|
||||
all:mm.o slab.o mm-stat.o vma.o mmap.o utils.o mmio.o
|
||||
|
||||
mm.o: mm.c
|
||||
$(CC) $(CFLAGS) -c mm.c -o mm.o
|
||||
|
||||
slab.o: slab.c
|
||||
$(CC) $(CFLAGS) -c slab.c -o slab.o
|
||||
|
||||
mm-stat.o: mm-stat.c
|
||||
$(CC) $(CFLAGS) -c mm-stat.c -o mm-stat.o
|
||||
|
||||
vma.o: vma.c
|
||||
$(CC) $(CFLAGS) -c vma.c -o vma.o
|
||||
|
||||
mmap.o: mmap.c
|
||||
$(CC) $(CFLAGS) -c mmap.c -o mmap.o
|
||||
|
||||
utils.o: utils.c
|
||||
$(CC) $(CFLAGS) -c utils.c -o utils.o
|
||||
|
||||
mmio.o: mmio.c
|
||||
$(CC) $(CFLAGS) -c mmio.c -o mmio.o
|
||||
|
@ -1,55 +0,0 @@
|
||||
use super::gfp::__GFP_ZERO;
|
||||
use crate::include::bindings::bindings::{gfp_t, kfree, kmalloc, PAGE_2M_SIZE};
|
||||
|
||||
use core::alloc::{GlobalAlloc, Layout};
|
||||
|
||||
/// 类kmalloc的分配器应当实现的trait
|
||||
pub trait LocalAlloc {
|
||||
unsafe fn local_alloc(&self, layout: Layout, gfp: gfp_t) -> *mut u8;
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout, gfp: gfp_t) -> *mut u8;
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout);
|
||||
}
|
||||
|
||||
pub struct KernelAllocator {}
|
||||
|
||||
/// 为内核SLAB分配器实现LocalAlloc的trait
|
||||
impl LocalAlloc for KernelAllocator {
|
||||
unsafe fn local_alloc(&self, layout: Layout, gfp: gfp_t) -> *mut u8 {
|
||||
if layout.size() > (PAGE_2M_SIZE as usize / 2) {
|
||||
return core::ptr::null_mut();
|
||||
}
|
||||
return kmalloc(layout.size() as u64, gfp) as *mut u8;
|
||||
}
|
||||
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout, gfp: gfp_t) -> *mut u8 {
|
||||
if layout.size() > (PAGE_2M_SIZE as usize / 2) {
|
||||
return core::ptr::null_mut();
|
||||
}
|
||||
return kmalloc(layout.size() as u64, gfp | __GFP_ZERO) as *mut u8;
|
||||
}
|
||||
#[allow(unused_variables)]
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
kfree(ptr as *mut ::core::ffi::c_void);
|
||||
}
|
||||
}
|
||||
|
||||
/// 为内核slab分配器实现GlobalAlloc特性
|
||||
unsafe impl GlobalAlloc for KernelAllocator {
|
||||
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
|
||||
self.local_alloc(layout, 0)
|
||||
}
|
||||
|
||||
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
|
||||
self.local_alloc_zeroed(layout, 0)
|
||||
}
|
||||
|
||||
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
self.local_dealloc(ptr, layout);
|
||||
}
|
||||
}
|
||||
|
||||
/// 内存分配错误处理函数
|
||||
#[alloc_error_handler]
|
||||
pub fn global_alloc_err_handler(layout: Layout) -> ! {
|
||||
panic!("global_alloc_error, layout: {:?}", layout);
|
||||
}
|
667
kernel/src/mm/allocator/buddy.rs
Normal file
667
kernel/src/mm/allocator/buddy.rs
Normal file
@ -0,0 +1,667 @@
|
||||
/// @Author: longjin@dragonos.org
|
||||
/// @Author: kongweichao@dragonos.org
|
||||
/// @Date: 2023-03-28 16:03:47
|
||||
/// @FilePath: /DragonOS/kernel/src/mm/allocator/buddy.rs
|
||||
/// @Description: 伙伴分配器
|
||||
use crate::arch::MMArch;
|
||||
use crate::mm::allocator::bump::BumpAllocator;
|
||||
use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
|
||||
use crate::mm::{MemoryManagementArch, PhysAddr, VirtAddr};
|
||||
use crate::{kdebug, kerror, kwarn};
|
||||
use core::cmp::{max, min};
|
||||
use core::fmt::Debug;
|
||||
use core::intrinsics::{likely, unlikely};
|
||||
|
||||
use core::{marker::PhantomData, mem};
|
||||
|
||||
// 一个全局变量MAX_ORDER,用来表示buddy算法的最大阶数 [MIN_ORDER, MAX_ORDER)左闭右开区间
|
||||
const MAX_ORDER: usize = 31;
|
||||
// 4KB
|
||||
const MIN_ORDER: usize = 12;
|
||||
|
||||
/// 保存buddy算法中每一页存放的BuddyEntry的信息,占据每个页的起始位置
|
||||
#[derive(Debug)]
|
||||
pub struct PageList<A> {
|
||||
// 页存放entry的数量
|
||||
entry_num: usize,
|
||||
// 下一个页面的地址
|
||||
next_page: PhysAddr,
|
||||
phantom: PhantomData<A>,
|
||||
}
|
||||
|
||||
impl<A> Clone for PageList<A> {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
entry_num: self.entry_num,
|
||||
next_page: self.next_page,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<A> PageList<A> {
|
||||
#[allow(dead_code)]
|
||||
fn empty() -> Self {
|
||||
Self {
|
||||
entry_num: 0,
|
||||
next_page: PhysAddr::new(0),
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
fn new(entry_num: usize, next_page: PhysAddr) -> Self {
|
||||
Self {
|
||||
entry_num,
|
||||
next_page,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief: 用来表示 buddy 算法中的一个 buddy 块,整体存放在area的头部
|
||||
// 这种方式会出现对齐问题
|
||||
// #[repr(packed)]
|
||||
#[repr(C)]
|
||||
#[derive(Debug)]
|
||||
pub struct BuddyAllocator<A> {
|
||||
// 存放每个阶的空闲“链表”的头部地址
|
||||
free_area: [PhysAddr; (MAX_ORDER - MIN_ORDER) as usize],
|
||||
phantom: PhantomData<A>,
|
||||
}
|
||||
|
||||
impl<A: MemoryManagementArch> BuddyAllocator<A> {
|
||||
const BUDDY_ENTRIES: usize =
|
||||
// 定义一个变量记录buddy表的大小
|
||||
(A::PAGE_SIZE - mem::size_of::<PageList<A>>()) / mem::size_of::<PhysAddr>();
|
||||
|
||||
pub unsafe fn new(mut bump_allocator: BumpAllocator<A>) -> Option<Self> {
|
||||
let initial_free_pages = bump_allocator.usage().free();
|
||||
kdebug!("Free pages before init buddy: {:?}", initial_free_pages);
|
||||
kdebug!("Buddy entries: {}", Self::BUDDY_ENTRIES);
|
||||
// 最高阶的链表页数
|
||||
let max_order_linked_list_page_num = max(
|
||||
1,
|
||||
(((initial_free_pages.data() * A::PAGE_SIZE) >> (MAX_ORDER - 1)) + Self::BUDDY_ENTRIES
|
||||
- 1)
|
||||
/ Self::BUDDY_ENTRIES,
|
||||
);
|
||||
|
||||
let mut free_area: [PhysAddr; (MAX_ORDER - MIN_ORDER) as usize] =
|
||||
[PhysAddr::new(0); (MAX_ORDER - MIN_ORDER) as usize];
|
||||
|
||||
// Buddy初始占用的空间从bump分配
|
||||
for f in free_area.iter_mut() {
|
||||
let curr_page = bump_allocator.allocate_one();
|
||||
// 保存每个阶的空闲链表的头部地址
|
||||
*f = curr_page.unwrap();
|
||||
// 清空当前页
|
||||
core::ptr::write_bytes(MMArch::phys_2_virt(*f)?.data() as *mut u8, 0, A::PAGE_SIZE);
|
||||
|
||||
let page_list: PageList<A> = PageList::new(0, PhysAddr::new(0));
|
||||
Self::write_page(*f, page_list);
|
||||
}
|
||||
|
||||
// 分配最高阶的链表页
|
||||
for _ in 1..max_order_linked_list_page_num {
|
||||
let curr_page = bump_allocator.allocate_one().unwrap();
|
||||
// 清空当前页
|
||||
core::ptr::write_bytes(
|
||||
MMArch::phys_2_virt(curr_page)?.data() as *mut u8,
|
||||
0,
|
||||
A::PAGE_SIZE,
|
||||
);
|
||||
|
||||
let page_list: PageList<A> =
|
||||
PageList::new(0, free_area[Self::order2index((MAX_ORDER - 1) as u8)]);
|
||||
Self::write_page(curr_page, page_list);
|
||||
free_area[Self::order2index((MAX_ORDER - 1) as u8)] = curr_page;
|
||||
}
|
||||
|
||||
let initial_bump_offset = bump_allocator.offset();
|
||||
let pages_to_buddy = bump_allocator.usage().free();
|
||||
kdebug!("pages_to_buddy {:?}", pages_to_buddy);
|
||||
// kdebug!("initial_bump_offset {:#x}", initial_bump_offset);
|
||||
let mut paddr = initial_bump_offset;
|
||||
let mut remain_pages = pages_to_buddy;
|
||||
// 设置entry,这里假设了bump_allocator当前offset之后,所有的area的地址是连续的.
|
||||
// TODO: 这里需要修改,按照area来处理
|
||||
for i in MIN_ORDER..MAX_ORDER {
|
||||
// kdebug!("i {i}, remain pages={}", remain_pages.data());
|
||||
if remain_pages.data() < (1 << (i - MIN_ORDER)) {
|
||||
break;
|
||||
}
|
||||
|
||||
assert!(paddr & ((1 << i) - 1) == 0);
|
||||
|
||||
if likely(i != MAX_ORDER - 1) {
|
||||
// 要填写entry
|
||||
if paddr & (1 << i) != 0 {
|
||||
let page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
|
||||
paddr += 1 << i;
|
||||
remain_pages -= 1 << (i - MIN_ORDER);
|
||||
};
|
||||
} else {
|
||||
// 往最大的阶数的链表中添加entry(注意要考虑到最大阶数的链表可能有多页)
|
||||
// 断言剩余页面数量是MAX_ORDER-1阶的整数倍
|
||||
|
||||
let mut entries = (remain_pages.data() * A::PAGE_SIZE) >> i;
|
||||
let mut page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
|
||||
let block_size = 1usize << i;
|
||||
|
||||
if entries > Self::BUDDY_ENTRIES {
|
||||
// 在第一页填写一些entries
|
||||
let num = entries % Self::BUDDY_ENTRIES;
|
||||
entries -= num;
|
||||
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
for _j in 0..num {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
paddr += block_size;
|
||||
remain_pages -= 1 << (i - MIN_ORDER);
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
assert!(!page_list_paddr.is_null());
|
||||
}
|
||||
|
||||
while entries > 0 {
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
|
||||
for _ in 0..Self::BUDDY_ENTRIES {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
paddr += block_size;
|
||||
remain_pages -= 1 << (i - MIN_ORDER);
|
||||
entries -= 1;
|
||||
if entries == 0 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
|
||||
if likely(entries > 0) {
|
||||
assert!(!page_list_paddr.is_null());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut remain_bytes = remain_pages.data() * A::PAGE_SIZE;
|
||||
|
||||
assert!(remain_bytes < (1 << MAX_ORDER - 1));
|
||||
|
||||
for i in (MIN_ORDER..MAX_ORDER).rev() {
|
||||
if remain_bytes & (1 << i) != 0 {
|
||||
let page_list_paddr: PhysAddr = free_area[Self::order2index(i as u8)];
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num),
|
||||
paddr,
|
||||
);
|
||||
page_list.entry_num += 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
|
||||
paddr += 1 << i;
|
||||
remain_bytes -= 1 << i;
|
||||
}
|
||||
}
|
||||
|
||||
assert!(remain_bytes == 0);
|
||||
assert!(paddr == initial_bump_offset + pages_to_buddy.data() * A::PAGE_SIZE);
|
||||
|
||||
// Self::print_free_area(free_area);
|
||||
let allocator = Self {
|
||||
free_area,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
|
||||
Some(allocator)
|
||||
}
|
||||
/// 获取第j个entry的虚拟地址,
|
||||
/// j从0开始计数
|
||||
pub fn entry_virt_addr(base_addr: PhysAddr, j: usize) -> VirtAddr {
|
||||
let entry_virt_addr = unsafe { A::phys_2_virt(Self::entry_addr(base_addr, j)) };
|
||||
return entry_virt_addr.unwrap();
|
||||
}
|
||||
pub fn entry_addr(base_addr: PhysAddr, j: usize) -> PhysAddr {
|
||||
let entry_addr = base_addr + mem::size_of::<PageList<A>>() + j * mem::size_of::<PhysAddr>();
|
||||
return entry_addr;
|
||||
}
|
||||
pub fn read_page<T>(addr: PhysAddr) -> T {
|
||||
let page_list = unsafe { A::read(A::phys_2_virt(addr).unwrap()) };
|
||||
return page_list;
|
||||
}
|
||||
|
||||
pub fn write_page(curr_page: PhysAddr, page_list: PageList<A>) {
|
||||
// 把物理地址转换为虚拟地址
|
||||
let virt_addr = unsafe { A::phys_2_virt(curr_page) };
|
||||
let virt_addr = virt_addr.unwrap();
|
||||
unsafe { A::write(virt_addr, page_list) };
|
||||
}
|
||||
|
||||
/// 从order转换为free_area的下标
|
||||
///
|
||||
/// # 参数
|
||||
///
|
||||
/// - `order` - order
|
||||
///
|
||||
/// # 返回值
|
||||
///
|
||||
/// free_area的下标
|
||||
#[inline]
|
||||
fn order2index(order: u8) -> usize {
|
||||
(order as usize - MIN_ORDER) as usize
|
||||
}
|
||||
|
||||
/// 从空闲链表的开头,取出1个指定阶数的伙伴块,如果没有,则返回None
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `order` - 伙伴块的阶数
|
||||
fn pop_front(&mut self, order: u8) -> Option<PhysAddr> {
|
||||
let mut alloc_in_specific_order = |spec_order: u8| {
|
||||
// 先尝试在order阶的“空闲链表”的开头位置分配一个伙伴块
|
||||
let mut page_list_addr = self.free_area[Self::order2index(spec_order)];
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_addr);
|
||||
|
||||
// kdebug!("page_list={page_list:?}");
|
||||
|
||||
// 循环删除头部的空闲链表页
|
||||
while page_list.entry_num == 0 {
|
||||
let next_page_list_addr = page_list.next_page;
|
||||
// 找完了,都是空的
|
||||
if next_page_list_addr.is_null() {
|
||||
return None;
|
||||
}
|
||||
|
||||
if !next_page_list_addr.is_null() {
|
||||
// 此时page_list已经没有空闲伙伴块了,又因为非唯一页,需要删除该page_list
|
||||
self.free_area[Self::order2index(spec_order)] = next_page_list_addr;
|
||||
drop(page_list);
|
||||
// kdebug!("FREE: page_list_addr={:b}", page_list_addr.data());
|
||||
unsafe {
|
||||
self.buddy_free(page_list_addr, MMArch::PAGE_SHIFT as u8);
|
||||
}
|
||||
}
|
||||
// 由于buddy_free可能导致首部的链表页发生变化,因此需要重新读取
|
||||
let next_page_list_addr = self.free_area[Self::order2index(spec_order)];
|
||||
assert!(!next_page_list_addr.is_null());
|
||||
page_list = Self::read_page(next_page_list_addr);
|
||||
page_list_addr = next_page_list_addr;
|
||||
}
|
||||
|
||||
// 有空闲页面,直接分配
|
||||
if page_list.entry_num > 0 {
|
||||
let entry: PhysAddr = unsafe {
|
||||
A::read(Self::entry_virt_addr(
|
||||
page_list_addr,
|
||||
page_list.entry_num - 1,
|
||||
))
|
||||
};
|
||||
if entry.is_null() {
|
||||
kerror!(
|
||||
"entry is null, entry={:?}, order={}, entry_num = {}",
|
||||
entry,
|
||||
spec_order,
|
||||
page_list.entry_num - 1
|
||||
);
|
||||
}
|
||||
// kdebug!("entry={entry:?}");
|
||||
// 更新page_list的entry_num
|
||||
page_list.entry_num -= 1;
|
||||
let tmp_current_entry_num = page_list.entry_num;
|
||||
if page_list.entry_num == 0 {
|
||||
if !page_list.next_page.is_null() {
|
||||
// 此时page_list已经没有空闲伙伴块了,又因为非唯一页,需要删除该page_list
|
||||
self.free_area[Self::order2index(spec_order)] = page_list.next_page;
|
||||
drop(page_list);
|
||||
unsafe { self.buddy_free(page_list_addr, MMArch::PAGE_SHIFT as u8) };
|
||||
} else {
|
||||
Self::write_page(page_list_addr, page_list);
|
||||
}
|
||||
} else {
|
||||
// 若entry_num不为0,说明该page_list还有空闲伙伴块,需要更新该page_list
|
||||
// 把更新后的page_list写回
|
||||
Self::write_page(page_list_addr, page_list.clone());
|
||||
}
|
||||
|
||||
// 检测entry 是否对齐
|
||||
if !entry.check_aligned(1 << spec_order) {
|
||||
panic!("entry={:?} is not aligned, spec_order={spec_order}, page_list.entry_num={}", entry,tmp_current_entry_num);
|
||||
}
|
||||
return Some(entry);
|
||||
}
|
||||
return None;
|
||||
};
|
||||
|
||||
let result: Option<PhysAddr> = alloc_in_specific_order(order as u8);
|
||||
// kdebug!("result={:?}", result);
|
||||
if result.is_some() {
|
||||
return result;
|
||||
}
|
||||
// 尝试从更大的链表中分裂
|
||||
|
||||
let mut current_order = (order + 1) as usize;
|
||||
let mut x: Option<PhysAddr> = None;
|
||||
while current_order < MAX_ORDER {
|
||||
x = alloc_in_specific_order(current_order as u8);
|
||||
// kdebug!("current_order={:?}", current_order);
|
||||
if x.is_some() {
|
||||
break;
|
||||
}
|
||||
current_order += 1;
|
||||
}
|
||||
|
||||
// kdebug!("x={:?}", x);
|
||||
// 如果找到一个大的块,就进行分裂
|
||||
if x.is_some() {
|
||||
// 分裂到order阶
|
||||
while current_order > order as usize {
|
||||
current_order -= 1;
|
||||
// 把后面那半块放回空闲链表
|
||||
|
||||
let buddy = *x.as_ref().unwrap() + (1 << current_order);
|
||||
// kdebug!("x={:?}, buddy={:?}", x, buddy);
|
||||
// kdebug!("current_order={:?}, buddy={:?}", current_order, buddy);
|
||||
unsafe { self.buddy_free(buddy, current_order as u8) };
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
return None;
|
||||
}
|
||||
|
||||
/// 从伙伴系统中分配count个页面
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `count`:需要分配的页面数
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回分配的页面的物理地址和页面数
|
||||
fn buddy_alloc(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
assert!(count.data().is_power_of_two());
|
||||
// 计算需要分配的阶数
|
||||
let mut order = log2(count.data() as usize);
|
||||
if count.data() & ((1 << order) - 1) != 0 {
|
||||
order += 1;
|
||||
}
|
||||
let order = (order + MIN_ORDER) as u8;
|
||||
if order as usize >= MAX_ORDER {
|
||||
return None;
|
||||
}
|
||||
|
||||
// kdebug!("buddy_alloc: order = {}", order);
|
||||
// 获取该阶数的一个空闲页面
|
||||
let free_addr = self.pop_front(order);
|
||||
// kdebug!(
|
||||
// "buddy_alloc: order = {}, free_addr = {:?}",
|
||||
// order,
|
||||
// free_addr
|
||||
// );
|
||||
return free_addr
|
||||
.map(|addr| (addr, PageFrameCount::new(1 << (order as usize - MIN_ORDER))));
|
||||
}
|
||||
|
||||
/// 释放一个块
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `base` - 块的起始地址
|
||||
/// - `order` - 块的阶数
|
||||
unsafe fn buddy_free(&mut self, mut base: PhysAddr, order: u8) {
|
||||
// kdebug!("buddy_free: base = {:?}, order = {}", base, order);
|
||||
let mut order = order as usize;
|
||||
|
||||
while order < MAX_ORDER {
|
||||
// 检测地址是否合法
|
||||
if base.data() & ((1 << (order)) - 1) != 0 {
|
||||
panic!(
|
||||
"buddy_free: base is not aligned, base = {:#x}, order = {}",
|
||||
base.data(),
|
||||
order
|
||||
);
|
||||
}
|
||||
|
||||
// 在链表中寻找伙伴块
|
||||
// 伙伴块的地址是base ^ (1 << order)
|
||||
let buddy_addr = PhysAddr::new(base.data() ^ (1 << order));
|
||||
|
||||
let first_page_list_paddr = self.free_area[Self::order2index(order as u8)];
|
||||
let mut page_list_paddr = first_page_list_paddr;
|
||||
let mut page_list: PageList<A> = Self::read_page(page_list_paddr);
|
||||
let first_page_list = page_list.clone();
|
||||
|
||||
let mut buddy_entry_virt_vaddr = None;
|
||||
let mut buddy_entry_page_list_paddr = None;
|
||||
// 除非order是最大的,否则尝试查找伙伴块
|
||||
if likely(order != MAX_ORDER - 1) {
|
||||
'outer: loop {
|
||||
for i in 0..page_list.entry_num {
|
||||
let entry_virt_addr = Self::entry_virt_addr(page_list_paddr, i);
|
||||
let entry: PhysAddr = unsafe { A::read(entry_virt_addr) };
|
||||
if entry == buddy_addr {
|
||||
// 找到了伙伴块,记录该entry相关信息,然后退出查找
|
||||
buddy_entry_virt_vaddr = Some(entry_virt_addr);
|
||||
buddy_entry_page_list_paddr = Some(page_list_paddr);
|
||||
break 'outer;
|
||||
}
|
||||
}
|
||||
if page_list.next_page.is_null() {
|
||||
break;
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
page_list = Self::read_page(page_list_paddr);
|
||||
}
|
||||
}
|
||||
|
||||
// 如果没有找到伙伴块
|
||||
if buddy_entry_virt_vaddr.is_none() {
|
||||
assert!(
|
||||
page_list.entry_num <= Self::BUDDY_ENTRIES,
|
||||
"buddy_free: page_list.entry_num > Self::BUDDY_ENTRIES"
|
||||
);
|
||||
|
||||
// 当前第一个page_list没有空间了
|
||||
if first_page_list.entry_num == Self::BUDDY_ENTRIES {
|
||||
// 如果当前order是最小的,那么就把这个块当作新的page_list使用
|
||||
let new_page_list_addr = if order == MIN_ORDER {
|
||||
base
|
||||
} else {
|
||||
// 否则分配新的page_list
|
||||
// 请注意,分配之后,有可能当前的entry_num会减1(伙伴块分裂),造成出现整个链表为null的entry数量为Self::BUDDY_ENTRIES+1的情况
|
||||
// 但是不影响,我们在后面插入链表项的时候,会处理这种情况,检查链表中的第2个页是否有空位
|
||||
self.buddy_alloc(PageFrameCount::new(1))
|
||||
.expect("buddy_alloc failed: no enough memory")
|
||||
.0
|
||||
};
|
||||
|
||||
// 清空这个页面
|
||||
core::ptr::write_bytes(
|
||||
A::phys_2_virt(new_page_list_addr)
|
||||
.expect(
|
||||
"Buddy free: failed to get virt address of [new_page_list_addr]",
|
||||
)
|
||||
.as_ptr::<u8>(),
|
||||
0,
|
||||
1 << order,
|
||||
);
|
||||
assert!(
|
||||
first_page_list_paddr == self.free_area[Self::order2index(order as u8)]
|
||||
);
|
||||
// 初始化新的page_list
|
||||
let new_page_list = PageList::new(0, first_page_list_paddr);
|
||||
Self::write_page(new_page_list_addr, new_page_list);
|
||||
self.free_area[Self::order2index(order as u8)] = new_page_list_addr;
|
||||
}
|
||||
|
||||
// 由于上面可能更新了第一个链表页,因此需要重新获取这个值
|
||||
let first_page_list_paddr = self.free_area[Self::order2index(order as u8)];
|
||||
let first_page_list: PageList<A> = Self::read_page(first_page_list_paddr);
|
||||
|
||||
// 检查第二个page_list是否有空位
|
||||
let second_page_list = if first_page_list.next_page.is_null() {
|
||||
None
|
||||
} else {
|
||||
Some(Self::read_page::<PageList<A>>(first_page_list.next_page))
|
||||
};
|
||||
|
||||
let (paddr, mut page_list) = if let Some(second) = second_page_list {
|
||||
// 第二个page_list有空位
|
||||
// 应当符合之前的假设:还有1个空位
|
||||
assert!(second.entry_num == Self::BUDDY_ENTRIES - 1);
|
||||
|
||||
(first_page_list.next_page, second)
|
||||
} else {
|
||||
// 在第一个page list中分配
|
||||
(first_page_list_paddr, first_page_list)
|
||||
};
|
||||
|
||||
// kdebug!("to write entry, page_list_base={paddr:?}, page_list.entry_num={}, value={base:?}", page_list.entry_num);
|
||||
assert!(page_list.entry_num < Self::BUDDY_ENTRIES);
|
||||
// 把要归还的块,写入到链表项中
|
||||
unsafe { A::write(Self::entry_virt_addr(paddr, page_list.entry_num), base) }
|
||||
page_list.entry_num += 1;
|
||||
Self::write_page(paddr, page_list);
|
||||
return;
|
||||
} else {
|
||||
// 如果找到了伙伴块,合并,向上递归
|
||||
|
||||
// 伙伴块所在的表项的虚拟地址
|
||||
let buddy_entry_virt_addr = buddy_entry_virt_vaddr.unwrap();
|
||||
// 伙伴块所在的page_list的物理地址
|
||||
let buddy_entry_page_list_paddr = buddy_entry_page_list_paddr.unwrap();
|
||||
|
||||
let mut page_list_paddr = self.free_area[Self::order2index(order as u8)];
|
||||
let mut page_list = Self::read_page::<PageList<A>>(page_list_paddr);
|
||||
// 找第一个有空闲块的链表页。跳过空闲链表页。不进行回收的原因是担心出现死循环
|
||||
while page_list.entry_num == 0 {
|
||||
if page_list.next_page.is_null() {
|
||||
panic!(
|
||||
"buddy_free: page_list.entry_num == 0 && page_list.next_page.is_null()"
|
||||
);
|
||||
}
|
||||
page_list_paddr = page_list.next_page;
|
||||
page_list = Self::read_page(page_list_paddr);
|
||||
}
|
||||
|
||||
// 如果伙伴块不在第一个链表页,则把第一个链表中的某个空闲块替换到伙伴块的位置
|
||||
if page_list_paddr != buddy_entry_page_list_paddr {
|
||||
let entry: PhysAddr = unsafe {
|
||||
A::read(Self::entry_virt_addr(
|
||||
page_list_paddr,
|
||||
page_list.entry_num - 1,
|
||||
))
|
||||
};
|
||||
// 把这个空闲块写入到伙伴块的位置
|
||||
unsafe {
|
||||
A::write(buddy_entry_virt_addr, entry);
|
||||
}
|
||||
// 设置刚才那个entry为空
|
||||
unsafe {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num - 1),
|
||||
PhysAddr::new(0),
|
||||
);
|
||||
}
|
||||
// 更新当前链表页的统计数据
|
||||
page_list.entry_num -= 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
} else {
|
||||
// 伙伴块所在的链表页就是第一个链表页
|
||||
let last_entry: PhysAddr = unsafe {
|
||||
A::read(Self::entry_virt_addr(
|
||||
page_list_paddr,
|
||||
page_list.entry_num - 1,
|
||||
))
|
||||
};
|
||||
|
||||
// 如果最后一个空闲块不是伙伴块,则把最后一个空闲块移动到伙伴块的位置
|
||||
// 否则后面的操作也将删除这个伙伴块
|
||||
if last_entry != buddy_addr {
|
||||
unsafe {
|
||||
A::write(buddy_entry_virt_addr, last_entry);
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num - 1),
|
||||
PhysAddr::new(0),
|
||||
);
|
||||
}
|
||||
} else {
|
||||
unsafe {
|
||||
A::write(
|
||||
Self::entry_virt_addr(page_list_paddr, page_list.entry_num - 1),
|
||||
PhysAddr::new(0),
|
||||
);
|
||||
}
|
||||
}
|
||||
// 更新当前链表页的统计数据
|
||||
page_list.entry_num -= 1;
|
||||
Self::write_page(page_list_paddr, page_list);
|
||||
}
|
||||
}
|
||||
base = min(base, buddy_addr);
|
||||
order += 1;
|
||||
}
|
||||
// 走到这一步,order应该为MAX_ORDER-1
|
||||
assert!(order == MAX_ORDER - 1);
|
||||
}
|
||||
}
|
||||
|
||||
impl<A: MemoryManagementArch> FrameAllocator for BuddyAllocator<A> {
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
return self.buddy_alloc(count);
|
||||
}
|
||||
|
||||
/// 释放一个块
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `base` - 块的起始地址
|
||||
/// - `count` - 块的页数(必须是2的幂)
|
||||
///
|
||||
/// ## Panic
|
||||
///
|
||||
/// 如果count不是2的幂,会panic
|
||||
unsafe fn free(&mut self, base: PhysAddr, count: PageFrameCount) {
|
||||
// 要求count是2的幂
|
||||
if unlikely(!count.data().is_power_of_two()) {
|
||||
kwarn!("buddy free: count is not power of two");
|
||||
}
|
||||
let mut order = log2(count.data() as usize);
|
||||
if count.data() & ((1 << order) - 1) != 0 {
|
||||
order += 1;
|
||||
}
|
||||
let order = (order + MIN_ORDER) as u8;
|
||||
// kdebug!("free: base={:?}, count={:?}", base, count);
|
||||
self.buddy_free(base, order);
|
||||
}
|
||||
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
todo!("BuddyAllocator::usage")
|
||||
}
|
||||
}
|
||||
|
||||
/// 一个用于计算整数的对数的函数,会向下取整。(由于内核不能进行浮点运算,因此需要这个函数)
|
||||
fn log2(x: usize) -> usize {
|
||||
let leading_zeros = x.leading_zeros() as usize;
|
||||
let log2x = 63 - leading_zeros;
|
||||
return log2x;
|
||||
}
|
112
kernel/src/mm/allocator/bump.rs
Normal file
112
kernel/src/mm/allocator/bump.rs
Normal file
@ -0,0 +1,112 @@
|
||||
/// @Auther: Kong
|
||||
/// @Date: 2023-03-27 06:54:08
|
||||
/// @FilePath: /DragonOS/kernel/src/mm/allocator/bump.rs
|
||||
/// @Description: bump allocator线性分配器
|
||||
use super::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
|
||||
use crate::mm::{MemoryManagementArch, PhysAddr, PhysMemoryArea};
|
||||
use core::marker::PhantomData;
|
||||
|
||||
/// 线性分配器
|
||||
pub struct BumpAllocator<MMA> {
|
||||
// 表示可用物理内存区域的数组。每个 PhysMemoryArea 结构体描述一个物理内存区域的起始地址和大小。
|
||||
areas: &'static [PhysMemoryArea],
|
||||
// 表示当前分配的物理内存的偏移量.
|
||||
offset: usize,
|
||||
// 一个占位类型,用于标记 A 类型在结构体中的存在。但是,它并不会占用任何内存空间,因为它的大小为 0。
|
||||
phantom: PhantomData<MMA>,
|
||||
}
|
||||
|
||||
/// 为BumpAllocator实现FrameAllocator
|
||||
impl<MMA: MemoryManagementArch> BumpAllocator<MMA> {
|
||||
/// @brief: 创建一个线性分配器
|
||||
/// @param Fareas 当前的内存区域
|
||||
/// @param offset 当前的偏移量
|
||||
/// @return 分配器本身
|
||||
pub fn new(areas: &'static [PhysMemoryArea], offset: usize) -> Self {
|
||||
Self {
|
||||
areas,
|
||||
offset,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
// @brief 获取页帧使用情况
|
||||
pub fn areas(&self) -> &'static [PhysMemoryArea] {
|
||||
return self.areas;
|
||||
}
|
||||
// @brief 获取当前分配的物理内存的偏移量
|
||||
pub fn offset(&self) -> usize {
|
||||
return self.offset;
|
||||
}
|
||||
}
|
||||
|
||||
impl<MMA: MemoryManagementArch> FrameAllocator for BumpAllocator<MMA> {
|
||||
/// @brief: 分配count个物理页帧
|
||||
/// @param mut self
|
||||
/// @param count 分配的页帧数量
|
||||
/// @return 分配后的物理地址
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
let mut offset = self.offset();
|
||||
// 遍历所有的物理内存区域
|
||||
for area in self.areas().iter() {
|
||||
// 将area的base地址与PAGE_SIZE对齐,对齐时向上取整
|
||||
// let area_base = (area.base.data() + MMA::PAGE_SHIFT) & !(MMA::PAGE_SHIFT);
|
||||
let area_base = (area.base.data() + (MMA::PAGE_SIZE - 1)) & !(MMA::PAGE_SIZE - 1);
|
||||
// 将area的末尾地址与PAGE_SIZE对齐,对齐时向下取整
|
||||
// let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SHIFT);
|
||||
let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SIZE - 1);
|
||||
|
||||
// 如果offset大于area_end,说明当前的物理内存区域已经分配完了,需要跳到下一个物理内存区域
|
||||
if offset >= area_end {
|
||||
continue;
|
||||
}
|
||||
|
||||
// 如果offset小于area_base ,说明当前的物理内存区域还没有分配过页帧,将offset设置为area_base
|
||||
if offset < area_base {
|
||||
offset = area_base;
|
||||
} else if offset < area_end {
|
||||
// 将offset对齐到PAGE_SIZE
|
||||
offset = (offset + (MMA::PAGE_SIZE - 1)) & !(MMA::PAGE_SIZE - 1);
|
||||
}
|
||||
// 如果当前offset到area_end的距离大于等于count.data() * PAGE_SIZE,说明当前的物理内存区域足以分配count个页帧
|
||||
if offset + count.data() * MMA::PAGE_SIZE <= area_end {
|
||||
let res_page_phys = offset;
|
||||
// 将offset增加至分配后的内存
|
||||
self.offset = offset + count.data() * MMA::PAGE_SIZE;
|
||||
|
||||
return Some((PhysAddr(res_page_phys), count));
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
unsafe fn free(&mut self, _address: PhysAddr, _count: PageFrameCount) {
|
||||
// TODO: 支持释放页帧
|
||||
unimplemented!("BumpAllocator::free not implemented");
|
||||
}
|
||||
/// @brief: 获取内存区域页帧的使用情况
|
||||
/// @param self
|
||||
/// @return 页帧的使用情况
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
let mut total = 0;
|
||||
let mut used = 0;
|
||||
for area in self.areas().iter() {
|
||||
// 将area的base地址与PAGE_SIZE对齐,对其时向上取整
|
||||
let area_base = (area.base.data() + MMA::PAGE_SHIFT) & !(MMA::PAGE_SHIFT);
|
||||
// 将area的末尾地址与PAGE_SIZE对齐,对其时向下取整
|
||||
let area_end = (area.base.data() + area.size) & !(MMA::PAGE_SHIFT);
|
||||
|
||||
total += (area_end - area_base) >> MMA::PAGE_SHIFT;
|
||||
// 如果offset大于area_end,说明当前物理区域被分配完,都需要加到used中
|
||||
if self.offset >= area_end {
|
||||
used += (area_end - area_base) >> MMA::PAGE_SHIFT;
|
||||
} else if self.offset < area_base {
|
||||
// 如果offset小于area_base,说明当前物理区域还没有分配过页帧,都不需要加到used中
|
||||
continue;
|
||||
} else {
|
||||
used += (self.offset - area_base) >> MMA::PAGE_SHIFT;
|
||||
}
|
||||
}
|
||||
let frame = PageFrameUsage::new(PageFrameCount::new(used), PageFrameCount::new(total));
|
||||
return frame;
|
||||
}
|
||||
}
|
101
kernel/src/mm/allocator/kernel_allocator.rs
Normal file
101
kernel/src/mm/allocator/kernel_allocator.rs
Normal file
@ -0,0 +1,101 @@
|
||||
use crate::{
|
||||
arch::mm::LockedFrameAllocator,
|
||||
libs::align::page_align_up,
|
||||
mm::{MMArch, MemoryManagementArch, VirtAddr},
|
||||
};
|
||||
|
||||
use core::{
|
||||
alloc::{AllocError, GlobalAlloc, Layout},
|
||||
intrinsics::unlikely,
|
||||
ptr::NonNull,
|
||||
};
|
||||
|
||||
use super::page_frame::{FrameAllocator, PageFrameCount};
|
||||
|
||||
/// 类kmalloc的分配器应当实现的trait
|
||||
pub trait LocalAlloc {
|
||||
unsafe fn local_alloc(&self, layout: Layout) -> *mut u8;
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout) -> *mut u8;
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout);
|
||||
}
|
||||
|
||||
pub struct KernelAllocator;
|
||||
|
||||
impl KernelAllocator {
|
||||
unsafe fn alloc_in_buddy(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||||
// 计算需要申请的页数,向上取整
|
||||
let count = (page_align_up(layout.size()) / MMArch::PAGE_SIZE).next_power_of_two();
|
||||
let page_frame_count = PageFrameCount::new(count);
|
||||
let (phy_addr, allocated_frame_count) = LockedFrameAllocator
|
||||
.allocate(page_frame_count)
|
||||
.ok_or(AllocError)?;
|
||||
|
||||
let virt_addr = unsafe { MMArch::phys_2_virt(phy_addr).ok_or(AllocError)? };
|
||||
if unlikely(virt_addr.is_null()) {
|
||||
return Err(AllocError);
|
||||
}
|
||||
|
||||
let slice = unsafe {
|
||||
core::slice::from_raw_parts_mut(
|
||||
virt_addr.data() as *mut u8,
|
||||
allocated_frame_count.data() * MMArch::PAGE_SIZE,
|
||||
)
|
||||
};
|
||||
return Ok(NonNull::from(slice));
|
||||
}
|
||||
|
||||
unsafe fn free_in_buddy(&self, ptr: *mut u8, layout: Layout) {
|
||||
// 由于buddy分配的页数量是2的幂,因此释放的时候也需要按照2的幂向上取整。
|
||||
let count = (page_align_up(layout.size()) / MMArch::PAGE_SIZE).next_power_of_two();
|
||||
let page_frame_count = PageFrameCount::new(count);
|
||||
let phy_addr = MMArch::virt_2_phys(VirtAddr::new(ptr as usize)).unwrap();
|
||||
LockedFrameAllocator.free(phy_addr, page_frame_count);
|
||||
}
|
||||
}
|
||||
|
||||
/// 为内核SLAB分配器实现LocalAlloc的trait
|
||||
impl LocalAlloc for KernelAllocator {
|
||||
unsafe fn local_alloc(&self, layout: Layout) -> *mut u8 {
|
||||
return self
|
||||
.alloc_in_buddy(layout)
|
||||
.map(|x| x.as_mut_ptr() as *mut u8)
|
||||
.unwrap_or(core::ptr::null_mut() as *mut u8);
|
||||
}
|
||||
|
||||
unsafe fn local_alloc_zeroed(&self, layout: Layout) -> *mut u8 {
|
||||
return self
|
||||
.alloc_in_buddy(layout)
|
||||
.map(|x| {
|
||||
let ptr: *mut u8 = x.as_mut_ptr();
|
||||
core::ptr::write_bytes(ptr, 0, x.len());
|
||||
ptr
|
||||
})
|
||||
.unwrap_or(core::ptr::null_mut() as *mut u8);
|
||||
}
|
||||
|
||||
unsafe fn local_dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
self.free_in_buddy(ptr, layout);
|
||||
}
|
||||
}
|
||||
|
||||
/// 为内核slab分配器实现GlobalAlloc特性
|
||||
unsafe impl GlobalAlloc for KernelAllocator {
|
||||
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
|
||||
return self.local_alloc(layout);
|
||||
// self.local_alloc_zeroed(layout, 0)
|
||||
}
|
||||
|
||||
unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
|
||||
self.local_alloc_zeroed(layout)
|
||||
}
|
||||
|
||||
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
|
||||
self.local_dealloc(ptr, layout);
|
||||
}
|
||||
}
|
||||
|
||||
/// 内存分配错误处理函数
|
||||
#[alloc_error_handler]
|
||||
pub fn global_alloc_err_handler(layout: Layout) -> ! {
|
||||
panic!("global_alloc_error, layout: {:?}", layout);
|
||||
}
|
5
kernel/src/mm/allocator/mod.rs
Normal file
5
kernel/src/mm/allocator/mod.rs
Normal file
@ -0,0 +1,5 @@
|
||||
pub mod buddy;
|
||||
pub mod bump;
|
||||
pub mod kernel_allocator;
|
||||
pub mod page_frame;
|
||||
pub mod slab;
|
338
kernel/src/mm/allocator/page_frame.rs
Normal file
338
kernel/src/mm/allocator/page_frame.rs
Normal file
@ -0,0 +1,338 @@
|
||||
use core::{
|
||||
intrinsics::unlikely,
|
||||
ops::{Add, AddAssign, Mul, Sub, SubAssign},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
arch::{mm::LockedFrameAllocator, MMArch},
|
||||
mm::{MemoryManagementArch, PhysAddr, VirtAddr},
|
||||
};
|
||||
|
||||
/// @brief 物理页帧的表示
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||||
pub struct PhysPageFrame {
|
||||
/// 物理页页号
|
||||
number: usize,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl PhysPageFrame {
|
||||
pub fn new(paddr: PhysAddr) -> Self {
|
||||
return Self {
|
||||
number: paddr.data() / MMArch::PAGE_SIZE,
|
||||
};
|
||||
}
|
||||
|
||||
/// @brief 获取当前页对应的物理地址
|
||||
pub fn phys_address(&self) -> PhysAddr {
|
||||
return PhysAddr::new(self.number * MMArch::PAGE_SIZE);
|
||||
}
|
||||
|
||||
pub fn next_by(&self, n: usize) -> Self {
|
||||
return Self {
|
||||
number: self.number + n,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn next(&self) -> Self {
|
||||
return self.next_by(1);
|
||||
}
|
||||
|
||||
/// 构造物理页帧的迭代器,范围为[start, end)
|
||||
pub fn iter_range(start: Self, end: Self) -> PhysPageFrameIter {
|
||||
return PhysPageFrameIter::new(start, end);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 物理页帧的迭代器
|
||||
#[derive(Debug)]
|
||||
pub struct PhysPageFrameIter {
|
||||
current: PhysPageFrame,
|
||||
/// 结束的物理页帧(不包含)
|
||||
end: PhysPageFrame,
|
||||
}
|
||||
|
||||
impl PhysPageFrameIter {
|
||||
pub fn new(start: PhysPageFrame, end: PhysPageFrame) -> Self {
|
||||
return Self {
|
||||
current: start,
|
||||
end,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Iterator for PhysPageFrameIter {
|
||||
type Item = PhysPageFrame;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if unlikely(self.current == self.end) {
|
||||
return None;
|
||||
}
|
||||
let current = self.current.next();
|
||||
return Some(current);
|
||||
}
|
||||
}
|
||||
|
||||
/// 虚拟页帧的表示
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||||
pub struct VirtPageFrame {
|
||||
/// 虚拟页页号
|
||||
number: usize,
|
||||
}
|
||||
|
||||
impl VirtPageFrame {
|
||||
pub fn new(vaddr: VirtAddr) -> Self {
|
||||
return Self {
|
||||
number: vaddr.data() / MMArch::PAGE_SIZE,
|
||||
};
|
||||
}
|
||||
|
||||
/// 获取当前虚拟页对应的虚拟地址
|
||||
pub fn virt_address(&self) -> VirtAddr {
|
||||
return VirtAddr::new(self.number * MMArch::PAGE_SIZE);
|
||||
}
|
||||
|
||||
pub fn next_by(&self, n: usize) -> Self {
|
||||
return Self {
|
||||
number: self.number + n,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn next(&self) -> Self {
|
||||
return self.next_by(1);
|
||||
}
|
||||
|
||||
/// 构造虚拟页帧的迭代器,范围为[start, end)
|
||||
pub fn iter_range(start: Self, end: Self) -> VirtPageFrameIter {
|
||||
return VirtPageFrameIter {
|
||||
current: start,
|
||||
end,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn add(&self, n: PageFrameCount) -> Self {
|
||||
return Self {
|
||||
number: self.number + n.data(),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/// 虚拟页帧的迭代器
|
||||
#[derive(Debug)]
|
||||
pub struct VirtPageFrameIter {
|
||||
current: VirtPageFrame,
|
||||
/// 结束的虚拟页帧(不包含)
|
||||
end: VirtPageFrame,
|
||||
}
|
||||
|
||||
impl VirtPageFrameIter {
|
||||
/// @brief 构造虚拟页帧的迭代器,范围为[start, end)
|
||||
pub fn new(start: VirtPageFrame, end: VirtPageFrame) -> Self {
|
||||
return Self {
|
||||
current: start,
|
||||
end,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Iterator for VirtPageFrameIter {
|
||||
type Item = VirtPageFrame;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if unlikely(self.current == self.end) {
|
||||
return None;
|
||||
}
|
||||
let current: VirtPageFrame = self.current;
|
||||
self.current = self.current.next_by(1);
|
||||
return Some(current);
|
||||
}
|
||||
}
|
||||
|
||||
/// 页帧使用的数量
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||||
#[repr(transparent)]
|
||||
pub struct PageFrameCount(usize);
|
||||
|
||||
impl PageFrameCount {
|
||||
// @brief 初始化PageFrameCount
|
||||
pub const fn new(count: usize) -> Self {
|
||||
return Self(count);
|
||||
}
|
||||
// @brief 获取页帧数量
|
||||
pub fn data(&self) -> usize {
|
||||
return self.0;
|
||||
}
|
||||
|
||||
/// 计算这一段页帧占用的字节数
|
||||
pub fn bytes(&self) -> usize {
|
||||
return self.0 * MMArch::PAGE_SIZE;
|
||||
}
|
||||
|
||||
/// 将字节数转换为页帧数量
|
||||
///
|
||||
/// 如果字节数不是页帧大小的整数倍,则返回None. 否则返回页帧数量
|
||||
pub fn from_bytes(bytes: usize) -> Option<Self> {
|
||||
if bytes & MMArch::PAGE_OFFSET_MASK != 0 {
|
||||
return None;
|
||||
} else {
|
||||
return Some(Self(bytes / MMArch::PAGE_SIZE));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: Self) -> Self::Output {
|
||||
return Self(self.0 + rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for PageFrameCount {
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
self.0 += rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: Self) -> Self::Output {
|
||||
return Self(self.0 - rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for PageFrameCount {
|
||||
fn sub_assign(&mut self, rhs: Self) {
|
||||
self.0 -= rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
return Self(self.0 * rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<usize> for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 + rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<usize> for PageFrameCount {
|
||||
fn add_assign(&mut self, rhs: usize) {
|
||||
self.0 += rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<usize> for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 - rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<usize> for PageFrameCount {
|
||||
fn sub_assign(&mut self, rhs: usize) {
|
||||
self.0 -= rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<usize> for PageFrameCount {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 * rhs);
|
||||
}
|
||||
}
|
||||
|
||||
// 页帧使用情况
|
||||
#[derive(Debug)]
|
||||
pub struct PageFrameUsage {
|
||||
used: PageFrameCount,
|
||||
total: PageFrameCount,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl PageFrameUsage {
|
||||
/// @brief: 初始化FrameUsage
|
||||
/// @param PageFrameCount used 已使用的页帧数量
|
||||
/// @param PageFrameCount total 总的页帧数量
|
||||
pub fn new(used: PageFrameCount, total: PageFrameCount) -> Self {
|
||||
return Self { used, total };
|
||||
}
|
||||
// @brief 获取已使用的页帧数量
|
||||
pub fn used(&self) -> PageFrameCount {
|
||||
return self.used;
|
||||
}
|
||||
// @brief 获取空闲的页帧数量
|
||||
pub fn free(&self) -> PageFrameCount {
|
||||
return PageFrameCount(self.total.0 - self.used.0);
|
||||
}
|
||||
// @brief 获取总的页帧数量
|
||||
pub fn total(&self) -> PageFrameCount {
|
||||
return self.total;
|
||||
}
|
||||
}
|
||||
|
||||
/// 能够分配页帧的分配器需要实现的trait
|
||||
pub trait FrameAllocator {
|
||||
// @brief 分配count个页帧
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)>;
|
||||
|
||||
// @brief 通过地址释放count个页帧
|
||||
unsafe fn free(&mut self, address: PhysAddr, count: PageFrameCount);
|
||||
// @brief 分配一个页帧
|
||||
unsafe fn allocate_one(&mut self) -> Option<PhysAddr> {
|
||||
return self.allocate(PageFrameCount::new(1)).map(|(addr, _)| addr);
|
||||
}
|
||||
// @brief 通过地址释放一个页帧
|
||||
unsafe fn free_one(&mut self, address: PhysAddr) {
|
||||
return self.free(address, PageFrameCount::new(1));
|
||||
}
|
||||
// @brief 获取页帧使用情况
|
||||
unsafe fn usage(&self) -> PageFrameUsage;
|
||||
}
|
||||
|
||||
/// @brief 通过一个 &mut T 的引用来对一个实现了 FrameAllocator trait 的类型进行调用,使代码更加灵活
|
||||
impl<T: FrameAllocator> FrameAllocator for &mut T {
|
||||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
return T::allocate(self, count);
|
||||
}
|
||||
unsafe fn free(&mut self, address: PhysAddr, count: PageFrameCount) {
|
||||
return T::free(self, address, count);
|
||||
}
|
||||
unsafe fn allocate_one(&mut self) -> Option<PhysAddr> {
|
||||
return T::allocate_one(self);
|
||||
}
|
||||
unsafe fn free_one(&mut self, address: PhysAddr) {
|
||||
return T::free_one(self, address);
|
||||
}
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
return T::usage(self);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 从全局的页帧分配器中分配连续count个页帧
|
||||
///
|
||||
/// @param count 请求分配的页帧数量
|
||||
pub unsafe fn allocate_page_frames(count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
let frame = unsafe { LockedFrameAllocator.allocate(count)? };
|
||||
return Some(frame);
|
||||
}
|
||||
|
||||
/// @brief 向全局页帧分配器释放连续count个页帧
|
||||
///
|
||||
/// @param frame 要释放的第一个页帧
|
||||
/// @param count 要释放的页帧数量 (必须是2的n次幂)
|
||||
pub unsafe fn deallocate_page_frames(frame: PhysPageFrame, count: PageFrameCount) {
|
||||
unsafe {
|
||||
LockedFrameAllocator.free(frame.phys_address(), count);
|
||||
}
|
||||
}
|
123
kernel/src/mm/allocator/slab.rs
Normal file
123
kernel/src/mm/allocator/slab.rs
Normal file
@ -0,0 +1,123 @@
|
||||
//! 当前slab分配器暂时不使用,等待后续完善后合并主线
|
||||
#![allow(dead_code)]
|
||||
|
||||
use core::alloc::Layout;
|
||||
|
||||
// 定义Slab,用来存放空闲块
|
||||
pub struct Slab {
|
||||
block_size: usize,
|
||||
free_block_list: FreeBlockList,
|
||||
}
|
||||
|
||||
impl Slab {
|
||||
/// @brief: 初始化一个slab
|
||||
/// @param {usize} start_addr
|
||||
/// @param {usize} slab_size
|
||||
/// @param {usize} block_size
|
||||
pub unsafe fn new(start_addr: usize, slab_size: usize, block_size: usize) -> Slab {
|
||||
let blocks_num = slab_size / block_size;
|
||||
return Slab {
|
||||
block_size: block_size,
|
||||
free_block_list: FreeBlockList::new(start_addr, block_size, blocks_num),
|
||||
};
|
||||
}
|
||||
|
||||
/// @brief: 获取slab中可用的block数
|
||||
pub fn used_blocks(&self) -> usize {
|
||||
return self.free_block_list.len();
|
||||
}
|
||||
|
||||
/// @brief: 扩大free_block_list
|
||||
/// @param {*} mut
|
||||
/// @param {usize} start_addr
|
||||
/// @param {usize} slab_size
|
||||
pub fn grow(&mut self, start_addr: usize, slab_size: usize) {
|
||||
let num_of_blocks = slab_size / self.block_size;
|
||||
let mut block_list =
|
||||
unsafe { FreeBlockList::new(start_addr, self.block_size, num_of_blocks) };
|
||||
// 将新链表接到原链表的后面
|
||||
while let Some(block) = block_list.pop() {
|
||||
self.free_block_list.push(block);
|
||||
}
|
||||
}
|
||||
/// @brief: 从slab中分配一个block
|
||||
/// @return 分配的内存地址
|
||||
pub fn allocate(&mut self, _layout: Layout) -> Option<*mut u8> {
|
||||
match self.free_block_list.pop() {
|
||||
Some(block) => return Some(block.addr() as *mut u8),
|
||||
None => return None,
|
||||
}
|
||||
}
|
||||
/// @brief: 将block归还给slab
|
||||
pub fn free(&mut self, ptr: *mut u8) {
|
||||
let ptr = ptr as *mut FreeBlock;
|
||||
unsafe {
|
||||
self.free_block_list.push(&mut *ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
/// slab中的空闲块
|
||||
struct FreeBlockList {
|
||||
len: usize,
|
||||
head: Option<&'static mut FreeBlock>,
|
||||
}
|
||||
|
||||
impl FreeBlockList {
|
||||
unsafe fn new(start_addr: usize, block_size: usize, num_of_blocks: usize) -> FreeBlockList {
|
||||
let mut new_list = FreeBlockList::new_empty();
|
||||
for i in (0..num_of_blocks).rev() {
|
||||
// 从后往前分配,避免内存碎片
|
||||
let new_block = (start_addr + i * block_size) as *mut FreeBlock;
|
||||
new_list.push(&mut *new_block);
|
||||
}
|
||||
return new_list;
|
||||
}
|
||||
|
||||
fn new_empty() -> FreeBlockList {
|
||||
return FreeBlockList { len: 0, head: None };
|
||||
}
|
||||
|
||||
fn len(&self) -> usize {
|
||||
return self.len;
|
||||
}
|
||||
|
||||
/// @brief: 将空闲块从链表中弹出
|
||||
fn pop(&mut self) -> Option<&'static mut FreeBlock> {
|
||||
// 从链表中弹出一个空闲块
|
||||
let block = self.head.take().map(|node| {
|
||||
self.head = node.next.take();
|
||||
self.len -= 1;
|
||||
node
|
||||
});
|
||||
return block;
|
||||
}
|
||||
|
||||
/// @brief: 将空闲块压入链表
|
||||
fn push(&mut self, free_block: &'static mut FreeBlock) {
|
||||
free_block.next = self.head.take();
|
||||
self.len += 1;
|
||||
self.head = Some(free_block);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
return self.head.is_none();
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for FreeBlockList {
|
||||
fn drop(&mut self) {
|
||||
while let Some(_) = self.pop() {}
|
||||
}
|
||||
}
|
||||
|
||||
struct FreeBlock {
|
||||
next: Option<&'static mut FreeBlock>,
|
||||
}
|
||||
|
||||
impl FreeBlock {
|
||||
/// @brief: 获取FreeBlock的地址
|
||||
/// @return {*}
|
||||
fn addr(&self) -> usize {
|
||||
return self as *const _ as usize;
|
||||
}
|
||||
}
|
135
kernel/src/mm/c_adapter.rs
Normal file
135
kernel/src/mm/c_adapter.rs
Normal file
@ -0,0 +1,135 @@
|
||||
//! 这是暴露给C的接口,用于在C语言中使用Rust的内存分配器。
|
||||
|
||||
use core::intrinsics::unlikely;
|
||||
|
||||
use alloc::vec::Vec;
|
||||
use hashbrown::HashMap;
|
||||
|
||||
use crate::{
|
||||
arch::mm::LowAddressRemapping,
|
||||
include::bindings::bindings::{gfp_t, PAGE_U_S},
|
||||
kerror,
|
||||
libs::{align::page_align_up, spinlock::SpinLock},
|
||||
mm::MMArch,
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::PageFrameCount, kernel_mapper::KernelMapper, no_init::pseudo_map_phys,
|
||||
page::PageFlags, MemoryManagementArch, PhysAddr, VirtAddr,
|
||||
};
|
||||
|
||||
lazy_static! {
|
||||
// 用于记录内核分配给C的空间信息
|
||||
static ref C_ALLOCATION_MAP: SpinLock<HashMap<VirtAddr, (VirtAddr, usize, usize)>> = SpinLock::new(HashMap::new());
|
||||
}
|
||||
|
||||
/// [EXTERN TO C] Use pseudo mapper to map physical memory to virtual memory.
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_pseudo_map_phys(vaddr: usize, paddr: usize, size: usize) {
|
||||
let vaddr = VirtAddr::new(vaddr);
|
||||
let paddr = PhysAddr::new(paddr);
|
||||
let count = PageFrameCount::new(page_align_up(size) / MMArch::PAGE_SIZE);
|
||||
pseudo_map_phys(vaddr, paddr, count);
|
||||
}
|
||||
|
||||
/// [EXTERN TO C] Use kernel mapper to map physical memory to virtual memory.
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_map_phys(vaddr: usize, paddr: usize, size: usize, flags: usize) {
|
||||
let mut vaddr = VirtAddr::new(vaddr);
|
||||
let mut paddr = PhysAddr::new(paddr);
|
||||
let count = PageFrameCount::new(page_align_up(size) / MMArch::PAGE_SIZE);
|
||||
// kdebug!("rs_map_phys: vaddr: {vaddr:?}, paddr: {paddr:?}, count: {count:?}, flags: {flags:?}");
|
||||
|
||||
let mut page_flags: PageFlags<MMArch> = PageFlags::new().set_execute(true).set_write(true);
|
||||
if flags & PAGE_U_S as usize != 0 {
|
||||
page_flags = page_flags.set_user(true);
|
||||
}
|
||||
|
||||
let mut kernel_mapper = KernelMapper::lock();
|
||||
let mut kernel_mapper = kernel_mapper.as_mut();
|
||||
assert!(kernel_mapper.is_some());
|
||||
for _i in 0..count.data() {
|
||||
let flusher = kernel_mapper
|
||||
.as_mut()
|
||||
.unwrap()
|
||||
.map_phys(vaddr, paddr, page_flags)
|
||||
.unwrap();
|
||||
|
||||
flusher.flush();
|
||||
|
||||
vaddr += MMArch::PAGE_SIZE;
|
||||
paddr += MMArch::PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn kzalloc(size: usize, _gfp: gfp_t) -> usize {
|
||||
// kdebug!("kzalloc: size: {size}");
|
||||
return do_kmalloc(size, true);
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn kmalloc(size: usize, _gfp: gfp_t) -> usize {
|
||||
// kdebug!("kmalloc: size: {size}");
|
||||
// 由于C代码不规范,因此都全部清空
|
||||
return do_kmalloc(size, true);
|
||||
}
|
||||
|
||||
fn do_kmalloc(size: usize, zero: bool) -> usize {
|
||||
let space: Vec<u8> = if zero {
|
||||
vec![0u8; size]
|
||||
} else {
|
||||
let mut v = Vec::with_capacity(size);
|
||||
unsafe {
|
||||
v.set_len(size);
|
||||
}
|
||||
v
|
||||
};
|
||||
|
||||
assert!(space.len() == size);
|
||||
let (ptr, len, cap) = space.into_raw_parts();
|
||||
if !ptr.is_null() {
|
||||
let vaddr = VirtAddr::new(ptr as usize);
|
||||
let len = len as usize;
|
||||
let cap = cap as usize;
|
||||
let mut guard = C_ALLOCATION_MAP.lock();
|
||||
if unlikely(guard.contains_key(&vaddr)) {
|
||||
drop(guard);
|
||||
unsafe {
|
||||
drop(Vec::from_raw_parts(vaddr.data() as *mut u8, len, cap));
|
||||
}
|
||||
panic!(
|
||||
"do_kmalloc: vaddr {:?} already exists in C Allocation Map, query size: {size}, zero: {zero}",
|
||||
vaddr
|
||||
);
|
||||
}
|
||||
// 插入到C Allocation Map中
|
||||
guard.insert(vaddr, (vaddr, len, cap));
|
||||
return vaddr.data();
|
||||
} else {
|
||||
return SystemError::ENOMEM.to_posix_errno() as i64 as usize;
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn kfree(vaddr: usize) -> usize {
|
||||
let vaddr = VirtAddr::new(vaddr);
|
||||
let mut guard = C_ALLOCATION_MAP.lock();
|
||||
let p = guard.remove(&vaddr);
|
||||
drop(guard);
|
||||
|
||||
if p.is_none() {
|
||||
kerror!("kfree: vaddr {:?} not found in C Allocation Map", vaddr);
|
||||
return SystemError::EINVAL.to_posix_errno() as i64 as usize;
|
||||
}
|
||||
let (vaddr, len, cap) = p.unwrap();
|
||||
drop(Vec::from_raw_parts(vaddr.data() as *mut u8, len, cap));
|
||||
return 0;
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub unsafe extern "C" fn rs_unmap_at_low_addr() -> usize {
|
||||
LowAddressRemapping::unmap_at_low_address(true);
|
||||
return 0;
|
||||
}
|
@ -1,79 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "mm.h"
|
||||
|
||||
|
||||
// 当vma被成功合并后的返回值
|
||||
#define __VMA_MERGED 1
|
||||
|
||||
/**
|
||||
* @brief 将vma结构体插入mm_struct的链表之中
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
* @param prev 链表的前一个结点
|
||||
*/
|
||||
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev);
|
||||
|
||||
/**
|
||||
* @brief 将vma给定结构体从vma链表的结点之中删除
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
*/
|
||||
void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 获取指定虚拟地址处映射的物理地址
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @return uint64_t 已映射的物理地址
|
||||
*/
|
||||
uint64_t __mm_get_paddr(struct mm_struct *mm, uint64_t vaddr);
|
||||
|
||||
/**
|
||||
* @brief 创建anon_vma,并将其与页面结构体进行绑定
|
||||
* 若提供的页面结构体指针为NULL,则只创建,不绑定
|
||||
*
|
||||
* @param page 页面结构体的指针
|
||||
* @param lock_page 是否将页面结构体加锁
|
||||
* @return struct anon_vma_t* 创建好的anon_vma
|
||||
*/
|
||||
struct anon_vma_t *__anon_vma_create_alloc(struct Page *page, bool lock_page);
|
||||
|
||||
/**
|
||||
* @brief 释放anon vma结构体
|
||||
*
|
||||
* @param anon_vma 待释放的anon_vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_free(struct anon_vma_t *anon_vma);
|
||||
|
||||
/**
|
||||
* @brief 将指定的vma加入到anon_vma的管理范围之中
|
||||
*
|
||||
* @param anon_vma 页面的anon_vma
|
||||
* @param vma 待加入的vma
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_add(struct anon_vma_t *anon_vma, struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 从anon_vma的管理范围中删除指定的vma
|
||||
* (在进入这个函数之前,应该要对anon_vma加锁)
|
||||
* @param vma 将要取消对应的anon_vma管理的vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_del(struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 创建mmio对应的页结构体
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return struct Page* 创建成功的page
|
||||
*/
|
||||
struct Page* __create_mmio_page_struct(uint64_t paddr);
|
||||
|
||||
// 判断给定的两个值是否跨越了2M边界
|
||||
#define CROSS_2M_BOUND(val1, val2) ((val1 & PAGE_2M_MASK) != (val2 & PAGE_2M_MASK))
|
145
kernel/src/mm/kernel_mapper.rs
Normal file
145
kernel/src/mm/kernel_mapper.rs
Normal file
@ -0,0 +1,145 @@
|
||||
use super::{page::PageFlags, PageTableKind, PhysAddr, VirtAddr};
|
||||
use crate::{
|
||||
arch::{
|
||||
asm::irqflags::{local_irq_restore, local_irq_save},
|
||||
mm::{LockedFrameAllocator, PageMapper},
|
||||
},
|
||||
libs::align::page_align_up,
|
||||
mm::allocator::page_frame::PageFrameCount,
|
||||
mm::{MMArch, MemoryManagementArch},
|
||||
smp::core::smp_get_processor_id,
|
||||
syscall::SystemError,
|
||||
};
|
||||
use core::{
|
||||
ops::Deref,
|
||||
sync::atomic::{compiler_fence, AtomicUsize, Ordering},
|
||||
};
|
||||
|
||||
/// 标志当前没有处理器持有内核映射器的锁
|
||||
/// 之所以需要这个标志,是因为AtomicUsize::new(0)会把0当作一个处理器的id
|
||||
const KERNEL_MAPPER_NO_PROCESSOR: usize = !0;
|
||||
/// 当前持有内核映射器锁的处理器
|
||||
static KERNEL_MAPPER_LOCK_OWNER: AtomicUsize = AtomicUsize::new(KERNEL_MAPPER_NO_PROCESSOR);
|
||||
/// 内核映射器的锁计数器
|
||||
static KERNEL_MAPPER_LOCK_COUNT: AtomicUsize = AtomicUsize::new(0);
|
||||
|
||||
pub struct KernelMapper {
|
||||
/// 内核空间映射器
|
||||
mapper: PageMapper,
|
||||
/// 标记当前映射器是否为只读
|
||||
readonly: bool,
|
||||
}
|
||||
|
||||
impl KernelMapper {
|
||||
fn lock_cpu(cpuid: usize, mapper: PageMapper) -> Self {
|
||||
loop {
|
||||
match KERNEL_MAPPER_LOCK_OWNER.compare_exchange_weak(
|
||||
KERNEL_MAPPER_NO_PROCESSOR,
|
||||
cpuid,
|
||||
Ordering::Acquire,
|
||||
Ordering::Relaxed,
|
||||
) {
|
||||
Ok(_) => break,
|
||||
// 当前处理器已经持有了锁
|
||||
Err(id) if id == cpuid => break,
|
||||
// either CAS failed, or some other hardware thread holds the lock
|
||||
Err(_) => core::hint::spin_loop(),
|
||||
}
|
||||
}
|
||||
|
||||
let prev_count = KERNEL_MAPPER_LOCK_COUNT.fetch_add(1, Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
|
||||
// 本地核心已经持有过锁,因此标记当前加锁获得的映射器为只读
|
||||
let readonly = prev_count > 0;
|
||||
|
||||
return Self { mapper, readonly };
|
||||
}
|
||||
|
||||
/// @brief 锁定内核映射器, 并返回一个内核映射器对象
|
||||
#[inline(always)]
|
||||
pub fn lock() -> Self {
|
||||
let cpuid = smp_get_processor_id() as usize;
|
||||
let mapper = unsafe { PageMapper::current(PageTableKind::Kernel, LockedFrameAllocator) };
|
||||
return Self::lock_cpu(cpuid, mapper);
|
||||
}
|
||||
|
||||
/// @brief 获取内核映射器的page mapper的可变引用。如果当前映射器为只读,则返回 None
|
||||
#[inline(always)]
|
||||
pub fn as_mut(&mut self) -> Option<&mut PageMapper> {
|
||||
if self.readonly {
|
||||
return None;
|
||||
} else {
|
||||
return Some(&mut self.mapper);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 获取内核映射器的page mapper的不可变引用
|
||||
#[inline(always)]
|
||||
pub fn as_ref(&self) -> &PageMapper {
|
||||
return &self.mapper;
|
||||
}
|
||||
|
||||
/// 映射一段物理地址到指定的虚拟地址。
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `vaddr`: 要映射的虚拟地址
|
||||
/// - `paddr`: 要映射的物理地址
|
||||
/// - `size`: 要映射的大小(字节,必须是页大小的整数倍,否则会向上取整)
|
||||
/// - `flags`: 页面标志
|
||||
/// - `flush`: 是否刷新TLB
|
||||
///
|
||||
/// ## 返回
|
||||
///
|
||||
/// - 成功:返回Ok(())
|
||||
/// - 失败: 如果当前映射器为只读,则返回EAGAIN_OR_EWOULDBLOCK
|
||||
pub unsafe fn map_phys_with_size(
|
||||
&mut self,
|
||||
mut vaddr: VirtAddr,
|
||||
mut paddr: PhysAddr,
|
||||
size: usize,
|
||||
flags: PageFlags<MMArch>,
|
||||
flush: bool,
|
||||
) -> Result<(), SystemError> {
|
||||
if self.readonly {
|
||||
return Err(SystemError::EAGAIN_OR_EWOULDBLOCK);
|
||||
}
|
||||
|
||||
let count = PageFrameCount::new(page_align_up(size) / MMArch::PAGE_SIZE);
|
||||
// kdebug!("kernel mapper: map_phys: vaddr: {vaddr:?}, paddr: {paddr:?}, count: {count:?}, flags: {flags:?}");
|
||||
|
||||
for _ in 0..count.data() {
|
||||
let flusher = self.mapper.map_phys(vaddr, paddr, flags).unwrap();
|
||||
|
||||
if flush {
|
||||
flusher.flush();
|
||||
}
|
||||
|
||||
vaddr += MMArch::PAGE_SIZE;
|
||||
paddr += MMArch::PAGE_SIZE;
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for KernelMapper {
|
||||
fn drop(&mut self) {
|
||||
// 为了防止fetch_sub和store之间,由于中断,导致store错误清除了owner,导致错误,因此需要关中断。
|
||||
let flags = local_irq_save();
|
||||
let prev_count = KERNEL_MAPPER_LOCK_COUNT.fetch_sub(1, Ordering::Relaxed);
|
||||
if prev_count == 1 {
|
||||
KERNEL_MAPPER_LOCK_OWNER.store(KERNEL_MAPPER_NO_PROCESSOR, Ordering::Release);
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
compiler_fence(Ordering::Release);
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for KernelMapper {
|
||||
type Target = PageMapper;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
return self.as_ref();
|
||||
}
|
||||
}
|
@ -1,196 +0,0 @@
|
||||
/**
|
||||
* @file mm-stat.c
|
||||
* @author longjin(longjin@RinGoTek.cn)
|
||||
* @brief 查询内存信息
|
||||
* @version 0.1
|
||||
* @date 2022-08-06
|
||||
*
|
||||
* @copyright Copyright (c) 2022
|
||||
*
|
||||
*/
|
||||
|
||||
#include "mm.h"
|
||||
#include "slab.h"
|
||||
#include <common/errno.h>
|
||||
#include <process/ptrace.h>
|
||||
|
||||
extern const struct slab kmalloc_cache_group[16];
|
||||
|
||||
static int __empty_2m_pages(int zone);
|
||||
static int __count_in_using_2m_pages(int zone);
|
||||
static uint64_t __count_kmalloc_free();
|
||||
static uint64_t __count_kmalloc_using();
|
||||
static uint64_t __count_kmalloc_total();
|
||||
uint64_t sys_mm_stat(struct pt_regs *regs);
|
||||
|
||||
/**
|
||||
* @brief 获取指定zone中的空闲2M页的数量
|
||||
*
|
||||
* @param zone 内存zone号
|
||||
* @return int 空闲2M页数量
|
||||
*/
|
||||
static int __count_empty_2m_pages(int zone)
|
||||
{
|
||||
int zone_start = 0, zone_end = 0;
|
||||
|
||||
uint64_t attr = 0;
|
||||
switch (zone)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
attr = 0;
|
||||
break;
|
||||
default:
|
||||
kerror("In __count_empty_2m_pages: param: zone invalid.");
|
||||
// 返回错误码
|
||||
return -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
uint64_t result = 0;
|
||||
for (int i = zone_start; i <= zone_end; ++i)
|
||||
{
|
||||
result += (memory_management_struct.zones_struct + i)->count_pages_free;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取指定zone中的正在使用的2M页的数量
|
||||
*
|
||||
* @param zone 内存zone号
|
||||
* @return int 空闲2M页数量
|
||||
*/
|
||||
static int __count_in_using_2m_pages(int zone)
|
||||
{
|
||||
int zone_start = 0, zone_end = 0;
|
||||
|
||||
uint64_t attr = 0;
|
||||
switch (zone)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
attr = 0;
|
||||
break;
|
||||
default:
|
||||
kerror("In __count_in_using_2m_pages: param: zone invalid.");
|
||||
// 返回错误码
|
||||
return -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
uint64_t result = 0;
|
||||
for (int i = zone_start; i <= zone_end; ++i)
|
||||
{
|
||||
result += (memory_management_struct.zones_struct + i)->count_pages_using;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算kmalloc缓冲区中的空闲内存
|
||||
*
|
||||
* @return uint64_t 空闲内存(字节)
|
||||
*/
|
||||
static uint64_t __count_kmalloc_free()
|
||||
{
|
||||
uint64_t result = 0;
|
||||
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
|
||||
{
|
||||
result += kmalloc_cache_group[i].size * kmalloc_cache_group[i].count_total_free;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算kmalloc缓冲区中已使用的内存
|
||||
*
|
||||
* @return uint64_t 已使用的内存(字节)
|
||||
*/
|
||||
static uint64_t __count_kmalloc_using()
|
||||
{
|
||||
uint64_t result = 0;
|
||||
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
|
||||
{
|
||||
result += kmalloc_cache_group[i].size * kmalloc_cache_group[i].count_total_using;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 计算kmalloc缓冲区中总共占用的内存
|
||||
*
|
||||
* @return uint64_t 缓冲区占用的内存(字节)
|
||||
*/
|
||||
static uint64_t __count_kmalloc_total()
|
||||
{
|
||||
uint64_t result = 0;
|
||||
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
|
||||
{
|
||||
result += kmalloc_cache_group[i].size *
|
||||
(kmalloc_cache_group[i].count_total_free + kmalloc_cache_group[i].count_total_using);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取系统当前的内存信息(未上锁,不一定精准)
|
||||
*
|
||||
* @return struct mm_stat_t 内存信息结构体
|
||||
*/
|
||||
struct mm_stat_t mm_stat()
|
||||
{
|
||||
struct mm_stat_t tmp = {0};
|
||||
// 统计物理页的信息
|
||||
tmp.used = __count_in_using_2m_pages(ZONE_NORMAL) * PAGE_2M_SIZE;
|
||||
tmp.free = __count_empty_2m_pages(ZONE_NORMAL) * PAGE_2M_SIZE;
|
||||
tmp.total = tmp.used + tmp.free;
|
||||
tmp.shared = 0;
|
||||
// 统计kmalloc slab中的信息
|
||||
tmp.cache_free = __count_kmalloc_free();
|
||||
tmp.cache_used = __count_kmalloc_using();
|
||||
tmp.available = tmp.free + tmp.cache_free;
|
||||
return tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取内存信息的系统调用
|
||||
*
|
||||
* @param r8 返回的内存信息结构体的地址
|
||||
* @return uint64_t
|
||||
*/
|
||||
uint64_t sys_do_mstat(struct mm_stat_t *dst, bool from_user)
|
||||
{
|
||||
if (dst == NULL)
|
||||
return -EFAULT;
|
||||
struct mm_stat_t stat = mm_stat();
|
||||
if (from_user)
|
||||
copy_to_user((void *)dst, &stat, sizeof(struct mm_stat_t));
|
||||
else
|
||||
memcpy((void *)dst, &stat, sizeof(struct mm_stat_t));
|
||||
return 0;
|
||||
}
|
@ -4,179 +4,4 @@
|
||||
#include <common/spinlock.h>
|
||||
#include <common/atomic.h>
|
||||
|
||||
struct mm_struct;
|
||||
struct anon_vma_t;
|
||||
typedef uint64_t vm_flags_t;
|
||||
|
||||
/**
|
||||
* @brief 内存页表结构体
|
||||
*
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pml4t;
|
||||
} pml4t_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pdpt;
|
||||
} pdpt_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pdt;
|
||||
} pdt_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
unsigned long pt;
|
||||
} pt_t;
|
||||
|
||||
// Address Range Descriptor Structure 地址范围描述符
|
||||
struct ARDS
|
||||
{
|
||||
ul BaseAddr; // 基地址
|
||||
ul Length; // 内存长度 以字节为单位
|
||||
unsigned int type; // 本段内存的类型
|
||||
// type=1 表示可以被操作系统使用
|
||||
// type=2 ARR - 内存使用中或被保留,操作系统不能使用
|
||||
// 其他 未定义,操作系统需要将其视为ARR
|
||||
} __attribute__((packed)); // 修饰该结构体不会生成对齐空间,改用紧凑格式
|
||||
|
||||
struct memory_desc
|
||||
{
|
||||
|
||||
struct ARDS e820[32]; // 物理内存段结构数组
|
||||
ul len_e820; // 物理内存段长度
|
||||
|
||||
ul *bmp; // 物理空间页映射位图
|
||||
ul bmp_len; // bmp的长度
|
||||
ul bits_size; // 物理地址空间页数量
|
||||
|
||||
struct Page *pages_struct;
|
||||
ul count_pages; // struct page结构体的总数
|
||||
ul pages_struct_len; // pages_struct链表的长度
|
||||
|
||||
struct Zone *zones_struct;
|
||||
ul count_zones; // zone结构体的数量
|
||||
ul zones_struct_len; // zones_struct列表的长度
|
||||
|
||||
ul kernel_code_start, kernel_code_end; // 内核程序代码段起始地址、结束地址
|
||||
ul kernel_data_end, rodata_end; // 内核程序数据段结束地址、 内核程序只读段结束地址
|
||||
uint64_t start_brk; // 堆地址的起始位置
|
||||
|
||||
ul end_of_struct; // 内存页管理结构的结束地址
|
||||
};
|
||||
|
||||
struct Zone
|
||||
{
|
||||
// 指向内存页的指针
|
||||
struct Page *pages_group;
|
||||
ul count_pages; // 本区域的struct page结构体总数
|
||||
|
||||
// 本内存区域的起始、结束的页对齐地址
|
||||
ul zone_addr_start;
|
||||
ul zone_addr_end;
|
||||
ul zone_length; // 区域长度
|
||||
|
||||
// 本区域空间的属性
|
||||
ul attr;
|
||||
|
||||
struct memory_desc *gmd_struct;
|
||||
|
||||
// 本区域正在使用中和空闲中的物理页面数量
|
||||
ul count_pages_using;
|
||||
ul count_pages_free;
|
||||
|
||||
// 物理页被引用次数
|
||||
ul total_pages_link;
|
||||
};
|
||||
|
||||
struct Page
|
||||
{
|
||||
// 本页所属的内存域结构体
|
||||
struct Zone *zone;
|
||||
// 本页对应的物理地址
|
||||
ul addr_phys;
|
||||
// 页面属性
|
||||
ul attr;
|
||||
// 页面被引用的次数
|
||||
ul ref_counts;
|
||||
// 本页的创建时间
|
||||
ul age;
|
||||
|
||||
struct anon_vma_t *anon_vma; // 本页对应的anon_vma
|
||||
|
||||
spinlock_t op_lock; // 页面操作锁
|
||||
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 虚拟内存区域(VMA)结构体
|
||||
*
|
||||
*/
|
||||
struct vm_area_struct
|
||||
{
|
||||
struct vm_area_struct *vm_prev, *vm_next;
|
||||
|
||||
// 虚拟内存区域的范围是一个左闭右开的区间:[vm_start, vm_end)
|
||||
uint64_t vm_start; // 区域的起始地址
|
||||
uint64_t vm_end; // 区域的结束地址
|
||||
struct mm_struct *vm_mm; // 虚拟内存区域对应的mm结构体
|
||||
vm_flags_t vm_flags; // 虚拟内存区域的标志位, 具体可选值请见mm.h
|
||||
|
||||
|
||||
struct List anon_vma_list; // anon_vma的链表结点
|
||||
struct anon_vma_t * anon_vma; // 属于的anon_vma
|
||||
|
||||
struct vm_operations_t *vm_ops; // 操作方法
|
||||
atomic_t ref_count; // 引用计数
|
||||
pgoff_t page_offset; // 起始地址在当前VMA所占的2M物理页中的偏移量
|
||||
void *private_data;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 内存空间分布结构体
|
||||
* 包含了进程内存空间分布的信息
|
||||
*/
|
||||
struct mm_struct
|
||||
{
|
||||
pml4t_t *pgd; // 内存页表指针
|
||||
struct vm_area_struct *vmas; // VMA列表
|
||||
// 代码段空间
|
||||
uint64_t code_addr_start, code_addr_end;
|
||||
// 数据段空间
|
||||
uint64_t data_addr_start, data_addr_end;
|
||||
// 只读数据段空间
|
||||
uint64_t rodata_addr_start, rodata_addr_end;
|
||||
// BSS段的空间
|
||||
uint64_t bss_start, bss_end;
|
||||
// 动态内存分配区(堆区域)
|
||||
uint64_t brk_start, brk_end;
|
||||
// 应用层栈基地址
|
||||
uint64_t stack_start;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 匿名vma对象的结构体
|
||||
*
|
||||
* anon_vma与每个内存页结构体进行一对一绑定
|
||||
* anon_vma也连接着一切使用到该内存页的vma,当发生页面换出时,应当更新与该page相关的所有vma在页表中的映射信息。
|
||||
*/
|
||||
struct anon_vma_t
|
||||
{
|
||||
// anon vma的操作信号量
|
||||
semaphore_t sem;
|
||||
|
||||
/**
|
||||
* 记录当前有多少个vma与该anon_vma关联,当vma被释放时,
|
||||
* 应当检查这个值。当该值为0时,应当释放anon_vma结构体
|
||||
*/
|
||||
atomic_t ref_count;
|
||||
|
||||
// todo: 把下面的循环链表更换成红黑树
|
||||
// 与当前anon_vma相关的vma的列表
|
||||
struct List vma_list;
|
||||
// 当前anon vma对应的page
|
||||
struct Page* page;
|
||||
};
|
@ -1,686 +0,0 @@
|
||||
#include "mm.h"
|
||||
#include "mm-types.h"
|
||||
#include "mmio.h"
|
||||
#include "slab.h"
|
||||
#include <common/printk.h>
|
||||
#include <common/kprint.h>
|
||||
#include <driver/multiboot2/multiboot2.h>
|
||||
#include <process/process.h>
|
||||
#include <common/compiler.h>
|
||||
#include <common/errno.h>
|
||||
#include <debug/traceback/traceback.h>
|
||||
|
||||
uint64_t mm_Total_Memory = 0;
|
||||
uint64_t mm_total_2M_pages = 0;
|
||||
struct mm_struct initial_mm = {0};
|
||||
|
||||
struct memory_desc memory_management_struct = {{0}, 0};
|
||||
|
||||
/**
|
||||
* @brief 从页表中获取pdt页表项的内容
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
* @param clear 是否清除标志位
|
||||
*/
|
||||
uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
|
||||
|
||||
/**
|
||||
* @brief 检查页表是否存在不为0的页表项
|
||||
*
|
||||
* @param ptr 页表基指针
|
||||
* @return int8_t 存在 -> 1
|
||||
* 不存在 -> 0
|
||||
*/
|
||||
int8_t mm_check_page_table(uint64_t *ptr)
|
||||
{
|
||||
for (int i = 0; i < 512; ++i, ++ptr)
|
||||
{
|
||||
if (*ptr != 0)
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void mm_init()
|
||||
{
|
||||
kinfo("Initializing memory management unit...");
|
||||
// 设置内核程序不同部分的起止地址
|
||||
memory_management_struct.kernel_code_start = (ul)&_text;
|
||||
memory_management_struct.kernel_code_end = (ul)&_etext;
|
||||
memory_management_struct.kernel_data_end = (ul)&_edata;
|
||||
memory_management_struct.rodata_end = (ul)&_erodata;
|
||||
memory_management_struct.start_brk = (ul)&_end;
|
||||
|
||||
struct multiboot_mmap_entry_t mb2_mem_info[512];
|
||||
int count;
|
||||
|
||||
multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
|
||||
io_mfence();
|
||||
for (int i = 0; i < count; ++i)
|
||||
{
|
||||
io_mfence();
|
||||
// 可用的内存
|
||||
if (mb2_mem_info->type == 1)
|
||||
mm_Total_Memory += mb2_mem_info->len;
|
||||
|
||||
// kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
|
||||
// 保存信息到mms
|
||||
memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
|
||||
memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
|
||||
memory_management_struct.e820[i].type = mb2_mem_info[i].type;
|
||||
memory_management_struct.len_e820 = i;
|
||||
|
||||
// 脏数据
|
||||
if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
|
||||
break;
|
||||
}
|
||||
printk("[ INFO ] Total amounts of RAM : %ld bytes\n", mm_Total_Memory);
|
||||
|
||||
// 计算有效内存页数
|
||||
io_mfence();
|
||||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||||
{
|
||||
if (memory_management_struct.e820[i].type != 1)
|
||||
continue;
|
||||
io_mfence();
|
||||
// 将内存段的起始物理地址按照2M进行对齐
|
||||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||||
// 将内存段的终止物理地址的低2M区域清空,以实现对齐
|
||||
ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
|
||||
|
||||
// 内存段不可用
|
||||
if (addr_end <= addr_start)
|
||||
continue;
|
||||
io_mfence();
|
||||
mm_total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
|
||||
}
|
||||
kinfo("Total amounts of 2M pages : %ld.", mm_total_2M_pages);
|
||||
|
||||
// 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
|
||||
ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
|
||||
// 初始化mms的bitmap
|
||||
// bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
|
||||
io_mfence();
|
||||
memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||||
memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
|
||||
memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
|
||||
io_mfence();
|
||||
|
||||
// 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
|
||||
memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
|
||||
io_mfence();
|
||||
// 初始化内存页结构
|
||||
// 将页结构映射于bmp之后
|
||||
memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||||
|
||||
memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
|
||||
memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
|
||||
// 将pages_struct全部清空,以备后续初始化
|
||||
memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
|
||||
|
||||
io_mfence();
|
||||
// 初始化内存区域
|
||||
memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||||
io_mfence();
|
||||
// 由于暂时无法计算zone结构体的数量,因此先将其设为0
|
||||
memory_management_struct.count_zones = 0;
|
||||
io_mfence();
|
||||
// zones-struct 成员变量暂时按照5个来计算
|
||||
memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||||
io_mfence();
|
||||
memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
|
||||
|
||||
// ==== 遍历e820数组,完成成员变量初始化工作 ===
|
||||
|
||||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||||
{
|
||||
io_mfence();
|
||||
if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
|
||||
continue;
|
||||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||||
ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
|
||||
|
||||
if (addr_end <= addr_start)
|
||||
continue;
|
||||
|
||||
// zone init
|
||||
struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
|
||||
++memory_management_struct.count_zones;
|
||||
|
||||
z->zone_addr_start = addr_start;
|
||||
z->zone_addr_end = addr_end;
|
||||
z->zone_length = addr_end - addr_start;
|
||||
|
||||
z->count_pages_using = 0;
|
||||
z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||||
z->total_pages_link = 0;
|
||||
|
||||
z->attr = 0;
|
||||
z->gmd_struct = &memory_management_struct;
|
||||
|
||||
z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||||
z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
|
||||
|
||||
// 初始化页
|
||||
struct Page *p = z->pages_group;
|
||||
|
||||
for (int j = 0; j < z->count_pages; ++j, ++p)
|
||||
{
|
||||
p->zone = z;
|
||||
p->addr_phys = addr_start + PAGE_2M_SIZE * j;
|
||||
p->attr = 0;
|
||||
|
||||
p->ref_counts = 0;
|
||||
p->age = 0;
|
||||
|
||||
// 将bmp中对应的位 复位
|
||||
*(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
|
||||
}
|
||||
}
|
||||
|
||||
// 初始化0~2MB的物理页
|
||||
// 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
|
||||
io_mfence();
|
||||
memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
|
||||
memory_management_struct.pages_struct->addr_phys = 0UL;
|
||||
set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
|
||||
memory_management_struct.pages_struct->ref_counts = 1;
|
||||
memory_management_struct.pages_struct->age = 0;
|
||||
// 将第0页的标志位给置上
|
||||
//*(memory_management_struct.bmp) |= 1UL;
|
||||
|
||||
// 计算zone结构体的总长度(按照64位对齐)
|
||||
memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||||
|
||||
ZONE_DMA_INDEX = 0;
|
||||
ZONE_NORMAL_INDEX = memory_management_struct.count_zones ;
|
||||
ZONE_UNMAPPED_INDEX = 0;
|
||||
|
||||
//kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
|
||||
// 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
|
||||
memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
|
||||
|
||||
// 初始化内存管理单元结构所占的物理页的结构体
|
||||
ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
|
||||
// kdebug("mms_max_page=%ld", mms_max_page);
|
||||
|
||||
struct Page *tmp_page = NULL;
|
||||
ul page_num;
|
||||
// 第0个page已经在上方配置
|
||||
for (ul j = 1; j <= mms_max_page; ++j)
|
||||
{
|
||||
barrier();
|
||||
tmp_page = memory_management_struct.pages_struct + j;
|
||||
page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
|
||||
barrier();
|
||||
page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||||
++tmp_page->zone->count_pages_using;
|
||||
--tmp_page->zone->count_pages_free;
|
||||
}
|
||||
|
||||
kinfo("Memory management unit initialize complete!");
|
||||
|
||||
flush_tlb();
|
||||
// todo: 在这里增加代码,暂时停止视频输出,否则可能会导致图像数据写入slab的区域,从而造成异常
|
||||
// 初始化slab内存池
|
||||
slab_init();
|
||||
page_table_init();
|
||||
|
||||
initial_mm.pgd = (pml4t_t *)get_CR3();
|
||||
|
||||
initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
|
||||
initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
|
||||
|
||||
initial_mm.data_addr_start = (ul)&_data;
|
||||
initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
|
||||
|
||||
initial_mm.rodata_addr_start = (ul)&_rodata;
|
||||
initial_mm.rodata_addr_end = (ul)&_erodata;
|
||||
initial_mm.bss_start = (uint64_t)&_bss;
|
||||
initial_mm.bss_end = (uint64_t)&_ebss;
|
||||
|
||||
initial_mm.brk_start = memory_management_struct.start_brk;
|
||||
initial_mm.brk_end = current_pcb->addr_limit;
|
||||
|
||||
initial_mm.stack_start = _stack_start;
|
||||
initial_mm.vmas = NULL;
|
||||
|
||||
|
||||
|
||||
mmio_init();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 初始化内存页
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 标志位
|
||||
* 本函数只负责初始化内存页,允许对同一页面进行多次初始化
|
||||
* 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_init(struct Page *page, ul flags)
|
||||
{
|
||||
page->attr |= flags;
|
||||
// 若页面的引用计数为0或是共享页,增加引用计数
|
||||
if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
|
||||
{
|
||||
++page->ref_counts;
|
||||
barrier();
|
||||
if (page->zone)
|
||||
++page->zone->total_pages_link;
|
||||
}
|
||||
page->anon_vma = NULL;
|
||||
spin_init(&(page->op_lock));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
|
||||
*
|
||||
* @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
|
||||
* @param num 需要申请的连续内存页的数量 num<64
|
||||
* @param flags 将页面属性设置成flag
|
||||
* @return struct Page*
|
||||
*/
|
||||
struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
|
||||
{
|
||||
ul zone_start = 0, zone_end = 0;
|
||||
if (num >= 64 && num <= 0)
|
||||
{
|
||||
kerror("alloc_pages(): num is invalid.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ul attr = flags;
|
||||
switch (zone_select)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
attr |= PAGE_PGT_MAPPED;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
attr = 0;
|
||||
break;
|
||||
|
||||
default:
|
||||
kerror("In alloc_pages: param: zone_select incorrect.");
|
||||
// 返回空
|
||||
return NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
for (int i = zone_start; i < zone_end; ++i)
|
||||
{
|
||||
if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
|
||||
continue;
|
||||
|
||||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||||
// 区域对应的起止页号
|
||||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||||
|
||||
ul tmp = 64 - page_start % 64;
|
||||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||||
{
|
||||
// 按照bmp中的每一个元素进行查找
|
||||
// 先将p定位到bmp的起始元素
|
||||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||||
|
||||
ul shift = j % 64;
|
||||
ul tmp_num = ((1UL << num) - 1);
|
||||
for (ul k = shift; k < 64; ++k)
|
||||
{
|
||||
// 寻找连续num个空页
|
||||
if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
|
||||
|
||||
{
|
||||
ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
|
||||
for (ul l = 0; l < num; ++l)
|
||||
{
|
||||
struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
|
||||
|
||||
// 分配页面,手动配置属性及计数器
|
||||
// 置位bmp
|
||||
*(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
|
||||
++(z->count_pages_using);
|
||||
--(z->count_pages_free);
|
||||
page_init(x, attr);
|
||||
}
|
||||
// 成功分配了页面,返回第一个页面的指针
|
||||
// kwarn("start page num=%d\n", start_page_num);
|
||||
return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
kBUG("Cannot alloc page, ZONE=%d\tnums=%d, mm_total_2M_pages=%d", zone_select, num, mm_total_2M_pages);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
|
||||
*
|
||||
* @param p 物理页结构体
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_clean(struct Page *p)
|
||||
{
|
||||
--p->ref_counts;
|
||||
--p->zone->total_pages_link;
|
||||
|
||||
// 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
|
||||
if (!p->ref_counts)
|
||||
{
|
||||
p->attr &= PAGE_PGT_MAPPED;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @return ul 属性
|
||||
*/
|
||||
ul get_page_attr(struct Page *page)
|
||||
{
|
||||
if (page == NULL)
|
||||
{
|
||||
kBUG("get_page_attr(): page == NULL");
|
||||
return EPAGE_NULL;
|
||||
}
|
||||
else
|
||||
return page->attr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 属性
|
||||
* @return ul 错误码
|
||||
*/
|
||||
ul set_page_attr(struct Page *page, ul flags)
|
||||
{
|
||||
if (page == NULL)
|
||||
{
|
||||
kBUG("get_page_attr(): page == NULL");
|
||||
return EPAGE_NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
page->attr = flags;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief 释放连续number个内存页
|
||||
*
|
||||
* @param page 第一个要被释放的页面的结构体
|
||||
* @param number 要释放的内存页数量 number<64
|
||||
*/
|
||||
|
||||
void free_pages(struct Page *page, int number)
|
||||
{
|
||||
if (page == NULL)
|
||||
{
|
||||
kerror("free_pages() page is invalid.");
|
||||
return;
|
||||
}
|
||||
|
||||
if (number >= 64 || number <= 0)
|
||||
{
|
||||
kerror("free_pages(): number %d is invalid.", number);
|
||||
return;
|
||||
}
|
||||
|
||||
ul page_num;
|
||||
for (int i = 0; i < number; ++i, ++page)
|
||||
{
|
||||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||||
// 复位bmp
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
|
||||
// 更新计数器
|
||||
--page->zone->count_pages_using;
|
||||
++page->zone->count_pages_free;
|
||||
page->attr = 0;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 重新初始化页表的函数
|
||||
* 将所有物理页映射到线性地址空间
|
||||
*/
|
||||
void page_table_init()
|
||||
{
|
||||
kinfo("Re-Initializing page table...");
|
||||
ul *global_CR3 = get_CR3();
|
||||
|
||||
int js = 0;
|
||||
ul *tmp_addr;
|
||||
for (int i = 0; i < memory_management_struct.count_zones; ++i)
|
||||
{
|
||||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||||
struct Page *p = z->pages_group;
|
||||
|
||||
if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
|
||||
break;
|
||||
|
||||
for (int j = 0; j < z->count_pages; ++j)
|
||||
{
|
||||
mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true, false);
|
||||
|
||||
++p;
|
||||
++js;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
barrier();
|
||||
// ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
|
||||
|
||||
// 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
|
||||
// 因此需要先在IDLE进程的顶层页表内映射二级页表
|
||||
|
||||
uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
|
||||
|
||||
for (int i = 256; i < 512; ++i)
|
||||
{
|
||||
uint64_t *tmp = idle_pml4t_vaddr + i;
|
||||
barrier();
|
||||
if (*tmp == 0)
|
||||
{
|
||||
void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
|
||||
barrier();
|
||||
memset(pdpt, 0, PAGE_4K_SIZE);
|
||||
barrier();
|
||||
set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
flush_tlb();
|
||||
kinfo("Page table Initialized. Affects:%d", js);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从页表中获取pdt页表项的内容
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
* @param clear 是否清除标志位
|
||||
*/
|
||||
uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
|
||||
{
|
||||
ul *tmp;
|
||||
if (is_phys)
|
||||
tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||||
else
|
||||
tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
|
||||
|
||||
// pml4页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||||
|
||||
// pdpt页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
// 读取pdt页表项
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||||
|
||||
if (clear) // 清除页表项的标志位
|
||||
return *tmp & (~0x1fff);
|
||||
else
|
||||
return *tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从mms中寻找Page结构体
|
||||
*
|
||||
* @param phys_addr
|
||||
* @return struct Page*
|
||||
*/
|
||||
static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
|
||||
{
|
||||
uint32_t zone_start, zone_end;
|
||||
switch (zone_select)
|
||||
{
|
||||
case ZONE_DMA:
|
||||
// DMA区域
|
||||
zone_start = 0;
|
||||
zone_end = ZONE_DMA_INDEX;
|
||||
break;
|
||||
case ZONE_NORMAL:
|
||||
zone_start = ZONE_DMA_INDEX;
|
||||
zone_end = ZONE_NORMAL_INDEX;
|
||||
break;
|
||||
case ZONE_UNMAPPED_IN_PGT:
|
||||
zone_start = ZONE_NORMAL_INDEX;
|
||||
zone_end = ZONE_UNMAPPED_INDEX;
|
||||
break;
|
||||
|
||||
default:
|
||||
kerror("In mm_find_page: param: zone_select incorrect.");
|
||||
// 返回空
|
||||
return NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
for (int i = zone_start; i <= zone_end; ++i)
|
||||
{
|
||||
if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
|
||||
continue;
|
||||
|
||||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||||
|
||||
// 区域对应的起止页号
|
||||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||||
|
||||
ul tmp = 64 - page_start % 64;
|
||||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||||
{
|
||||
// 按照bmp中的每一个元素进行查找
|
||||
// 先将p定位到bmp的起始元素
|
||||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||||
|
||||
ul shift = j % 64;
|
||||
for (ul k = shift; k < 64; ++k)
|
||||
{
|
||||
if ((*p >> k) & 1) // 若当前页已分配
|
||||
{
|
||||
uint64_t page_num = j + k - shift;
|
||||
struct Page *x = memory_management_struct.pages_struct + page_num;
|
||||
|
||||
if (x->addr_phys == phys_addr) // 找到对应的页
|
||||
return x;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 调整堆区域的大小(暂时只能增加堆区域)
|
||||
*
|
||||
* @todo 缩小堆区域
|
||||
* @param old_brk_end_addr 原本的堆内存区域的结束地址
|
||||
* @param offset 新的地址相对于原地址的偏移量
|
||||
* @return uint64_t
|
||||
*/
|
||||
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
|
||||
{
|
||||
|
||||
uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
|
||||
if (offset >= 0)
|
||||
{
|
||||
for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
|
||||
{
|
||||
struct vm_area_struct *vma = NULL;
|
||||
mm_create_vma(current_pcb->mm, i, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||||
mm_map(current_pcb->mm, i, PAGE_2M_SIZE, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys);
|
||||
// mm_map_vma(vma, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, 0, PAGE_2M_SIZE);
|
||||
}
|
||||
current_pcb->mm->brk_end = end_addr;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
// 释放堆内存
|
||||
for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
|
||||
{
|
||||
uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
|
||||
|
||||
// 找到对应的页
|
||||
struct Page *p = mm_find_page(phys, ZONE_NORMAL);
|
||||
if (p == NULL)
|
||||
{
|
||||
kerror("cannot find page addr=%#018lx", phys);
|
||||
return end_addr;
|
||||
}
|
||||
|
||||
free_pages(p, 1);
|
||||
}
|
||||
|
||||
mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
|
||||
// 在页表中取消映射
|
||||
}
|
||||
return end_addr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 创建mmio对应的页结构体
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return struct Page* 创建成功的page
|
||||
*/
|
||||
struct Page *__create_mmio_page_struct(uint64_t paddr)
|
||||
{
|
||||
struct Page *p = (struct Page *)kzalloc(sizeof(struct Page), 0);
|
||||
if (p == NULL)
|
||||
return NULL;
|
||||
p->addr_phys = paddr;
|
||||
page_init(p, PAGE_DEVICE);
|
||||
return p;
|
||||
}
|
@ -6,9 +6,9 @@
|
||||
#include <mm/mm-types.h>
|
||||
#include <process/process.h>
|
||||
|
||||
// 每个页表的项数
|
||||
// 64位下,每个页表4k,每条页表项8B,故一个页表有512条
|
||||
#define PTRS_PER_PGT 512
|
||||
extern void rs_pseudo_map_phys(uint64_t virt_addr, uint64_t phys_addr, uint64_t size);
|
||||
extern void rs_map_phys(uint64_t virt_addr, uint64_t phys_addr, uint64_t size, uint64_t flags);
|
||||
extern uint64_t rs_unmap_at_low_addr();
|
||||
|
||||
// 内核层的起始地址
|
||||
#define PAGE_OFFSET 0xffff800000000000UL
|
||||
@ -39,9 +39,6 @@
|
||||
// 虚拟地址与物理地址转换
|
||||
#define virt_2_phys(addr) ((unsigned long)(addr)-PAGE_OFFSET)
|
||||
#define phys_2_virt(addr) ((unsigned long *)((unsigned long)(addr) + PAGE_OFFSET))
|
||||
// 获取对应的页结构体
|
||||
#define Virt_To_2M_Page(kaddr) (memory_management_struct.pages_struct + (virt_2_phys(kaddr) >> PAGE_2M_SHIFT))
|
||||
#define Phy_to_2M_Page(kaddr) (memory_management_struct.pages_struct + ((unsigned long)(kaddr) >> PAGE_2M_SHIFT))
|
||||
|
||||
// 在这个地址以上的虚拟空间,用来进行特殊的映射
|
||||
#define SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE 0xffffa00000000000UL
|
||||
@ -49,7 +46,6 @@
|
||||
#define IO_APIC_MAPPING_OFFSET 0xfec00000UL
|
||||
#define LOCAL_APIC_MAPPING_OFFSET 0xfee00000UL
|
||||
#define AHCI_MAPPING_OFFSET 0xff200000UL // AHCI 映射偏移量,之后使用了4M的地址
|
||||
#define XHCI_MAPPING_OFFSET 0x100000000 // XHCI控制器映射偏移量(后方请预留1GB的虚拟空间来映射不同的controller)
|
||||
|
||||
// ===== 内存区域属性 =====
|
||||
// DMA区域
|
||||
@ -138,59 +134,21 @@
|
||||
|
||||
#define PAGE_USER_4K_PAGE (PAGE_U_S | PAGE_R_W | PAGE_PRESENT)
|
||||
|
||||
// ===== 错误码定义 ====
|
||||
// 物理页结构体为空
|
||||
#define EPAGE_NULL 1
|
||||
|
||||
/**
|
||||
* @brief 刷新TLB的宏定义
|
||||
* 由于任何写入cr3的操作都会刷新TLB,因此这个宏定义可以刷新TLB
|
||||
*/
|
||||
#define flush_tlb() \
|
||||
do \
|
||||
{ \
|
||||
ul tmp; \
|
||||
io_mfence(); \
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t" \
|
||||
"movq %0, %%cr3\n\t" \
|
||||
: "=r"(tmp)::"memory"); \
|
||||
\
|
||||
#define flush_tlb() \
|
||||
do \
|
||||
{ \
|
||||
ul tmp; \
|
||||
io_mfence(); \
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t" \
|
||||
"movq %0, %%cr3\n\t" \
|
||||
: "=r"(tmp)::"memory"); \
|
||||
\
|
||||
} while (0);
|
||||
|
||||
/**
|
||||
* @brief 系统内存信息结构体(单位:字节)
|
||||
*
|
||||
*/
|
||||
struct mm_stat_t
|
||||
{
|
||||
uint64_t total; // 计算机的总内存数量大小
|
||||
uint64_t used; // 已使用的内存大小
|
||||
uint64_t free; // 空闲物理页所占的内存大小
|
||||
uint64_t shared; // 共享的内存大小
|
||||
uint64_t cache_used; // 位于slab缓冲区中的已使用的内存大小
|
||||
uint64_t cache_free; // 位于slab缓冲区中的空闲的内存大小
|
||||
uint64_t available; // 系统总空闲内存大小(包括kmalloc缓冲区)
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 虚拟内存区域的操作方法的结构体
|
||||
*
|
||||
*/
|
||||
struct vm_operations_t
|
||||
{
|
||||
/**
|
||||
* @brief vm area 被打开时的回调函数
|
||||
*
|
||||
*/
|
||||
void (*open)(struct vm_area_struct *area);
|
||||
/**
|
||||
* @brief vm area将要被移除的时候,将会调用该回调函数
|
||||
*
|
||||
*/
|
||||
void (*close)(struct vm_area_struct *area);
|
||||
};
|
||||
|
||||
extern struct memory_desc memory_management_struct;
|
||||
|
||||
// 导出内核程序的几个段的起止地址
|
||||
extern char _text;
|
||||
@ -203,26 +161,6 @@ extern char _bss;
|
||||
extern char _ebss;
|
||||
extern char _end;
|
||||
|
||||
// 每个区域的索引
|
||||
|
||||
int ZONE_DMA_INDEX = 0;
|
||||
int ZONE_NORMAL_INDEX = 0;
|
||||
int ZONE_UNMAPPED_INDEX = 0;
|
||||
|
||||
// 初始化内存管理单元
|
||||
void mm_init();
|
||||
|
||||
/**
|
||||
* @brief 初始化内存页
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 标志位
|
||||
* 本函数只负责初始化内存页,允许对同一页面进行多次初始化
|
||||
* 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_init(struct Page *page, ul flags);
|
||||
|
||||
/**
|
||||
* @brief 读取CR3寄存器的值(存储了页目录的基地址)
|
||||
*
|
||||
@ -231,70 +169,11 @@ unsigned long page_init(struct Page *page, ul flags);
|
||||
unsigned long *get_CR3()
|
||||
{
|
||||
ul *tmp;
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t" : "=r"(tmp)::"memory");
|
||||
__asm__ __volatile__("movq %%cr3, %0\n\t"
|
||||
: "=r"(tmp)::"memory");
|
||||
return tmp;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
|
||||
*
|
||||
* @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
|
||||
* @param num 需要申请的内存页的数量 num<64
|
||||
* @param flags 将页面属性设置成flag
|
||||
* @return struct Page*
|
||||
*/
|
||||
struct Page *alloc_pages(unsigned int zone_select, int num, ul flags);
|
||||
|
||||
/**
|
||||
* @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
|
||||
*
|
||||
* @param p 物理页结构体
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long page_clean(struct Page *page);
|
||||
|
||||
/**
|
||||
* @brief 释放连续number个内存页
|
||||
*
|
||||
* @param page 第一个要被释放的页面的结构体
|
||||
* @param number 要释放的内存页数量 number<64
|
||||
*/
|
||||
void free_pages(struct Page *page, int number);
|
||||
|
||||
/**
|
||||
* @brief Get the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @return ul 属性
|
||||
*/
|
||||
ul get_page_attr(struct Page *page);
|
||||
|
||||
/**
|
||||
* @brief Set the page's attr
|
||||
*
|
||||
* @param page 内存页结构体
|
||||
* @param flags 属性
|
||||
* @return ul 错误码
|
||||
*/
|
||||
ul set_page_attr(struct Page *page, ul flags);
|
||||
|
||||
#define mk_pml4t(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
/**
|
||||
* @brief 设置pml4页表的页表项
|
||||
* @param pml4tptr pml4页表项的地址
|
||||
* @param pml4val pml4页表项的值
|
||||
*/
|
||||
#define set_pml4t(pml4tptr, pml4tval) (*(pml4tptr) = (pml4tval))
|
||||
|
||||
#define mk_pdpt(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
#define set_pdpt(pdptptr, pdptval) (*(pdptptr) = (pdptval))
|
||||
|
||||
#define mk_pdt(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
#define set_pdt(pdtptr, pdtval) (*(pdtptr) = (pdtval))
|
||||
|
||||
#define mk_pt(addr, attr) ((unsigned long)(addr) | (unsigned long)(attr))
|
||||
#define set_pt(ptptr, ptval) (*(ptptr) = (ptval))
|
||||
|
||||
/*
|
||||
* vm_area_struct中的vm_flags的可选值
|
||||
* 对应的结构体请见mm-types.h
|
||||
@ -312,233 +191,3 @@ ul set_page_attr(struct Page *page, ul flags);
|
||||
|
||||
/* VMA basic access permission flags */
|
||||
#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
|
||||
|
||||
/**
|
||||
* @brief 初始化虚拟内存区域结构体
|
||||
*
|
||||
* @param vma
|
||||
* @param mm
|
||||
*/
|
||||
static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
|
||||
{
|
||||
memset(vma, 0, sizeof(struct vm_area_struct));
|
||||
vma->vm_mm = mm;
|
||||
vma->vm_prev = vma->vm_next = NULL;
|
||||
vma->vm_ops = NULL;
|
||||
list_init(&vma->anon_vma_list);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 判断给定的vma是否为当前进程所属的vma
|
||||
*
|
||||
* @param vma 给定的vma结构体
|
||||
* @return true
|
||||
* @return false
|
||||
*/
|
||||
static inline bool vma_is_foreign(struct vm_area_struct *vma)
|
||||
{
|
||||
if (current_pcb->mm == NULL)
|
||||
return true;
|
||||
if (current_pcb->mm != vma->vm_mm)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool vma_is_accessible(struct vm_area_struct *vma)
|
||||
{
|
||||
return vma->vm_flags & VM_ACCESS_FLAGS;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 获取一块新的vma结构体,并将其与指定的mm进行绑定
|
||||
*
|
||||
* @param mm 与VMA绑定的内存空间分布结构体
|
||||
* @return struct vm_area_struct* 新的VMA
|
||||
*/
|
||||
struct vm_area_struct *vm_area_alloc(struct mm_struct *mm);
|
||||
|
||||
/**
|
||||
* @brief 释放vma结构体
|
||||
*
|
||||
* @param vma 待释放的vma结构体
|
||||
*/
|
||||
void vm_area_free(struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 从链表中删除指定的vma结构体
|
||||
*
|
||||
* @param vma
|
||||
*/
|
||||
void vm_area_del(struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 查找第一个符合“addr < vm_end”条件的vma
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param addr 虚拟地址
|
||||
* @return struct vm_area_struct* 符合条件的vma
|
||||
*/
|
||||
struct vm_area_struct *vma_find(struct mm_struct *mm, uint64_t addr);
|
||||
|
||||
/**
|
||||
* @brief 插入vma
|
||||
*
|
||||
* @param mm
|
||||
* @param vma
|
||||
* @return int
|
||||
*/
|
||||
int vma_insert(struct mm_struct *mm, struct vm_area_struct *vma);
|
||||
|
||||
/**
|
||||
* @brief 重新初始化页表的函数
|
||||
* 将所有物理页映射到线性地址空间
|
||||
*/
|
||||
void page_table_init();
|
||||
|
||||
/**
|
||||
* @brief 将物理地址映射到页表的函数
|
||||
*
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param flags 标志位
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k);
|
||||
|
||||
/**
|
||||
* @brief 将将物理地址填写到进程的页表的函数
|
||||
*
|
||||
* @param proc_page_table_addr 页表的基地址
|
||||
* @param is_phys 页表的基地址是否为物理地址
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param user 用户态是否可访问
|
||||
* @param flush 是否刷新tlb
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length,
|
||||
ul flags, bool user, bool flush, bool use4k);
|
||||
|
||||
int mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags);
|
||||
|
||||
/**
|
||||
* @brief 从页表中清除虚拟地址的映射
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
*/
|
||||
void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length);
|
||||
|
||||
/**
|
||||
* @brief 取消当前进程的页表中的虚拟地址映射
|
||||
*
|
||||
* @param virt_addr 虚拟地址
|
||||
* @param length 地址长度
|
||||
*/
|
||||
#define mm_unmap_addr(virt_addr, length) ({ mm_unmap_proc_table((uint64_t)get_CR3(), true, virt_addr, length); })
|
||||
|
||||
/**
|
||||
* @brief 创建VMA
|
||||
*
|
||||
* @param mm 要绑定的内存空间分布结构体
|
||||
* @param vaddr 起始虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param vm_flags vma的标志
|
||||
* @param vm_ops vma的操作接口
|
||||
* @param res_vma 返回的vma指针
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_create_vma(struct mm_struct *mm, uint64_t vaddr, uint64_t length, vm_flags_t vm_flags,
|
||||
struct vm_operations_t *vm_ops, struct vm_area_struct **res_vma);
|
||||
|
||||
/**
|
||||
* @brief 将指定的物理地址映射到指定的vma处
|
||||
*
|
||||
* @param vma 要进行映射的VMA结构体
|
||||
* @param paddr 起始物理地址
|
||||
* @param offset 要映射的起始位置在vma中的偏移量
|
||||
* @param length 要映射的长度
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_map_vma(struct vm_area_struct *vma, uint64_t paddr, uint64_t offset, uint64_t length);
|
||||
|
||||
/**
|
||||
* @brief 在页表中映射物理地址到指定的虚拟地址(需要页表中已存在对应的vma)
|
||||
*
|
||||
* @param mm 内存管理结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param paddr 物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_map(struct mm_struct *mm, uint64_t vaddr, uint64_t length, uint64_t paddr);
|
||||
|
||||
/**
|
||||
* @brief 在页表中取消指定的vma的映射
|
||||
*
|
||||
* @param mm 指定的mm
|
||||
* @param vma 待取消映射的vma
|
||||
* @param paddr 返回的被取消映射的起始物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_unmap_vma(struct mm_struct *mm, struct vm_area_struct *vma, uint64_t *paddr);
|
||||
|
||||
/**
|
||||
* @brief 解除一段虚拟地址的映射(这些地址必须在vma中存在)
|
||||
*
|
||||
* @param mm 内存空间结构体
|
||||
* @param vaddr 起始地址
|
||||
* @param length 结束地址
|
||||
* @param destroy 是否释放vma结构体
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_unmap(struct mm_struct *mm, uint64_t vaddr, uint64_t length, bool destroy);
|
||||
|
||||
/**
|
||||
* @brief 检测是否为有效的2M页(物理内存页)
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return int8_t 是 -> 1
|
||||
* 否 -> 0
|
||||
*/
|
||||
int8_t mm_is_2M_page(uint64_t paddr);
|
||||
|
||||
/**
|
||||
* @brief 检查页表是否存在不为0的页表项
|
||||
*
|
||||
* @param ptr 页表基指针
|
||||
* @return int8_t 存在 -> 1
|
||||
* 不存在 -> 0
|
||||
*/
|
||||
int8_t mm_check_page_table(uint64_t *ptr);
|
||||
|
||||
/**
|
||||
* @brief 调整堆区域的大小(暂时只能增加堆区域)
|
||||
*
|
||||
* @todo 缩小堆区域
|
||||
* @param old_brk_end_addr 原本的堆内存区域的结束地址
|
||||
* @param offset 新的地址相对于原地址的偏移量
|
||||
* @return uint64_t
|
||||
*/
|
||||
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset);
|
||||
|
||||
/**
|
||||
* @brief 获取系统当前的内存信息(未上锁,不一定精准)
|
||||
*
|
||||
* @return struct mm_stat_t 内存信息结构体
|
||||
*/
|
||||
struct mm_stat_t mm_stat();
|
||||
|
||||
/**
|
||||
* @brief 检测指定地址是否已经被映射
|
||||
*
|
||||
* @param page_table_phys_addr 页表的物理地址
|
||||
* @param virt_addr 要检测的地址
|
||||
* @return true 已经被映射
|
||||
* @return false
|
||||
*/
|
||||
bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr);
|
@ -1,582 +0,0 @@
|
||||
#include "mm.h"
|
||||
#include "slab.h"
|
||||
#include "internal.h"
|
||||
#include <common/compiler.h>
|
||||
#include <debug/bug.h>
|
||||
|
||||
extern uint64_t mm_total_2M_pages;
|
||||
|
||||
/**
|
||||
* @brief 虚拟地址长度所需要的entry数量
|
||||
*
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
int64_t num_PML4E;
|
||||
int64_t num_PDPTE;
|
||||
int64_t num_PDE;
|
||||
int64_t num_PTE;
|
||||
} mm_pgt_entry_num_t;
|
||||
|
||||
/**
|
||||
* @brief 计算虚拟地址长度对应的页表entry数量
|
||||
*
|
||||
* @param length 长度
|
||||
* @param ent 返回的entry数量结构体
|
||||
*/
|
||||
static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
|
||||
{
|
||||
if (ent == NULL)
|
||||
return;
|
||||
ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
|
||||
ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
|
||||
ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
|
||||
ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将物理地址映射到页表的函数
|
||||
*
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param flags 标志位
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool use4k)
|
||||
{
|
||||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||||
|
||||
return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true, use4k);
|
||||
}
|
||||
|
||||
int mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
|
||||
{
|
||||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||||
return mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将将物理地址填写到进程的页表的函数
|
||||
*
|
||||
* @param proc_page_table_addr 页表的基地址
|
||||
* @param is_phys 页表的基地址是否为物理地址
|
||||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||||
* @param phys_addr_start 物理地址的起始位置
|
||||
* @param length 要映射的区域的长度(字节)
|
||||
* @param user 用户态是否可访问
|
||||
* @param flush 是否刷新tlb
|
||||
* @param use4k 是否使用4k页
|
||||
*/
|
||||
int mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush, bool use4k)
|
||||
{
|
||||
|
||||
// 计算线性地址对应的pml4页表项的地址
|
||||
mm_pgt_entry_num_t pgt_num;
|
||||
mm_calculate_entry_num(length, &pgt_num);
|
||||
|
||||
// 已映射的内存大小
|
||||
uint64_t length_mapped = 0;
|
||||
|
||||
// 对user标志位进行校正
|
||||
if ((flags & PAGE_U_S) != 0)
|
||||
user = true;
|
||||
else
|
||||
user = false;
|
||||
|
||||
uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||||
uint64_t *pml4_ptr;
|
||||
if (is_phys)
|
||||
pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
|
||||
else
|
||||
pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
|
||||
|
||||
// 循环填写顶层页表
|
||||
for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
|
||||
{
|
||||
// 剩余需要处理的pml4E -1
|
||||
--(pgt_num.num_PML4E);
|
||||
|
||||
ul *pml4e_ptr = pml4_ptr + pml4e_id;
|
||||
|
||||
// 创建新的二级页表
|
||||
if (*pml4e_ptr == 0)
|
||||
{
|
||||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||||
memset(virt_addr, 0, PAGE_4K_SIZE);
|
||||
set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
|
||||
}
|
||||
|
||||
uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
|
||||
uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
|
||||
|
||||
// 循环填写二级页表
|
||||
for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
|
||||
{
|
||||
--pgt_num.num_PDPTE;
|
||||
uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
|
||||
|
||||
// 创建新的三级页表
|
||||
if (*pdpte_ptr == 0)
|
||||
{
|
||||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||||
memset(virt_addr, 0, PAGE_4K_SIZE);
|
||||
set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
|
||||
}
|
||||
|
||||
uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
|
||||
uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
|
||||
|
||||
// 循环填写三级页表,初始化2M物理页
|
||||
for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
|
||||
{
|
||||
--pgt_num.num_PDE;
|
||||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||||
ul *pde_ptr = pd_ptr + pde_id;
|
||||
// ====== 使用4k页 =======
|
||||
if (unlikely(use4k))
|
||||
{
|
||||
// kdebug("use 4k");
|
||||
if (*pde_ptr == 0)
|
||||
{
|
||||
// 创建四级页表
|
||||
uint64_t *vaddr = kmalloc(PAGE_4K_SIZE, 0);
|
||||
memset(vaddr, 0, PAGE_4K_SIZE);
|
||||
set_pdt(pde_ptr, mk_pdt(virt_2_phys(vaddr), (user ? PAGE_USER_PDE : PAGE_KERNEL_PDE)));
|
||||
}
|
||||
else if (unlikely(*pde_ptr & (1 << 7)))
|
||||
{
|
||||
// 当前页表项已经被映射了2MB物理页
|
||||
goto failed;
|
||||
}
|
||||
|
||||
uint64_t pte_id = (((virt_addr_start + length_mapped) >> PAGE_4K_SHIFT) & 0x1ff);
|
||||
uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0xfffUL));
|
||||
|
||||
// 循环填写4级页表,初始化4K页
|
||||
for (; (pgt_num.num_PTE > 0) && pte_id < 512; ++pte_id)
|
||||
{
|
||||
--pgt_num.num_PTE;
|
||||
uint64_t *pte_ptr = pt_ptr + pte_id;
|
||||
|
||||
if (unlikely(*pte_ptr != 0))
|
||||
kwarn("pte already exists.");
|
||||
else
|
||||
set_pt(pte_ptr, mk_pt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_4K_PAGE : PAGE_KERNEL_4K_PAGE)));
|
||||
length_mapped += PAGE_4K_SIZE;
|
||||
}
|
||||
}
|
||||
// ======= 使用2M页 ========
|
||||
else
|
||||
{
|
||||
if (unlikely((*pde_ptr != 0) && user == true))
|
||||
{
|
||||
// 如果是用户态可访问的页,则释放当前新获取的物理页
|
||||
if (likely((((ul)phys_addr_start + length_mapped) >> PAGE_2M_SHIFT) < mm_total_2M_pages)) // 校验是否为内存中的物理页
|
||||
free_pages(Phy_to_2M_Page((ul)phys_addr_start + length_mapped), 1);
|
||||
length_mapped += PAGE_2M_SIZE;
|
||||
continue;
|
||||
}
|
||||
// 页面写穿,禁止缓存
|
||||
set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
|
||||
length_mapped += PAGE_2M_SIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (likely(flush))
|
||||
flush_tlb();
|
||||
return 0;
|
||||
failed:;
|
||||
kerror("Map memory failed. use4k=%d, vaddr=%#018lx, paddr=%#018lx", use4k, virt_addr_start, phys_addr_start);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从页表中清除虚拟地址的映射
|
||||
*
|
||||
* @param proc_page_table_addr 页表的地址
|
||||
* @param is_phys 页表地址是否为物理地址
|
||||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||||
* @param length 要清除的区域的长度
|
||||
*/
|
||||
void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
|
||||
{
|
||||
|
||||
// 计算线性地址对应的pml4页表项的地址
|
||||
mm_pgt_entry_num_t pgt_num;
|
||||
mm_calculate_entry_num(length, &pgt_num);
|
||||
// 已取消映射的内存大小
|
||||
uint64_t length_unmapped = 0;
|
||||
|
||||
uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||||
uint64_t *pml4_ptr;
|
||||
if (is_phys)
|
||||
pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
|
||||
else
|
||||
pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
|
||||
|
||||
// 循环填写顶层页表
|
||||
for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
|
||||
{
|
||||
// 剩余需要处理的pml4E -1
|
||||
--(pgt_num.num_PML4E);
|
||||
|
||||
ul *pml4e_ptr = NULL;
|
||||
pml4e_ptr = pml4_ptr + pml4e_id;
|
||||
|
||||
// 二级页表不存在
|
||||
if (*pml4e_ptr == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
|
||||
uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
|
||||
// kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
|
||||
|
||||
// 循环处理二级页表
|
||||
for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
|
||||
{
|
||||
--pgt_num.num_PDPTE;
|
||||
uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
|
||||
// kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
|
||||
|
||||
// 三级页表为空
|
||||
if (*pdpte_ptr == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
|
||||
uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
|
||||
// kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
|
||||
|
||||
// 循环处理三级页表
|
||||
for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
|
||||
{
|
||||
--pgt_num.num_PDE;
|
||||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||||
ul *pde_ptr = pd_ptr + pde_id;
|
||||
|
||||
// 存在4级页表
|
||||
if (((*pde_ptr) & (1 << 7)) == 0)
|
||||
{
|
||||
// 存在4K页
|
||||
uint64_t pte_id = (((virt_addr_start + length_unmapped) >> PAGE_4K_SHIFT) & 0x1ff);
|
||||
uint64_t *pt_ptr = (uint64_t *)phys_2_virt(*pde_ptr & (~0xfffUL));
|
||||
// 循环处理4K页表
|
||||
for (; pgt_num.num_PTE > 0 && pte_id < 512; ++pte_id)
|
||||
{
|
||||
uint64_t *pte_ptr = pt_ptr + pte_id;
|
||||
--pgt_num.num_PTE;
|
||||
*pte_ptr = 0;
|
||||
length_unmapped += PAGE_4K_SIZE;
|
||||
}
|
||||
|
||||
// 4级页表已经空了,释放页表
|
||||
if (unlikely(mm_check_page_table(pt_ptr)) == 0)
|
||||
{
|
||||
*pde_ptr = 0;
|
||||
kfree(pt_ptr);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
*pde_ptr = 0;
|
||||
length_unmapped += PAGE_2M_SIZE;
|
||||
pgt_num.num_PTE -= 512;
|
||||
}
|
||||
}
|
||||
|
||||
// 3级页表已经空了,释放页表
|
||||
if (unlikely(mm_check_page_table(pd_ptr)) == 0)
|
||||
{
|
||||
*pdpte_ptr = 0;
|
||||
kfree(pd_ptr);
|
||||
}
|
||||
}
|
||||
// 2级页表已经空了,释放页表
|
||||
if (unlikely(mm_check_page_table(pdpt_ptr)) == 0)
|
||||
{
|
||||
*pml4e_ptr = 0;
|
||||
kfree(pdpt_ptr);
|
||||
}
|
||||
}
|
||||
flush_tlb();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 创建VMA
|
||||
*
|
||||
* @param mm 要绑定的内存空间分布结构体
|
||||
* @param vaddr 起始虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param vm_flags vma的标志
|
||||
* @param vm_ops vma的操作接口
|
||||
* @param res_vma 返回的vma指针
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_create_vma(struct mm_struct *mm, uint64_t vaddr, uint64_t length, vm_flags_t vm_flags, struct vm_operations_t *vm_ops, struct vm_area_struct **res_vma)
|
||||
{
|
||||
int retval = 0;
|
||||
// 输入的地址如果不是4K对齐,则报错
|
||||
if (unlikely(vaddr & (PAGE_4K_SIZE - 1)))
|
||||
return -EINVAL;
|
||||
|
||||
struct vm_area_struct *vma = vm_area_alloc(mm);
|
||||
if (unlikely(vma == NULL))
|
||||
return -ENOMEM;
|
||||
vma->vm_ops = vm_ops;
|
||||
vma->vm_flags = vm_flags;
|
||||
vma->vm_start = vaddr;
|
||||
vma->vm_end = vaddr + length;
|
||||
// 将VMA加入mm的链表
|
||||
retval = vma_insert(mm, vma);
|
||||
if (retval == -EEXIST || retval == __VMA_MERGED) // 之前已经存在了相同的vma,直接返回
|
||||
{
|
||||
*res_vma = vma_find(mm, vma->vm_start);
|
||||
kfree(vma);
|
||||
if (retval == -EEXIST)
|
||||
return -EEXIST;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (res_vma != NULL)
|
||||
*res_vma = vma;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将指定的物理地址映射到指定的vma处
|
||||
*
|
||||
* @param vma 要进行映射的VMA结构体
|
||||
* @param paddr 起始物理地址
|
||||
* @param offset 要映射的起始位置在vma中的偏移量
|
||||
* @param length 要映射的长度
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_map_vma(struct vm_area_struct *vma, uint64_t paddr, uint64_t offset, uint64_t length)
|
||||
{
|
||||
int retval = 0;
|
||||
uint64_t mapped = 0;
|
||||
BUG_ON((offset & (PAGE_4K_SIZE - 1)) != 0);
|
||||
length = PAGE_4K_ALIGN(length); // 将length按照4K进行对齐
|
||||
// 获取物理地址对应的页面
|
||||
struct Page *pg;
|
||||
uint64_t page_flags = 0;
|
||||
if (vma->vm_flags & VM_IO) // 对于mmio的内存,创建新的page结构体
|
||||
{
|
||||
page_flags = PAGE_PWT | PAGE_PCD;
|
||||
if (unlikely(vma->anon_vma == NULL || vma->anon_vma->page == NULL))
|
||||
pg = __create_mmio_page_struct(paddr);
|
||||
else
|
||||
pg = vma->anon_vma->page;
|
||||
}
|
||||
else
|
||||
pg = Phy_to_2M_Page(paddr);
|
||||
|
||||
if (unlikely(pg->anon_vma == NULL)) // 若页面不存在anon_vma,则为页面创建anon_vma
|
||||
{
|
||||
spin_lock(&pg->op_lock);
|
||||
if (unlikely(pg->anon_vma == NULL))
|
||||
__anon_vma_create_alloc(pg, false);
|
||||
spin_unlock(&pg->op_lock);
|
||||
}
|
||||
barrier();
|
||||
// 将anon vma与vma进行绑定
|
||||
__anon_vma_add(pg->anon_vma, vma);
|
||||
barrier();
|
||||
// 长度超过界限
|
||||
BUG_ON(vma->vm_start + offset + length > vma->vm_end);
|
||||
|
||||
/*
|
||||
todo: 限制页面的读写权限
|
||||
*/
|
||||
|
||||
// ==== 将地址映射到页表 ====
|
||||
uint64_t len_4k, len_2m;
|
||||
// 将地址使用4k页填补,使得地址按照2M对齐
|
||||
len_4k = PAGE_2M_ALIGN(vma->vm_start + offset) - (vma->vm_start + offset);
|
||||
if (len_4k > 0)
|
||||
len_4k = (len_4k > length) ? length : len_4k;
|
||||
if (len_4k)
|
||||
{
|
||||
if (vma->vm_flags & VM_USER)
|
||||
page_flags |= PAGE_USER_4K_PAGE;
|
||||
else
|
||||
page_flags |= PAGE_KERNEL_4K_PAGE;
|
||||
|
||||
// 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
|
||||
retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset, paddr, len_4k, page_flags, false, false, true);
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
|
||||
mapped += len_4k;
|
||||
length -= len_4k;
|
||||
}
|
||||
|
||||
len_4k = length % PAGE_2M_SIZE;
|
||||
len_2m = length / PAGE_2M_SIZE;
|
||||
|
||||
// 映射连续的2M页
|
||||
if (likely(len_2m > 0))
|
||||
{
|
||||
if (vma->vm_flags & VM_USER)
|
||||
page_flags |= PAGE_USER_PAGE;
|
||||
else
|
||||
page_flags |= PAGE_KERNEL_PAGE;
|
||||
// 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
|
||||
retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset + mapped, paddr + mapped, len_2m, page_flags, false, false, false);
|
||||
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
mapped += len_2m;
|
||||
}
|
||||
// 最后再使用4K页填补
|
||||
if (likely(len_4k > 0))
|
||||
{
|
||||
|
||||
if (vma->vm_flags & VM_USER)
|
||||
page_flags |= PAGE_USER_4K_PAGE;
|
||||
else
|
||||
page_flags |= PAGE_KERNEL_4K_PAGE;
|
||||
|
||||
// 这里直接设置user标志位为false,因为该函数内部会对其进行自动校正
|
||||
retval = mm_map_proc_page_table((uint64_t)vma->vm_mm->pgd, true, vma->vm_start + offset + mapped, paddr + mapped, len_4k, page_flags, false, false, true);
|
||||
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
mapped += len_4k;
|
||||
}
|
||||
|
||||
if (vma->vm_flags & VM_IO)
|
||||
vma->page_offset = 0;
|
||||
|
||||
flush_tlb();
|
||||
return 0;
|
||||
failed:;
|
||||
kdebug("map VMA failed.");
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 在页表中映射物理地址到指定的虚拟地址(需要页表中已存在对应的vma)
|
||||
*
|
||||
* @param mm 内存管理结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @param length 长度(字节)
|
||||
* @param paddr 物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_map(struct mm_struct *mm, uint64_t vaddr, uint64_t length, uint64_t paddr)
|
||||
{
|
||||
int retval = 0;
|
||||
uint64_t offset = 0;
|
||||
for (uint64_t mapped = 0; mapped < length;)
|
||||
{
|
||||
|
||||
struct vm_area_struct *vma = vma_find(mm, vaddr + mapped);
|
||||
if (unlikely(vma == NULL))
|
||||
{
|
||||
kerror("Map addr failed: vma not found. At address: %#018lx, pid=%ld", vaddr + mapped, current_pcb->pid);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
// if (unlikely(vma->vm_start != (vaddr + mapped)))
|
||||
// {
|
||||
// kerror("Map addr failed: addr_start is not equal to current: %#018lx.", vaddr + mapped);
|
||||
// return -EINVAL;
|
||||
// }
|
||||
|
||||
offset = vaddr + mapped - vma->vm_start;
|
||||
uint64_t m_len = vma->vm_end - vma->vm_start - offset;
|
||||
// kdebug("start=%#018lx, offset=%ld", vma->vm_start, offset);
|
||||
retval = mm_map_vma(vma, paddr + mapped, offset, m_len);
|
||||
if (unlikely(retval != 0))
|
||||
goto failed;
|
||||
|
||||
mapped += m_len;
|
||||
}
|
||||
return 0;
|
||||
failed:;
|
||||
kerror("Map addr failed.");
|
||||
return retval;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 在页表中取消指定的vma的映射
|
||||
*
|
||||
* @param mm 指定的mm
|
||||
* @param vma 待取消映射的vma
|
||||
* @param paddr 返回的被取消映射的起始物理地址
|
||||
* @return int 返回码
|
||||
*/
|
||||
int mm_unmap_vma(struct mm_struct *mm, struct vm_area_struct *vma, uint64_t *paddr)
|
||||
{
|
||||
// 确保vma对应的mm与指定的mm相一致
|
||||
if (unlikely(vma->vm_mm != mm))
|
||||
return -EINVAL;
|
||||
struct anon_vma_t *anon = vma->anon_vma;
|
||||
if (paddr != NULL)
|
||||
*paddr = __mm_get_paddr(mm, vma->vm_start);
|
||||
if (anon == NULL)
|
||||
kwarn("anon is NULL");
|
||||
semaphore_down(&anon->sem);
|
||||
|
||||
mm_unmap_proc_table((uint64_t)mm->pgd, true, vma->vm_start, vma->vm_end - vma->vm_start);
|
||||
__anon_vma_del(vma);
|
||||
/** todo: 这里应该会存在bug,应修复。
|
||||
* 若anon_vma的等待队列上有其他的进程,由于anon_vma被释放
|
||||
* 这些在等待队列上的进程将无法被唤醒。
|
||||
*/
|
||||
list_init(&vma->anon_vma_list);
|
||||
|
||||
semaphore_up(&anon->sem);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 解除一段虚拟地址的映射(这些地址必须在vma中存在)
|
||||
*
|
||||
* @param mm 内存空间结构体
|
||||
* @param vaddr 起始地址
|
||||
* @param length 结束地址
|
||||
* @param destroy 是否释放vma结构体
|
||||
* @return int 错误码
|
||||
*/
|
||||
int mm_unmap(struct mm_struct *mm, uint64_t vaddr, uint64_t length, bool destroy)
|
||||
{
|
||||
int retval = 0;
|
||||
for (uint64_t unmapped = 0; unmapped < length;)
|
||||
{
|
||||
struct vm_area_struct *vma = vma_find(mm, vaddr + unmapped);
|
||||
if (unlikely(vma == NULL))
|
||||
{
|
||||
kerror("Unmap addr failed: vma not found. At address: %#018lx, pid=%ld", vaddr + unmapped, current_pcb->pid);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (unlikely(vma->vm_start != (vaddr + unmapped)))
|
||||
{
|
||||
kerror("Unmap addr failed: addr_start is not equal to current: %#018lx.", vaddr + unmapped);
|
||||
return -EINVAL;
|
||||
}
|
||||
if (vma->anon_vma != NULL)
|
||||
mm_unmap_vma(mm, vma, NULL);
|
||||
|
||||
unmapped += vma->vm_end - vma->vm_start;
|
||||
// 释放vma结构体
|
||||
if (destroy)
|
||||
{
|
||||
vm_area_del(vma);
|
||||
vm_area_free(vma);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
failed:;
|
||||
kerror("Unmap addr failed.");
|
||||
return retval;
|
||||
}
|
@ -1,9 +0,0 @@
|
||||
#include "mmio.h"
|
||||
#include <common/math.h>
|
||||
extern void __mmio_buddy_init();
|
||||
|
||||
void mmio_init()
|
||||
{
|
||||
__mmio_buddy_init();
|
||||
kinfo("mmio_init success");
|
||||
}
|
@ -1,7 +1,5 @@
|
||||
#pragma once
|
||||
#include "mm.h"
|
||||
|
||||
extern void mmio_buddy_init();
|
||||
extern void mmio_create();
|
||||
extern void mmio_create(uint32_t size, uint64_t vm_flagsu, uint64_t* res_vaddr, uint64_t* res_length);
|
||||
extern int mmio_release(int vaddr, int length);
|
||||
void mmio_init();
|
||||
|
@ -1,16 +1,19 @@
|
||||
use crate::libs::spinlock::{SpinLock, SpinLockGuard};
|
||||
use crate::mm::kernel_mapper::KernelMapper;
|
||||
use crate::syscall::SystemError;
|
||||
use crate::{
|
||||
arch::asm::current::current_pcb,
|
||||
include::bindings::bindings::{
|
||||
initial_mm, mm_create_vma, mm_unmap, vm_area_del, vm_area_free, vm_area_struct, vm_flags_t,
|
||||
vma_find, MMIO_BASE, MMIO_TOP, PAGE_1G_SHIFT, PAGE_1G_SIZE, PAGE_2M_SIZE, PAGE_4K_SHIFT,
|
||||
PAGE_4K_SIZE, VM_DONTCOPY, VM_IO,
|
||||
},
|
||||
kdebug, kerror,
|
||||
include::bindings::bindings::{vm_flags_t, PAGE_1G_SHIFT, PAGE_4K_SHIFT, PAGE_4K_SIZE},
|
||||
kdebug,
|
||||
mm::{MMArch, MemoryManagementArch},
|
||||
};
|
||||
use alloc::{boxed::Box, collections::LinkedList, vec::Vec};
|
||||
use core::{mem, ptr::null_mut};
|
||||
use crate::{kerror, kinfo, kwarn};
|
||||
use alloc::{collections::LinkedList, vec::Vec};
|
||||
use core::mem;
|
||||
use core::mem::MaybeUninit;
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
|
||||
use super::VirtAddr;
|
||||
|
||||
// 最大的伙伴块的幂
|
||||
const MMIO_BUDDY_MAX_EXP: u32 = PAGE_1G_SHIFT;
|
||||
@ -19,8 +22,15 @@ const MMIO_BUDDY_MIN_EXP: u32 = PAGE_4K_SHIFT;
|
||||
// 内存池数组的范围
|
||||
const MMIO_BUDDY_REGION_COUNT: u32 = MMIO_BUDDY_MAX_EXP - MMIO_BUDDY_MIN_EXP + 1;
|
||||
|
||||
lazy_static! {
|
||||
pub static ref MMIO_POOL: MmioBuddyMemPool = MmioBuddyMemPool::new();
|
||||
const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000);
|
||||
const MMIO_TOP: VirtAddr = VirtAddr::new(0xffffa20000000000);
|
||||
|
||||
const PAGE_1G_SIZE: usize = 1 << 30;
|
||||
|
||||
static mut __MMIO_POOL: Option<MmioBuddyMemPool> = None;
|
||||
|
||||
pub fn mmio_pool() -> &'static mut MmioBuddyMemPool {
|
||||
unsafe { __MMIO_POOL.as_mut().unwrap() }
|
||||
}
|
||||
|
||||
pub enum MmioResult {
|
||||
@ -32,25 +42,49 @@ pub enum MmioResult {
|
||||
}
|
||||
|
||||
/// @brief buddy内存池
|
||||
#[derive(Debug)]
|
||||
pub struct MmioBuddyMemPool {
|
||||
pool_start_addr: u64,
|
||||
pool_size: u64,
|
||||
pool_start_addr: VirtAddr,
|
||||
pool_size: usize,
|
||||
free_regions: [SpinLock<MmioFreeRegionList>; MMIO_BUDDY_REGION_COUNT as usize],
|
||||
}
|
||||
impl Default for MmioBuddyMemPool {
|
||||
fn default() -> Self {
|
||||
MmioBuddyMemPool {
|
||||
pool_start_addr: MMIO_BASE as u64,
|
||||
pool_size: (MMIO_TOP - MMIO_BASE) as u64,
|
||||
free_regions: unsafe { mem::zeroed() },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MmioBuddyMemPool {
|
||||
fn new() -> Self {
|
||||
return MmioBuddyMemPool {
|
||||
..Default::default()
|
||||
let mut free_regions: [MaybeUninit<SpinLock<MmioFreeRegionList>>;
|
||||
MMIO_BUDDY_REGION_COUNT as usize] = unsafe { MaybeUninit::uninit().assume_init() };
|
||||
for i in 0..MMIO_BUDDY_REGION_COUNT {
|
||||
free_regions[i as usize] = MaybeUninit::new(SpinLock::new(MmioFreeRegionList::new()));
|
||||
}
|
||||
let free_regions = unsafe {
|
||||
mem::transmute::<_, [SpinLock<MmioFreeRegionList>; MMIO_BUDDY_REGION_COUNT as usize]>(
|
||||
free_regions,
|
||||
)
|
||||
};
|
||||
|
||||
let pool = MmioBuddyMemPool {
|
||||
pool_start_addr: MMIO_BASE,
|
||||
pool_size: MMIO_TOP - MMIO_BASE,
|
||||
free_regions,
|
||||
};
|
||||
kdebug!("MMIO buddy pool init: created");
|
||||
|
||||
let cnt_1g_blocks = (MMIO_TOP - MMIO_BASE) >> 30;
|
||||
let mut vaddr_base = MMIO_BASE;
|
||||
kdebug!("total 1G blocks: {cnt_1g_blocks}");
|
||||
for _i in 0..cnt_1g_blocks {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
match pool.give_back_block(vaddr_base, PAGE_1G_SHIFT) {
|
||||
Ok(_) => {
|
||||
vaddr_base += PAGE_1G_SIZE;
|
||||
}
|
||||
Err(_) => {
|
||||
panic!("MMIO buddy pool init failed");
|
||||
}
|
||||
}
|
||||
}
|
||||
kdebug!("MMIO buddy pool init success");
|
||||
return pool;
|
||||
}
|
||||
|
||||
/// @brief 创建新的地址区域结构体
|
||||
@ -58,9 +92,12 @@ impl MmioBuddyMemPool {
|
||||
/// @param vaddr 虚拟地址
|
||||
///
|
||||
/// @return 创建好的地址区域结构体
|
||||
fn create_region(&self, vaddr: u64) -> Box<MmioBuddyAddrRegion> {
|
||||
let mut region: Box<MmioBuddyAddrRegion> = Box::new(MmioBuddyAddrRegion::new());
|
||||
region.vaddr = vaddr;
|
||||
fn create_region(&self, vaddr: VirtAddr) -> MmioBuddyAddrRegion {
|
||||
// kdebug!("create_region for vaddr: {vaddr:?}");
|
||||
|
||||
let region: MmioBuddyAddrRegion = MmioBuddyAddrRegion::new(vaddr);
|
||||
|
||||
// kdebug!("create_region for vaddr: {vaddr:?} OK!!!");
|
||||
return region;
|
||||
}
|
||||
|
||||
@ -75,16 +112,16 @@ impl MmioBuddyMemPool {
|
||||
/// @return Ok(i32) 返回0
|
||||
///
|
||||
/// @return Err(SystemError) 返回错误码
|
||||
fn give_back_block(&self, vaddr: u64, exp: u32) -> Result<i32, SystemError> {
|
||||
fn give_back_block(&self, vaddr: VirtAddr, exp: u32) -> Result<i32, SystemError> {
|
||||
// 确保内存对齐,低位都要为0
|
||||
if (vaddr & ((1 << exp) - 1)) != 0 {
|
||||
if (vaddr.data() & ((1 << exp) - 1)) != 0 {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
let region: Box<MmioBuddyAddrRegion> = self.create_region(vaddr);
|
||||
let region: MmioBuddyAddrRegion = self.create_region(vaddr);
|
||||
// 加入buddy
|
||||
let list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
|
||||
&mut self.free_regions[exp2index(exp)].lock();
|
||||
self.push_block(region, list_guard);
|
||||
let mut list_guard = self.free_regions[exp2index(exp)].lock();
|
||||
|
||||
self.push_block(region, &mut list_guard);
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
@ -97,12 +134,12 @@ impl MmioBuddyMemPool {
|
||||
/// @param list_guard 【exp-1】对应的链表
|
||||
fn split_block(
|
||||
&self,
|
||||
region: Box<MmioBuddyAddrRegion>,
|
||||
region: MmioBuddyAddrRegion,
|
||||
exp: u32,
|
||||
low_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) {
|
||||
let vaddr: u64 = self.calculate_block_vaddr(region.vaddr, exp - 1);
|
||||
let new_region: Box<MmioBuddyAddrRegion> = self.create_region(vaddr);
|
||||
let vaddr = self.calculate_block_vaddr(region.vaddr, exp - 1);
|
||||
let new_region: MmioBuddyAddrRegion = self.create_region(vaddr);
|
||||
self.push_block(region, low_list_guard);
|
||||
self.push_block(new_region, low_list_guard);
|
||||
}
|
||||
@ -113,7 +150,7 @@ impl MmioBuddyMemPool {
|
||||
///
|
||||
/// @param list_guard exp对应的链表
|
||||
///
|
||||
/// @return Ok(Box<MmioBuddyAddrRegion>) 符合要求的内存区域。
|
||||
/// @return Ok(MmioBuddyAddrRegion) 符合要求的内存区域。
|
||||
///
|
||||
/// @return Err(MmioResult)
|
||||
/// - 没有满足要求的内存块时,返回ENOFOUND
|
||||
@ -123,7 +160,7 @@ impl MmioBuddyMemPool {
|
||||
&self,
|
||||
exp: u32,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
// 申请范围错误
|
||||
if exp < MMIO_BUDDY_MIN_EXP || exp > MMIO_BUDDY_MAX_EXP {
|
||||
kdebug!("query_addr_region: exp wrong");
|
||||
@ -256,12 +293,9 @@ impl MmioBuddyMemPool {
|
||||
///
|
||||
/// @param exp 内存区域的大小(2^exp)
|
||||
///
|
||||
/// @return Ok(Box<MmioBuddyAddrRegion>)符合要求的内存块信息结构体。
|
||||
/// @return Ok(MmioBuddyAddrRegion)符合要求的内存块信息结构体。
|
||||
/// @return Err(MmioResult) 没有满足要求的内存块时,返回__query_addr_region的错误码。
|
||||
fn mmio_buddy_query_addr_region(
|
||||
&self,
|
||||
exp: u32,
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
fn mmio_buddy_query_addr_region(&self, exp: u32) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
let list_guard: &mut SpinLockGuard<MmioFreeRegionList> =
|
||||
&mut self.free_regions[exp2index(exp)].lock();
|
||||
match self.query_addr_region(exp, list_guard) {
|
||||
@ -279,7 +313,7 @@ impl MmioBuddyMemPool {
|
||||
/// @param list_guard 目标链表
|
||||
fn push_block(
|
||||
&self,
|
||||
region: Box<MmioBuddyAddrRegion>,
|
||||
region: MmioBuddyAddrRegion,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) {
|
||||
list_guard.list.push_back(region);
|
||||
@ -288,8 +322,8 @@ impl MmioBuddyMemPool {
|
||||
|
||||
/// @brief 根据地址和内存块大小,计算伙伴块虚拟内存的地址
|
||||
#[inline(always)]
|
||||
fn calculate_block_vaddr(&self, vaddr: u64, exp: u32) -> u64 {
|
||||
return vaddr ^ (1 << exp);
|
||||
fn calculate_block_vaddr(&self, vaddr: VirtAddr, exp: u32) -> VirtAddr {
|
||||
return VirtAddr::new(vaddr.data() ^ (1 << exp as usize));
|
||||
}
|
||||
|
||||
/// @brief 寻找并弹出指定内存块的伙伴块
|
||||
@ -306,10 +340,10 @@ impl MmioBuddyMemPool {
|
||||
/// - 没有找到伙伴块,返回ENOFOUND
|
||||
fn pop_buddy_block(
|
||||
&self,
|
||||
vaddr: u64,
|
||||
vaddr: VirtAddr,
|
||||
exp: u32,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
if list_guard.list.len() == 0 {
|
||||
return Err(MmioResult::ISEMPTY);
|
||||
} else {
|
||||
@ -317,7 +351,7 @@ impl MmioBuddyMemPool {
|
||||
let buddy_vaddr = self.calculate_block_vaddr(vaddr, exp);
|
||||
|
||||
// element 只会有一个元素
|
||||
let mut element: Vec<Box<MmioBuddyAddrRegion>> = list_guard
|
||||
let mut element: Vec<MmioBuddyAddrRegion> = list_guard
|
||||
.list
|
||||
.drain_filter(|x| x.vaddr == buddy_vaddr)
|
||||
.collect();
|
||||
@ -335,13 +369,13 @@ impl MmioBuddyMemPool {
|
||||
///
|
||||
/// @param list_guard 【exp】对应的链表
|
||||
///
|
||||
/// @return Ok(Box<MmioBuddyAddrRegion>) 内存块信息结构体的引用。
|
||||
/// @return Ok(MmioBuddyAddrRegion) 内存块信息结构体的引用。
|
||||
///
|
||||
/// @return Err(MmioResult) 当链表为空,无法删除时,返回ISEMPTY
|
||||
fn pop_block(
|
||||
&self,
|
||||
list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<Box<MmioBuddyAddrRegion>, MmioResult> {
|
||||
) -> Result<MmioBuddyAddrRegion, MmioResult> {
|
||||
if !list_guard.list.is_empty() {
|
||||
list_guard.num_free -= 1;
|
||||
return Ok(list_guard.list.pop_back().unwrap());
|
||||
@ -377,17 +411,15 @@ impl MmioBuddyMemPool {
|
||||
break;
|
||||
}
|
||||
// 获取内存块
|
||||
let vaddr: u64 = list_guard.list.back().unwrap().vaddr;
|
||||
let vaddr: VirtAddr = list_guard.list.back().unwrap().vaddr;
|
||||
// 获取伙伴内存块
|
||||
match self.pop_buddy_block(vaddr, exp, list_guard) {
|
||||
Err(err) => {
|
||||
return Err(err);
|
||||
}
|
||||
Ok(buddy_region) => {
|
||||
let region: Box<MmioBuddyAddrRegion> = list_guard.list.pop_back().unwrap();
|
||||
let copy_region: Box<MmioBuddyAddrRegion> = Box::new(MmioBuddyAddrRegion {
|
||||
vaddr: region.vaddr,
|
||||
});
|
||||
let region: MmioBuddyAddrRegion = list_guard.list.pop_back().unwrap();
|
||||
let copy_region = region.clone();
|
||||
// 在两块内存都被取出之后才进行合并
|
||||
match self.merge_blocks(region, buddy_region, exp, high_list_guard) {
|
||||
Err(err) => {
|
||||
@ -415,8 +447,8 @@ impl MmioBuddyMemPool {
|
||||
/// @return Err(MmioResult) 两个内存块不是伙伴块,返回EINVAL
|
||||
fn merge_blocks(
|
||||
&self,
|
||||
region_1: Box<MmioBuddyAddrRegion>,
|
||||
region_2: Box<MmioBuddyAddrRegion>,
|
||||
region_1: MmioBuddyAddrRegion,
|
||||
region_2: MmioBuddyAddrRegion,
|
||||
exp: u32,
|
||||
high_list_guard: &mut SpinLockGuard<MmioFreeRegionList>,
|
||||
) -> Result<MmioResult, MmioResult> {
|
||||
@ -444,102 +476,43 @@ impl MmioBuddyMemPool {
|
||||
/// @return Err(SystemError) 失败返回错误码
|
||||
pub fn create_mmio(
|
||||
&self,
|
||||
size: u32,
|
||||
vm_flags: vm_flags_t,
|
||||
size: usize,
|
||||
_vm_flags: vm_flags_t,
|
||||
res_vaddr: *mut u64,
|
||||
res_length: *mut u64,
|
||||
) -> Result<i32, SystemError> {
|
||||
if size > PAGE_1G_SIZE || size == 0 {
|
||||
return Err(SystemError::EPERM);
|
||||
}
|
||||
let mut retval: i32 = 0;
|
||||
let retval: i32 = 0;
|
||||
// 计算前导0
|
||||
let mut size_exp: u32 = 31 - size.leading_zeros();
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
let mut size_exp: u32 = 63 - size.leading_zeros();
|
||||
// 记录最终申请的空间大小
|
||||
let mut new_size: u32 = size;
|
||||
let mut new_size = size;
|
||||
// 对齐要申请的空间大小
|
||||
// 如果要申请的空间大小小于4k,则分配4k
|
||||
if size_exp < PAGE_4K_SHIFT {
|
||||
new_size = PAGE_4K_SIZE;
|
||||
new_size = PAGE_4K_SIZE as usize;
|
||||
size_exp = PAGE_4K_SHIFT;
|
||||
} else if (new_size & (!(1 << size_exp))) != 0 {
|
||||
// 向左对齐空间大小
|
||||
size_exp += 1;
|
||||
new_size = 1 << size_exp;
|
||||
}
|
||||
match MMIO_POOL.mmio_buddy_query_addr_region(size_exp) {
|
||||
match self.mmio_buddy_query_addr_region(size_exp) {
|
||||
Ok(region) => {
|
||||
unsafe {
|
||||
*res_vaddr = region.vaddr;
|
||||
*res_length = new_size as u64;
|
||||
}
|
||||
// 创建vma
|
||||
let flags: u64 = vm_flags | (VM_IO | VM_DONTCOPY) as u64;
|
||||
let len_4k: u64 = (new_size % PAGE_2M_SIZE) as u64;
|
||||
let len_2m: u64 = new_size as u64 - len_4k;
|
||||
let mut loop_i: u64 = 0;
|
||||
// 先分配2M的vma
|
||||
loop {
|
||||
if loop_i >= len_2m {
|
||||
break;
|
||||
}
|
||||
let vma: *mut *mut vm_area_struct = null_mut();
|
||||
retval = unsafe {
|
||||
mm_create_vma(
|
||||
&mut initial_mm,
|
||||
region.vaddr + loop_i,
|
||||
PAGE_2M_SIZE.into(),
|
||||
flags,
|
||||
null_mut(),
|
||||
vma,
|
||||
)
|
||||
};
|
||||
if retval != 0 {
|
||||
kdebug!(
|
||||
"failed to create mmio 2m vma. pid = {:?}",
|
||||
current_pcb().pid
|
||||
);
|
||||
unsafe {
|
||||
vm_area_del(*vma);
|
||||
vm_area_free(*vma);
|
||||
}
|
||||
return Err(SystemError::from_posix_errno(retval).unwrap());
|
||||
}
|
||||
loop_i += PAGE_2M_SIZE as u64;
|
||||
}
|
||||
// 分配4K的vma
|
||||
loop_i = len_2m;
|
||||
loop {
|
||||
if loop_i >= size as u64 {
|
||||
break;
|
||||
}
|
||||
let vma: *mut *mut vm_area_struct = null_mut();
|
||||
retval = unsafe {
|
||||
mm_create_vma(
|
||||
&mut initial_mm,
|
||||
region.vaddr + loop_i,
|
||||
PAGE_4K_SIZE.into(),
|
||||
flags,
|
||||
null_mut(),
|
||||
vma,
|
||||
)
|
||||
};
|
||||
if retval != 0 {
|
||||
kdebug!(
|
||||
"failed to create mmio 4k vma. pid = {:?}",
|
||||
current_pcb().pid
|
||||
);
|
||||
unsafe {
|
||||
vm_area_del(*vma);
|
||||
vm_area_free(*vma);
|
||||
}
|
||||
return Err(SystemError::from_posix_errno(retval).unwrap());
|
||||
}
|
||||
loop_i += PAGE_4K_SIZE as u64;
|
||||
}
|
||||
// todo: 是否需要创建vma?或者用新重写的机制去做?
|
||||
// kdebug!(
|
||||
// "create_mmio: vaddr = {:?}, length = {}",
|
||||
// region.vaddr,
|
||||
// new_size
|
||||
// );
|
||||
unsafe { *res_vaddr = region.vaddr.data() as u64 };
|
||||
unsafe { *res_length = new_size as u64 };
|
||||
}
|
||||
Err(_) => {
|
||||
kdebug!("failed to create mmio vma.pid = {:?}", current_pcb().pid);
|
||||
kerror!("failed to create mmio. pid = {:?}", current_pcb().pid);
|
||||
return Err(SystemError::ENOMEM);
|
||||
}
|
||||
}
|
||||
@ -555,83 +528,62 @@ impl MmioBuddyMemPool {
|
||||
/// @return Ok(i32) 成功返回0
|
||||
///
|
||||
/// @return Err(SystemError) 失败返回错误码
|
||||
pub fn release_mmio(&self, vaddr: u64, length: u64) -> Result<i32, SystemError> {
|
||||
//先将要释放的空间取消映射
|
||||
unsafe {
|
||||
mm_unmap(&mut initial_mm, vaddr, length, false);
|
||||
pub fn release_mmio(&self, vaddr: VirtAddr, length: usize) -> Result<i32, SystemError> {
|
||||
assert!(vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(length & (MMArch::PAGE_SIZE - 1) == 0);
|
||||
if vaddr < self.pool_start_addr
|
||||
|| vaddr.data() >= self.pool_start_addr.data() + self.pool_size
|
||||
{
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
let mut loop_i: u64 = 0;
|
||||
loop {
|
||||
if loop_i >= length {
|
||||
break;
|
||||
}
|
||||
// 获取要释放的vma的结构体
|
||||
let vma: *mut vm_area_struct = unsafe { vma_find(&mut initial_mm, vaddr + loop_i) };
|
||||
if vma == null_mut() {
|
||||
kdebug!(
|
||||
"mmio_release failed: vma not found. At address: {:?}, pid = {:?}",
|
||||
vaddr + loop_i,
|
||||
current_pcb().pid
|
||||
);
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
// 检查vma起始地址是否正确
|
||||
if unsafe { (*vma).vm_start != (vaddr + loop_i) } {
|
||||
kdebug!(
|
||||
"mmio_release failed: addr_start is not equal to current: {:?}. pid = {:?}",
|
||||
vaddr + loop_i,
|
||||
current_pcb().pid
|
||||
);
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
// 将vma对应空间归还
|
||||
match MMIO_POOL.give_back_block(unsafe { (*vma).vm_start }, unsafe {
|
||||
31 - ((*vma).vm_end - (*vma).vm_start).leading_zeros()
|
||||
}) {
|
||||
Ok(_) => {
|
||||
loop_i += unsafe { (*vma).vm_end - (*vma).vm_start };
|
||||
unsafe {
|
||||
vm_area_del(vma);
|
||||
vm_area_free(vma);
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
// vma对应空间没有成功归还的话,就不删除vma
|
||||
kdebug!(
|
||||
"mmio_release give_back failed: pid = {:?}",
|
||||
current_pcb().pid
|
||||
);
|
||||
return Err(err);
|
||||
}
|
||||
}
|
||||
// todo: 重构MMIO管理机制,创建类似全局的manager之类的,管理MMIO的空间?
|
||||
|
||||
// 暂时认为传入的vaddr都是正确的
|
||||
let page_count = length / MMArch::PAGE_SIZE;
|
||||
// 取消映射
|
||||
let mut bindings = KernelMapper::lock();
|
||||
let mut kernel_mapper = bindings.as_mut();
|
||||
if kernel_mapper.is_none() {
|
||||
kwarn!("release_mmio: kernel_mapper is read only");
|
||||
return Err(SystemError::EAGAIN_OR_EWOULDBLOCK);
|
||||
}
|
||||
|
||||
for i in 0..page_count {
|
||||
unsafe {
|
||||
kernel_mapper
|
||||
.as_mut()
|
||||
.unwrap()
|
||||
.unmap(vaddr + i * MMArch::PAGE_SIZE, true)
|
||||
};
|
||||
}
|
||||
|
||||
// todo: 归还到buddy
|
||||
|
||||
return Ok(0);
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief mmio伙伴系统内部的地址区域结构体
|
||||
pub struct MmioBuddyAddrRegion {
|
||||
vaddr: u64,
|
||||
#[derive(Debug, Clone)]
|
||||
struct MmioBuddyAddrRegion {
|
||||
vaddr: VirtAddr,
|
||||
}
|
||||
impl MmioBuddyAddrRegion {
|
||||
pub fn new() -> Self {
|
||||
return MmioBuddyAddrRegion {
|
||||
..Default::default()
|
||||
};
|
||||
pub fn new(vaddr: VirtAddr) -> Self {
|
||||
return MmioBuddyAddrRegion { vaddr };
|
||||
}
|
||||
}
|
||||
impl Default for MmioBuddyAddrRegion {
|
||||
fn default() -> Self {
|
||||
MmioBuddyAddrRegion {
|
||||
vaddr: Default::default(),
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn vaddr(&self) -> VirtAddr {
|
||||
return self.vaddr;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 空闲页数组结构体
|
||||
#[derive(Debug)]
|
||||
pub struct MmioFreeRegionList {
|
||||
/// 存储mmio_buddy的地址链表
|
||||
list: LinkedList<Box<MmioBuddyAddrRegion>>,
|
||||
list: LinkedList<MmioBuddyAddrRegion>,
|
||||
/// 空闲块的数量
|
||||
num_free: i64,
|
||||
}
|
||||
@ -652,25 +604,6 @@ impl Default for MmioFreeRegionList {
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 初始化mmio的伙伴系统
|
||||
#[no_mangle]
|
||||
pub extern "C" fn __mmio_buddy_init() {
|
||||
// 创建一堆1GB的地址块
|
||||
let cnt_1g_blocks: u32 = ((MMIO_TOP - MMIO_BASE) / PAGE_1G_SIZE as i64) as u32;
|
||||
let mut vaddr_base: u64 = MMIO_BASE as u64;
|
||||
for _ in 0..cnt_1g_blocks {
|
||||
match MMIO_POOL.give_back_block(vaddr_base, PAGE_1G_SHIFT) {
|
||||
Ok(_) => {
|
||||
vaddr_base += PAGE_1G_SIZE as u64;
|
||||
}
|
||||
Err(_) => {
|
||||
kerror!("__mmio_buddy_init failed");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 将内存对象大小的幂转换成内存池中的数组的下标
|
||||
///
|
||||
/// @param exp内存大小
|
||||
@ -681,6 +614,15 @@ fn exp2index(exp: u32) -> usize {
|
||||
return (exp - 12) as usize;
|
||||
}
|
||||
|
||||
pub fn mmio_init() {
|
||||
kdebug!("Initializing MMIO buddy memory pool...");
|
||||
// 初始化mmio内存池
|
||||
unsafe {
|
||||
__MMIO_POOL = Some(MmioBuddyMemPool::new());
|
||||
}
|
||||
|
||||
kinfo!("MMIO buddy memory pool init done");
|
||||
}
|
||||
/// @brief 创建一块mmio区域,并将vma绑定到initial_mm
|
||||
///
|
||||
/// @param size mmio区域的大小(字节)
|
||||
@ -699,7 +641,8 @@ pub extern "C" fn mmio_create(
|
||||
res_vaddr: *mut u64,
|
||||
res_length: *mut u64,
|
||||
) -> i32 {
|
||||
if let Err(err) = MMIO_POOL.create_mmio(size, vm_flags, res_vaddr, res_length) {
|
||||
// kdebug!("mmio_create");
|
||||
if let Err(err) = mmio_pool().create_mmio(size as usize, vm_flags, res_vaddr, res_length) {
|
||||
return err.to_posix_errno();
|
||||
} else {
|
||||
return 0;
|
||||
@ -717,9 +660,7 @@ pub extern "C" fn mmio_create(
|
||||
/// @return Err(i32) 失败返回错误码
|
||||
#[no_mangle]
|
||||
pub extern "C" fn mmio_release(vaddr: u64, length: u64) -> i32 {
|
||||
if let Err(err) = MMIO_POOL.release_mmio(vaddr, length) {
|
||||
return err.to_posix_errno();
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
return mmio_pool()
|
||||
.release_mmio(VirtAddr::new(vaddr as usize), length as usize)
|
||||
.unwrap_or_else(|err| err.to_posix_errno());
|
||||
}
|
||||
|
@ -1,9 +1,63 @@
|
||||
use crate::include::bindings::bindings::{mm_struct, process_control_block, PAGE_OFFSET};
|
||||
use alloc::sync::Arc;
|
||||
|
||||
use crate::{
|
||||
arch::MMArch,
|
||||
include::bindings::bindings::{process_control_block, PAGE_OFFSET},
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
use core::{
|
||||
cmp,
|
||||
fmt::Debug,
|
||||
intrinsics::unlikely,
|
||||
ops::{Add, AddAssign, Sub, SubAssign},
|
||||
ptr,
|
||||
sync::atomic::{AtomicBool, Ordering},
|
||||
};
|
||||
|
||||
use self::{
|
||||
allocator::page_frame::{VirtPageFrame, VirtPageFrameIter},
|
||||
page::round_up_to_page_size,
|
||||
ucontext::{AddressSpace, UserMapper},
|
||||
};
|
||||
|
||||
pub mod allocator;
|
||||
pub mod c_adapter;
|
||||
pub mod gfp;
|
||||
pub mod kernel_mapper;
|
||||
pub mod mmio_buddy;
|
||||
pub mod no_init;
|
||||
pub mod page;
|
||||
pub mod syscall;
|
||||
pub mod ucontext;
|
||||
|
||||
/// 内核INIT进程的用户地址空间结构体(仅在process_init中初始化)
|
||||
static mut __INITIAL_PROCESS_ADDRESS_SPACE: Option<Arc<AddressSpace>> = None;
|
||||
|
||||
/// 获取内核INIT进程的用户地址空间结构体
|
||||
#[allow(non_snake_case)]
|
||||
#[inline(always)]
|
||||
pub fn INITIAL_PROCESS_ADDRESS_SPACE() -> Arc<AddressSpace> {
|
||||
unsafe {
|
||||
return __INITIAL_PROCESS_ADDRESS_SPACE
|
||||
.as_ref()
|
||||
.expect("INITIAL_PROCESS_ADDRESS_SPACE is null")
|
||||
.clone();
|
||||
}
|
||||
}
|
||||
|
||||
/// 设置内核INIT进程的用户地址空间结构体全局变量
|
||||
#[allow(non_snake_case)]
|
||||
pub unsafe fn set_INITIAL_PROCESS_ADDRESS_SPACE(address_space: Arc<AddressSpace>) {
|
||||
static INITIALIZED: AtomicBool = AtomicBool::new(false);
|
||||
if INITIALIZED
|
||||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::Acquire)
|
||||
.is_err()
|
||||
{
|
||||
panic!("INITIAL_PROCESS_ADDRESS_SPACE is already initialized");
|
||||
}
|
||||
__INITIAL_PROCESS_ADDRESS_SPACE = Some(address_space);
|
||||
}
|
||||
|
||||
/// @brief 将内核空间的虚拟地址转换为物理地址
|
||||
#[inline(always)]
|
||||
@ -17,10 +71,561 @@ pub fn phys_2_virt(addr: usize) -> usize {
|
||||
addr + PAGE_OFFSET as usize
|
||||
}
|
||||
|
||||
// ====== 重构内存管理后,请删除18-24行 ======
|
||||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd, Hash)]
|
||||
pub enum PageTableKind {
|
||||
/// 用户可访问的页表
|
||||
User,
|
||||
/// 内核页表
|
||||
Kernel,
|
||||
}
|
||||
|
||||
/// 物理内存地址
|
||||
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd, Hash)]
|
||||
#[repr(transparent)]
|
||||
pub struct PhysAddr(usize);
|
||||
|
||||
impl PhysAddr {
|
||||
#[inline(always)]
|
||||
pub const fn new(address: usize) -> Self {
|
||||
Self(address)
|
||||
}
|
||||
|
||||
/// @brief 获取物理地址的值
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
self.0
|
||||
}
|
||||
|
||||
/// @brief 将物理地址加上一个偏移量
|
||||
#[inline(always)]
|
||||
pub fn add(self, offset: usize) -> Self {
|
||||
Self(self.0 + offset)
|
||||
}
|
||||
|
||||
/// @brief 判断物理地址是否按照指定要求对齐
|
||||
#[inline(always)]
|
||||
pub fn check_aligned(&self, align: usize) -> bool {
|
||||
return self.0 & (align - 1) == 0;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn is_null(&self) -> bool {
|
||||
return self.0 == 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for PhysAddr {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
write!(f, "PhysAddr({:#x})", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Add<usize> for PhysAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 + rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::AddAssign<usize> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: usize) {
|
||||
self.0 += rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Add<PhysAddr> for PhysAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: PhysAddr) -> Self::Output {
|
||||
return Self(self.0 + rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::AddAssign<PhysAddr> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: PhysAddr) {
|
||||
self.0 += rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Sub<usize> for PhysAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 - rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::SubAssign<usize> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: usize) {
|
||||
self.0 -= rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::Sub<PhysAddr> for PhysAddr {
|
||||
type Output = usize;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: PhysAddr) -> Self::Output {
|
||||
return self.0 - rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl core::ops::SubAssign<PhysAddr> for PhysAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: PhysAddr) {
|
||||
self.0 -= rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
/// 虚拟内存地址
|
||||
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd, Hash)]
|
||||
#[repr(transparent)]
|
||||
pub struct VirtAddr(usize);
|
||||
|
||||
impl VirtAddr {
|
||||
#[inline(always)]
|
||||
pub const fn new(address: usize) -> Self {
|
||||
return Self(address);
|
||||
}
|
||||
|
||||
/// @brief 获取虚拟地址的值
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
return self.0;
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址的类型
|
||||
#[inline(always)]
|
||||
pub fn kind(&self) -> PageTableKind {
|
||||
if self.check_user() {
|
||||
return PageTableKind::User;
|
||||
} else {
|
||||
return PageTableKind::Kernel;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址是否按照指定要求对齐
|
||||
#[inline(always)]
|
||||
pub fn check_aligned(&self, align: usize) -> bool {
|
||||
return self.0 & (align - 1) == 0;
|
||||
}
|
||||
|
||||
/// @brief 判断虚拟地址是否在用户空间
|
||||
#[inline(always)]
|
||||
pub fn check_user(&self) -> bool {
|
||||
if self < &MMArch::USER_END_VADDR {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn as_ptr<T>(self) -> *mut T {
|
||||
return self.0 as *mut T;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn is_null(&self) -> bool {
|
||||
return self.0 == 0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<VirtAddr> for VirtAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: VirtAddr) -> Self::Output {
|
||||
return Self(self.0 + rhs.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<usize> for VirtAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn add(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 + rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<VirtAddr> for VirtAddr {
|
||||
type Output = usize;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: VirtAddr) -> Self::Output {
|
||||
return self.0 - rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<usize> for VirtAddr {
|
||||
type Output = Self;
|
||||
|
||||
#[inline(always)]
|
||||
fn sub(self, rhs: usize) -> Self::Output {
|
||||
return Self(self.0 - rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<usize> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: usize) {
|
||||
self.0 += rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign<VirtAddr> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn add_assign(&mut self, rhs: VirtAddr) {
|
||||
self.0 += rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<usize> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: usize) {
|
||||
self.0 -= rhs;
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign<VirtAddr> for VirtAddr {
|
||||
#[inline(always)]
|
||||
fn sub_assign(&mut self, rhs: VirtAddr) {
|
||||
self.0 -= rhs.0;
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for VirtAddr {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
||||
write!(f, "VirtAddr({:#x})", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 物理内存区域
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct PhysMemoryArea {
|
||||
/// 物理基地址
|
||||
pub base: PhysAddr,
|
||||
/// 该区域的物理内存大小
|
||||
pub size: usize,
|
||||
}
|
||||
|
||||
pub trait MemoryManagementArch: Clone + Copy + Debug {
|
||||
/// 页面大小的shift(假如页面4K,那么这个值就是12,因为2^12=4096)
|
||||
const PAGE_SHIFT: usize;
|
||||
/// 每个页表的页表项数目。(以2^n次幂来表示)假如有512个页表项,那么这个值就是9
|
||||
const PAGE_ENTRY_SHIFT: usize;
|
||||
/// 页表层级数量
|
||||
const PAGE_LEVELS: usize;
|
||||
|
||||
/// 页表项的有效位的index(假如页表项的第0-51位有效,那么这个值就是52)
|
||||
const ENTRY_ADDRESS_SHIFT: usize;
|
||||
/// 页面的页表项的默认值
|
||||
const ENTRY_FLAG_DEFAULT_PAGE: usize;
|
||||
/// 页表的页表项的默认值
|
||||
const ENTRY_FLAG_DEFAULT_TABLE: usize;
|
||||
/// 页表项的present位被置位之后的值
|
||||
const ENTRY_FLAG_PRESENT: usize;
|
||||
/// 页表项为read only时的值
|
||||
const ENTRY_FLAG_READONLY: usize;
|
||||
/// 页表项为可读写状态的值
|
||||
const ENTRY_FLAG_READWRITE: usize;
|
||||
/// 页面项标记页面为user page的值
|
||||
const ENTRY_FLAG_USER: usize;
|
||||
/// 页面项标记页面为write through的值
|
||||
const ENTRY_FLAG_WRITE_THROUGH: usize;
|
||||
/// 页面项标记页面为cache disable的值
|
||||
const ENTRY_FLAG_CACHE_DISABLE: usize;
|
||||
/// 标记当前页面不可执行的标志位(Execute disable)(也就是说,不能从这段内存里面获取处理器指令)
|
||||
const ENTRY_FLAG_NO_EXEC: usize;
|
||||
/// 标记当前页面可执行的标志位(Execute enable)
|
||||
const ENTRY_FLAG_EXEC: usize;
|
||||
|
||||
/// 虚拟地址与物理地址的偏移量
|
||||
const PHYS_OFFSET: usize;
|
||||
|
||||
/// 每个页面的大小
|
||||
const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
|
||||
/// 通过这个mask,获取地址的页内偏移量
|
||||
const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
|
||||
/// 页表项的地址、数据部分的shift。
|
||||
/// 打个比方,如果这个值为52,那么意味着页表项的[0, 52)位,用于表示地址以及其他的标志位
|
||||
const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
|
||||
/// 最大的虚拟地址(对于不同的架构,由于上述PAGE_ADDRESS_SHIFT可能包括了reserved bits, 事实上能表示的虚拟地址应该比这个值要小)
|
||||
const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
|
||||
/// 页表项的值与这个常量进行与运算,得到的结果是所填写的物理地址
|
||||
const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
|
||||
/// 每个页表项的大小
|
||||
const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
|
||||
/// 每个页表的页表项数目
|
||||
const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
|
||||
/// 该字段用于根据虚拟地址,获取该虚拟地址在对应的页表中是第几个页表项
|
||||
const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
|
||||
|
||||
const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
|
||||
|
||||
const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
|
||||
/// 该mask用于获取页表项中地址字段
|
||||
const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
|
||||
/// 这个mask用于获取页表项中的flags
|
||||
const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
|
||||
|
||||
/// 用户空间的最高地址
|
||||
const USER_END_VADDR: VirtAddr;
|
||||
/// 用户堆的起始地址
|
||||
const USER_BRK_START: VirtAddr;
|
||||
/// 用户栈起始地址(向下生长,不包含该值)
|
||||
const USER_STACK_START: VirtAddr;
|
||||
|
||||
/// @brief 用于初始化内存管理模块与架构相关的信息。
|
||||
/// 该函数应调用其他模块的接口,生成内存区域结构体,提供给BumpAllocator使用
|
||||
unsafe fn init() -> &'static [PhysMemoryArea];
|
||||
|
||||
/// @brief 读取指定虚拟地址的值,并假设它是类型T的指针
|
||||
#[inline(always)]
|
||||
unsafe fn read<T>(address: VirtAddr) -> T {
|
||||
return ptr::read(address.data() as *const T);
|
||||
}
|
||||
|
||||
/// @brief 将value写入到指定的虚拟地址
|
||||
#[inline(always)]
|
||||
unsafe fn write<T>(address: VirtAddr, value: T) {
|
||||
ptr::write(address.data() as *mut T, value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
|
||||
ptr::write_bytes(address.data() as *mut u8, value, count);
|
||||
}
|
||||
|
||||
/// @brief 刷新TLB中,关于指定虚拟地址的条目
|
||||
unsafe fn invalidate_page(address: VirtAddr);
|
||||
|
||||
/// @brief 刷新TLB中,所有的条目
|
||||
unsafe fn invalidate_all();
|
||||
|
||||
/// @brief 获取顶级页表的物理地址
|
||||
unsafe fn table(table_kind: PageTableKind) -> PhysAddr;
|
||||
|
||||
/// @brief 设置顶级页表的物理地址到处理器中
|
||||
unsafe fn set_table(table_kind: PageTableKind, table: PhysAddr);
|
||||
|
||||
/// @brief 将物理地址转换为虚拟地址.
|
||||
///
|
||||
/// @param phys 物理地址
|
||||
///
|
||||
/// @return 转换后的虚拟地址。如果转换失败,返回None
|
||||
#[inline(always)]
|
||||
unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
|
||||
if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
|
||||
return Some(VirtAddr::new(vaddr));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// 将虚拟地址转换为物理地址
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `virt` 虚拟地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 转换后的物理地址。如果转换失败,返回None
|
||||
#[inline(always)]
|
||||
unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
|
||||
if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
|
||||
return Some(PhysAddr::new(paddr));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 判断指定的虚拟地址是否正确(符合规范)
|
||||
fn virt_is_valid(virt: VirtAddr) -> bool;
|
||||
|
||||
/// 获取内存管理初始化时,创建的第一个内核页表的地址
|
||||
fn initial_page_table() -> PhysAddr;
|
||||
|
||||
/// 初始化新的usermapper,为用户进程创建页表
|
||||
fn setup_new_usermapper() -> Result<UserMapper, SystemError>;
|
||||
}
|
||||
|
||||
/// @brief 虚拟地址范围
|
||||
/// 该结构体用于表示一个虚拟地址范围,包括起始地址与大小
|
||||
///
|
||||
/// 请注意与VMA进行区分,该结构体被VMA所包含
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub struct VirtRegion {
|
||||
start: VirtAddr,
|
||||
size: usize,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl VirtRegion {
|
||||
/// # 创建一个新的虚拟地址范围
|
||||
pub fn new(start: VirtAddr, size: usize) -> Self {
|
||||
VirtRegion { start, size }
|
||||
}
|
||||
|
||||
/// 获取虚拟地址范围的起始地址
|
||||
#[inline(always)]
|
||||
pub fn start(&self) -> VirtAddr {
|
||||
self.start
|
||||
}
|
||||
|
||||
/// 获取虚拟地址范围的截止地址(不包括返回的地址)
|
||||
#[inline(always)]
|
||||
pub fn end(&self) -> VirtAddr {
|
||||
return self.start().add(self.size);
|
||||
}
|
||||
|
||||
/// # Create a new VirtRegion from a range [start, end)
|
||||
///
|
||||
/// If end <= start, return None
|
||||
pub fn between(start: VirtAddr, end: VirtAddr) -> Option<Self> {
|
||||
if unlikely(end.data() <= start.data()) {
|
||||
return None;
|
||||
}
|
||||
let size = end.data() - start.data();
|
||||
return Some(VirtRegion::new(start, size));
|
||||
}
|
||||
|
||||
/// # 取两个虚拟地址范围的交集
|
||||
///
|
||||
/// 如果两个虚拟地址范围没有交集,返回None
|
||||
pub fn intersect(&self, other: &VirtRegion) -> Option<VirtRegion> {
|
||||
let start = self.start.max(other.start);
|
||||
let end = self.end().min(other.end());
|
||||
return VirtRegion::between(start, end);
|
||||
}
|
||||
|
||||
/// 设置虚拟地址范围的起始地址
|
||||
#[inline(always)]
|
||||
pub fn set_start(&mut self, start: VirtAddr) {
|
||||
self.start = start;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn size(&self) -> usize {
|
||||
self.size
|
||||
}
|
||||
|
||||
/// 设置虚拟地址范围的大小
|
||||
#[inline(always)]
|
||||
pub fn set_size(&mut self, size: usize) {
|
||||
self.size = size;
|
||||
}
|
||||
|
||||
/// 判断虚拟地址范围是否为空
|
||||
#[inline(always)]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.size == 0
|
||||
}
|
||||
|
||||
/// 将虚拟地址区域的大小向上对齐到页大小
|
||||
#[inline(always)]
|
||||
pub fn round_up_size_to_page(self) -> Self {
|
||||
return VirtRegion::new(self.start, round_up_to_page_size(self.size));
|
||||
}
|
||||
|
||||
/// 判断两个虚拟地址范围是否由于具有交集而导致冲突
|
||||
#[inline(always)]
|
||||
pub fn collide(&self, other: &VirtRegion) -> bool {
|
||||
return self.intersect(other).is_some();
|
||||
}
|
||||
|
||||
pub fn iter_pages(&self) -> VirtPageFrameIter {
|
||||
return VirtPageFrame::iter_range(
|
||||
VirtPageFrame::new(self.start),
|
||||
VirtPageFrame::new(self.end()),
|
||||
);
|
||||
}
|
||||
|
||||
/// 获取[self.start(), region.start())的虚拟地址范围
|
||||
///
|
||||
/// 如果self.start() >= region.start(),返回None
|
||||
pub fn before(self, region: &VirtRegion) -> Option<Self> {
|
||||
return Self::between(self.start(), region.start());
|
||||
}
|
||||
|
||||
/// 获取[region.end(),self.end())的虚拟地址范围
|
||||
///
|
||||
/// 如果 self.end() >= region.end() ,返回None
|
||||
pub fn after(self, region: &VirtRegion) -> Option<Self> {
|
||||
// if self.end() > region.end() none
|
||||
return Self::between(region.end(), self.end());
|
||||
}
|
||||
|
||||
/// 把当前虚拟地址范围内的某个虚拟地址,转换为另一个虚拟地址范围内的虚拟地址
|
||||
///
|
||||
/// 如果vaddr不在当前虚拟地址范围内,返回None
|
||||
///
|
||||
/// 如果vaddr在当前虚拟地址范围内,返回vaddr在new_base中的虚拟地址
|
||||
pub fn rebase(self, vaddr: VirtAddr, new_base: &VirtRegion) -> Option<VirtAddr> {
|
||||
if !self.contains(vaddr) {
|
||||
return None;
|
||||
}
|
||||
let offset = vaddr.data() - self.start().data();
|
||||
let new_start = new_base.start().data() + offset;
|
||||
return Some(VirtAddr::new(new_start));
|
||||
}
|
||||
|
||||
/// 判断虚拟地址范围是否包含指定的虚拟地址
|
||||
pub fn contains(&self, addr: VirtAddr) -> bool {
|
||||
return self.start() <= addr && addr < self.end();
|
||||
}
|
||||
|
||||
/// 创建当前虚拟地址范围的页面迭代器
|
||||
pub fn pages(&self) -> VirtPageFrameIter {
|
||||
return VirtPageFrame::iter_range(
|
||||
VirtPageFrame::new(self.start()),
|
||||
VirtPageFrame::new(self.end()),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for VirtRegion {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
|
||||
return self.start.partial_cmp(&other.start);
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for VirtRegion {
|
||||
fn cmp(&self, other: &Self) -> cmp::Ordering {
|
||||
return self.start.cmp(&other.start);
|
||||
}
|
||||
}
|
||||
|
||||
/// ## 判断虚拟地址是否超出了用户空间
|
||||
///
|
||||
/// 如果虚拟地址超出了用户空间,返回Err(SystemError::EFAULT).
|
||||
/// 如果end < start,返回Err(SystemError::EOVERFLOW)
|
||||
///
|
||||
/// 否则返回Ok(())
|
||||
pub fn verify_area(addr: VirtAddr, size: usize) -> Result<(), SystemError> {
|
||||
let end = addr.add(size);
|
||||
if unlikely(end.data() < addr.data()) {
|
||||
return Err(SystemError::EOVERFLOW);
|
||||
}
|
||||
|
||||
if !addr.check_user() || !end.check_user() {
|
||||
return Err(SystemError::EFAULT);
|
||||
}
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
// ====== 重构内存管理、进程管理后,请删除这几行 BEGIN ======
|
||||
//BUG pcb问题
|
||||
unsafe impl Send for process_control_block {}
|
||||
unsafe impl Sync for process_control_block {}
|
||||
|
||||
unsafe impl Send for mm_struct {}
|
||||
unsafe impl Sync for mm_struct {}
|
||||
// ====== 重构内存管理后,请删除这几行 END =======
|
||||
|
79
kernel/src/mm/no_init.rs
Normal file
79
kernel/src/mm/no_init.rs
Normal file
@ -0,0 +1,79 @@
|
||||
//! 该文件用于系统启动早期,内存管理器初始化之前,提供一些简单的内存映射功能
|
||||
//!
|
||||
//! 这里假设在内核引导文件中,已经填写了前100M的内存映射关系,因此这里不需要任何动态分配。
|
||||
//!
|
||||
//! 映射关系为:
|
||||
//!
|
||||
//! 虚拟地址 0-100M与虚拟地址 0x8000_0000_0000 - 0x8000_0640_0000 之间具有重映射关系。
|
||||
//! 也就是说,他们的第二级页表在最顶级页表中,占用了第0和第256个页表项。
|
||||
//!
|
||||
|
||||
use crate::mm::{MMArch, MemoryManagementArch, PhysAddr};
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage},
|
||||
page::PageFlags,
|
||||
PageTableKind, VirtAddr,
|
||||
};
|
||||
|
||||
/// 伪分配器
|
||||
struct PseudoAllocator<MMA> {
|
||||
phantom: PhantomData<MMA>,
|
||||
}
|
||||
|
||||
impl<MMA: MemoryManagementArch> PseudoAllocator<MMA> {
|
||||
pub const fn new() -> Self {
|
||||
Self {
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 为NoInitAllocator实现FrameAllocator
|
||||
impl<MMA: MemoryManagementArch> FrameAllocator for PseudoAllocator<MMA> {
|
||||
unsafe fn allocate(&mut self, _count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||||
panic!("NoInitAllocator can't allocate page frame");
|
||||
}
|
||||
|
||||
unsafe fn free(&mut self, _address: PhysAddr, _count: PageFrameCount) {
|
||||
panic!("NoInitAllocator can't free page frame");
|
||||
}
|
||||
/// @brief: 获取内存区域页帧的使用情况
|
||||
/// @param self
|
||||
/// @return 页帧的使用情况
|
||||
unsafe fn usage(&self) -> PageFrameUsage {
|
||||
panic!("NoInitAllocator can't get page frame usage");
|
||||
}
|
||||
}
|
||||
|
||||
/// Use pseudo mapper to map physical memory to virtual memory.
|
||||
///
|
||||
/// ## Safety
|
||||
///
|
||||
/// 调用该函数时,必须保证内存管理器尚未初始化。否则将导致未定义的行为
|
||||
///
|
||||
/// 并且,内核引导文件必须以4K页为粒度,填写了前100M的内存映射关系。(具体以本文件开头的注释为准)
|
||||
pub unsafe fn pseudo_map_phys(vaddr: VirtAddr, paddr: PhysAddr, count: PageFrameCount) {
|
||||
assert!(vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(paddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
|
||||
let mut pseudo_allocator = PseudoAllocator::<MMArch>::new();
|
||||
|
||||
let mut mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
|
||||
PageTableKind::Kernel,
|
||||
MMArch::table(PageTableKind::Kernel),
|
||||
&mut pseudo_allocator,
|
||||
);
|
||||
|
||||
let flags: PageFlags<MMArch> = PageFlags::new().set_write(true).set_execute(true);
|
||||
|
||||
for i in 0..count.data() {
|
||||
let vaddr = vaddr + i * MMArch::PAGE_SIZE;
|
||||
let paddr = paddr + i * MMArch::PAGE_SIZE;
|
||||
let flusher = mapper.map_phys(vaddr, paddr, flags).unwrap();
|
||||
flusher.ignore();
|
||||
}
|
||||
|
||||
mapper.make_current();
|
||||
}
|
924
kernel/src/mm/page.rs
Normal file
924
kernel/src/mm/page.rs
Normal file
@ -0,0 +1,924 @@
|
||||
use core::{
|
||||
fmt::{self, Debug, Error, Formatter},
|
||||
marker::PhantomData,
|
||||
mem,
|
||||
ops::Add,
|
||||
sync::atomic::{compiler_fence, Ordering},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
arch::{interrupt::ipi::send_ipi, MMArch},
|
||||
exception::ipi::{IpiKind, IpiTarget},
|
||||
kerror, kwarn,
|
||||
};
|
||||
|
||||
use super::{
|
||||
allocator::page_frame::FrameAllocator, syscall::ProtFlags, MemoryManagementArch, PageTableKind,
|
||||
PhysAddr, VirtAddr,
|
||||
};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct PageTable<Arch> {
|
||||
/// 当前页表表示的虚拟地址空间的起始地址
|
||||
base: VirtAddr,
|
||||
/// 当前页表所在的物理地址
|
||||
phys: PhysAddr,
|
||||
/// 当前页表的层级(请注意,最顶级页表的level为[Arch::PAGE_LEVELS - 1])
|
||||
level: usize,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<Arch: MemoryManagementArch> PageTable<Arch> {
|
||||
pub unsafe fn new(base: VirtAddr, phys: PhysAddr, level: usize) -> Self {
|
||||
Self {
|
||||
base,
|
||||
phys,
|
||||
level,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取顶级页表
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - table_kind 页表类型
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回顶级页表
|
||||
pub unsafe fn top_level_table(table_kind: PageTableKind) -> Self {
|
||||
return Self::new(
|
||||
VirtAddr::new(0),
|
||||
Arch::table(table_kind),
|
||||
Arch::PAGE_LEVELS - 1,
|
||||
);
|
||||
}
|
||||
|
||||
/// 获取当前页表的物理地址
|
||||
#[inline(always)]
|
||||
pub fn phys(&self) -> PhysAddr {
|
||||
self.phys
|
||||
}
|
||||
|
||||
/// 当前页表表示的虚拟地址空间的起始地址
|
||||
#[inline(always)]
|
||||
pub fn base(&self) -> VirtAddr {
|
||||
self.base
|
||||
}
|
||||
|
||||
/// 获取当前页表的层级
|
||||
#[inline(always)]
|
||||
pub fn level(&self) -> usize {
|
||||
self.level
|
||||
}
|
||||
|
||||
/// 获取当前页表自身所在的虚拟地址
|
||||
#[inline(always)]
|
||||
pub unsafe fn virt(&self) -> VirtAddr {
|
||||
return Arch::phys_2_virt(self.phys).unwrap();
|
||||
}
|
||||
|
||||
/// 获取第i个页表项所表示的虚拟内存空间的起始地址
|
||||
pub fn entry_base(&self, i: usize) -> Option<VirtAddr> {
|
||||
if i < Arch::PAGE_ENTRY_NUM {
|
||||
let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
|
||||
return Some(self.base.add(i << shift));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取当前页表的第i个页表项所在的虚拟地址(注意与entry_base进行区分)
|
||||
pub unsafe fn entry_virt(&self, i: usize) -> Option<VirtAddr> {
|
||||
if i < Arch::PAGE_ENTRY_NUM {
|
||||
return Some(self.virt().add(i * Arch::PAGE_ENTRY_SIZE));
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取当前页表的第i个页表项
|
||||
pub unsafe fn entry(&self, i: usize) -> Option<PageEntry<Arch>> {
|
||||
let entry_virt = self.entry_virt(i)?;
|
||||
return Some(PageEntry::new(Arch::read::<usize>(entry_virt)));
|
||||
}
|
||||
|
||||
/// 设置当前页表的第i个页表项
|
||||
pub unsafe fn set_entry(&self, i: usize, entry: PageEntry<Arch>) -> Option<()> {
|
||||
let entry_virt = self.entry_virt(i)?;
|
||||
Arch::write::<usize>(entry_virt, entry.data());
|
||||
return Some(());
|
||||
}
|
||||
|
||||
/// 判断当前页表的第i个页表项是否已经填写了值
|
||||
///
|
||||
/// ## 参数
|
||||
/// - Some(true) 如果已经填写了值
|
||||
/// - Some(false) 如果未填写值
|
||||
/// - None 如果i超出了页表项的范围
|
||||
pub fn entry_mapped(&self, i: usize) -> Option<bool> {
|
||||
let etv = unsafe { self.entry_virt(i) }?;
|
||||
if unsafe { Arch::read::<usize>(etv) } != 0 {
|
||||
return Some(true);
|
||||
} else {
|
||||
return Some(false);
|
||||
}
|
||||
}
|
||||
|
||||
/// 根据虚拟地址,获取对应的页表项在页表中的下标
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - addr: 虚拟地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 页表项在页表中的下标。如果addr不在当前页表所表示的虚拟地址空间中,则返回None
|
||||
pub unsafe fn index_of(&self, addr: VirtAddr) -> Option<usize> {
|
||||
let addr = VirtAddr::new(addr.data() & Arch::PAGE_ADDRESS_MASK);
|
||||
let shift = self.level * Arch::PAGE_ENTRY_SHIFT + Arch::PAGE_SHIFT;
|
||||
|
||||
let mask = (MMArch::PAGE_ENTRY_NUM << shift) - 1;
|
||||
if addr < self.base || addr >= self.base.add(mask) {
|
||||
return None;
|
||||
} else {
|
||||
return Some((addr.data() >> shift) & MMArch::PAGE_ENTRY_MASK);
|
||||
}
|
||||
}
|
||||
|
||||
/// 获取第i个页表项指向的下一级页表
|
||||
pub unsafe fn next_level_table(&self, index: usize) -> Option<Self> {
|
||||
if self.level == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
// 返回下一级页表
|
||||
return Some(PageTable::new(
|
||||
self.entry_base(index)?,
|
||||
self.entry(index)?.address().ok()?,
|
||||
self.level - 1,
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表项
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct PageEntry<Arch> {
|
||||
data: usize,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
impl<Arch> Debug for PageEntry<Arch> {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
||||
f.write_fmt(format_args!("PageEntry({:#x})", self.data))
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> PageEntry<Arch> {
|
||||
#[inline(always)]
|
||||
pub fn new(data: usize) -> Self {
|
||||
Self {
|
||||
data,
|
||||
phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
self.data
|
||||
}
|
||||
|
||||
/// 获取当前页表项指向的物理地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// - Ok(PhysAddr) 如果当前页面存在于物理内存中, 返回物理地址
|
||||
/// - Err(PhysAddr) 如果当前页表项不存在, 返回物理地址
|
||||
#[inline(always)]
|
||||
pub fn address(&self) -> Result<PhysAddr, PhysAddr> {
|
||||
let paddr = PhysAddr::new(self.data & Arch::PAGE_ADDRESS_MASK);
|
||||
|
||||
if self.present() {
|
||||
Ok(paddr)
|
||||
} else {
|
||||
Err(paddr)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn flags(&self) -> PageFlags<Arch> {
|
||||
unsafe { PageFlags::from_data(self.data & Arch::ENTRY_FLAGS_MASK) }
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn set_flags(&mut self, flags: PageFlags<Arch>) {
|
||||
self.data = (self.data & !Arch::ENTRY_FLAGS_MASK) | flags.data();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn present(&self) -> bool {
|
||||
return self.data & Arch::ENTRY_FLAG_PRESENT != 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表项的标志位
|
||||
#[derive(Copy, Clone, Hash)]
|
||||
pub struct PageFlags<Arch> {
|
||||
data: usize,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<Arch: MemoryManagementArch> PageFlags<Arch> {
|
||||
#[inline(always)]
|
||||
pub fn new() -> Self {
|
||||
let mut r = unsafe {
|
||||
Self::from_data(
|
||||
Arch::ENTRY_FLAG_DEFAULT_PAGE
|
||||
| Arch::ENTRY_FLAG_READONLY
|
||||
| Arch::ENTRY_FLAG_NO_EXEC,
|
||||
)
|
||||
};
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
{
|
||||
if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
|
||||
r = r.set_execute(true);
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/// 根据ProtFlags生成PageFlags
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - prot_flags: 页的保护标志
|
||||
/// - user: 用户空间是否可访问
|
||||
pub fn from_prot_flags(prot_flags: ProtFlags, user: bool) -> PageFlags<Arch> {
|
||||
let flags: PageFlags<Arch> = PageFlags::new()
|
||||
.set_user(user)
|
||||
.set_execute(prot_flags.contains(ProtFlags::PROT_EXEC))
|
||||
.set_write(prot_flags.contains(ProtFlags::PROT_WRITE));
|
||||
|
||||
return flags;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn data(&self) -> usize {
|
||||
self.data
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub const unsafe fn from_data(data: usize) -> Self {
|
||||
return Self {
|
||||
data: data,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
/// 为新页表的页表项设置默认值
|
||||
///
|
||||
/// 默认值为:
|
||||
/// - present
|
||||
/// - read only
|
||||
/// - kernel space
|
||||
/// - no exec
|
||||
#[inline(always)]
|
||||
pub fn new_page_table(user: bool) -> Self {
|
||||
return unsafe {
|
||||
let r = Self::from_data(Arch::ENTRY_FLAG_DEFAULT_TABLE | Arch::ENTRY_FLAG_READWRITE);
|
||||
if user {
|
||||
r.set_user(true)
|
||||
} else {
|
||||
r
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// 取得当前页表项的所有权,更新当前页表项的标志位,并返回更新后的页表项。
|
||||
///
|
||||
/// ## 参数
|
||||
/// - flag 要更新的标志位的值
|
||||
/// - value 如果为true,那么将flag对应的位设置为1,否则设置为0
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 更新后的页表项
|
||||
#[inline(always)]
|
||||
#[must_use]
|
||||
pub fn update_flags(mut self, flag: usize, value: bool) -> Self {
|
||||
if value {
|
||||
self.data |= flag;
|
||||
} else {
|
||||
self.data &= !flag;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
/// 判断当前页表项是否存在指定的flag(只有全部flag都存在才返回true)
|
||||
#[inline(always)]
|
||||
pub fn has_flag(&self, flag: usize) -> bool {
|
||||
return self.data & flag == flag;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn present(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_PRESENT);
|
||||
}
|
||||
|
||||
/// 设置当前页表项的权限
|
||||
///
|
||||
/// @param value 如果为true,那么将当前页表项的权限设置为用户态可访问
|
||||
#[must_use]
|
||||
#[inline(always)]
|
||||
pub fn set_user(self, value: bool) -> Self {
|
||||
return self.update_flags(Arch::ENTRY_FLAG_USER, value);
|
||||
}
|
||||
|
||||
/// 用户态是否可以访问当前页表项
|
||||
#[inline(always)]
|
||||
pub fn has_user(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_USER);
|
||||
}
|
||||
|
||||
/// 设置当前页表项的可写性, 如果为true,那么将当前页表项的权限设置为可写, 否则设置为只读
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 更新后的页表项.
|
||||
///
|
||||
/// **请注意,**本函数会取得当前页表项的所有权,因此返回的页表项不是原来的页表项
|
||||
#[must_use]
|
||||
#[inline(always)]
|
||||
pub fn set_write(self, value: bool) -> Self {
|
||||
// 有的架构同时具有可写和不可写的标志位,因此需要同时更新
|
||||
return self
|
||||
.update_flags(Arch::ENTRY_FLAG_READONLY, !value)
|
||||
.update_flags(Arch::ENTRY_FLAG_READWRITE, value);
|
||||
}
|
||||
|
||||
/// 当前页表项是否可写
|
||||
#[inline(always)]
|
||||
pub fn has_write(&self) -> bool {
|
||||
// 有的架构同时具有可写和不可写的标志位,因此需要同时判断
|
||||
return self.data & (Arch::ENTRY_FLAG_READWRITE | Arch::ENTRY_FLAG_READONLY)
|
||||
== Arch::ENTRY_FLAG_READWRITE;
|
||||
}
|
||||
|
||||
/// 设置当前页表项的可执行性, 如果为true,那么将当前页表项的权限设置为可执行, 否则设置为不可执行
|
||||
#[must_use]
|
||||
#[inline(always)]
|
||||
pub fn set_execute(self, mut value: bool) -> Self {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
{
|
||||
// 如果xd位被保留,那么将可执行性设置为true
|
||||
if crate::arch::mm::X86_64MMArch::is_xd_reserved() {
|
||||
value = true;
|
||||
}
|
||||
}
|
||||
|
||||
// 有的架构同时具有可执行和不可执行的标志位,因此需要同时更新
|
||||
return self
|
||||
.update_flags(Arch::ENTRY_FLAG_NO_EXEC, !value)
|
||||
.update_flags(Arch::ENTRY_FLAG_EXEC, value);
|
||||
}
|
||||
|
||||
/// 当前页表项是否可执行
|
||||
#[inline(always)]
|
||||
pub fn has_execute(&self) -> bool {
|
||||
// 有的架构同时具有可执行和不可执行的标志位,因此需要同时判断
|
||||
return self.data & (Arch::ENTRY_FLAG_EXEC | Arch::ENTRY_FLAG_NO_EXEC)
|
||||
== Arch::ENTRY_FLAG_EXEC;
|
||||
}
|
||||
|
||||
/// 设置当前页表项的缓存策略
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - value: 如果为true,那么将当前页表项的缓存策略设置为不缓存。
|
||||
#[inline(always)]
|
||||
pub fn set_page_cache_disable(self, value: bool) -> Self {
|
||||
return self.update_flags(Arch::ENTRY_FLAG_CACHE_DISABLE, value);
|
||||
}
|
||||
|
||||
/// 获取当前页表项的缓存策略
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果当前页表项的缓存策略为不缓存,那么返回true,否则返回false。
|
||||
#[inline(always)]
|
||||
pub fn has_page_cache_disable(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_CACHE_DISABLE);
|
||||
}
|
||||
|
||||
/// 设置当前页表项的写穿策略
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - value: 如果为true,那么将当前页表项的写穿策略设置为写穿。
|
||||
#[inline(always)]
|
||||
pub fn set_page_write_through(self, value: bool) -> Self {
|
||||
return self.update_flags(Arch::ENTRY_FLAG_WRITE_THROUGH, value);
|
||||
}
|
||||
|
||||
/// 获取当前页表项的写穿策略
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果当前页表项的写穿策略为写穿,那么返回true,否则返回false。
|
||||
#[inline(always)]
|
||||
pub fn has_page_write_through(&self) -> bool {
|
||||
return self.has_flag(Arch::ENTRY_FLAG_WRITE_THROUGH);
|
||||
}
|
||||
|
||||
/// MMIO内存的页表项标志
|
||||
#[inline(always)]
|
||||
pub fn mmio_flags() -> Self {
|
||||
return Self::new()
|
||||
.set_user(false)
|
||||
.set_write(true)
|
||||
.set_execute(true)
|
||||
.set_page_cache_disable(true)
|
||||
.set_page_write_through(true);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> fmt::Debug for PageFlags<Arch> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("PageFlags")
|
||||
.field("bits", &format_args!("{:#0x}", self.data))
|
||||
.field("present", &self.present())
|
||||
.field("has_write", &self.has_write())
|
||||
.field("has_execute", &self.has_execute())
|
||||
.field("has_user", &self.has_user())
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表映射器
|
||||
#[derive(Hash)]
|
||||
pub struct PageMapper<Arch, F> {
|
||||
/// 页表类型
|
||||
table_kind: PageTableKind,
|
||||
/// 根页表物理地址
|
||||
table_paddr: PhysAddr,
|
||||
/// 页分配器
|
||||
frame_allocator: F,
|
||||
phantom: PhantomData<fn() -> Arch>,
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch, F: FrameAllocator> PageMapper<Arch, F> {
|
||||
/// 创建新的页面映射器
|
||||
///
|
||||
/// ## 参数
|
||||
/// - table_kind 页表类型
|
||||
/// - table_paddr 根页表物理地址
|
||||
/// - allocator 页分配器
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 页面映射器
|
||||
pub unsafe fn new(table_kind: PageTableKind, table_paddr: PhysAddr, allocator: F) -> Self {
|
||||
return Self {
|
||||
table_kind,
|
||||
table_paddr,
|
||||
frame_allocator: allocator,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
/// 创建页表,并为这个页表创建页面映射器
|
||||
pub unsafe fn create(table_kind: PageTableKind, mut allocator: F) -> Option<Self> {
|
||||
let table_paddr = allocator.allocate_one()?;
|
||||
// 清空页表
|
||||
let table_vaddr = Arch::phys_2_virt(table_paddr)?;
|
||||
Arch::write_bytes(table_vaddr, 0, Arch::PAGE_SIZE);
|
||||
return Some(Self::new(table_kind, table_paddr, allocator));
|
||||
}
|
||||
|
||||
/// 获取当前页表的页面映射器
|
||||
#[inline(always)]
|
||||
pub unsafe fn current(table_kind: PageTableKind, allocator: F) -> Self {
|
||||
let table_paddr = Arch::table(table_kind);
|
||||
return Self::new(table_kind, table_paddr, allocator);
|
||||
}
|
||||
|
||||
/// 判断当前页表分配器所属的页表是否是当前页表
|
||||
#[inline(always)]
|
||||
pub fn is_current(&self) -> bool {
|
||||
return unsafe { self.table().phys() == Arch::table(self.table_kind) };
|
||||
}
|
||||
|
||||
/// 将当前页表分配器所属的页表设置为当前页表
|
||||
#[inline(always)]
|
||||
pub unsafe fn make_current(&self) {
|
||||
Arch::set_table(self.table_kind, self.table_paddr);
|
||||
}
|
||||
|
||||
/// 获取当前页表分配器所属的根页表的结构体
|
||||
#[inline(always)]
|
||||
pub fn table(&self) -> PageTable<Arch> {
|
||||
// 由于只能通过new方法创建PageMapper,因此这里假定table_paddr是有效的
|
||||
return unsafe {
|
||||
PageTable::new(VirtAddr::new(0), self.table_paddr, Arch::PAGE_LEVELS - 1)
|
||||
};
|
||||
}
|
||||
|
||||
/// 获取当前PageMapper所对应的页分配器实例的引用
|
||||
#[inline(always)]
|
||||
#[allow(dead_code)]
|
||||
pub fn allocator_ref(&self) -> &F {
|
||||
return &self.frame_allocator;
|
||||
}
|
||||
|
||||
/// 获取当前PageMapper所对应的页分配器实例的可变引用
|
||||
#[inline(always)]
|
||||
pub fn allocator_mut(&mut self) -> &mut F {
|
||||
return &mut self.frame_allocator;
|
||||
}
|
||||
|
||||
/// 从当前PageMapper的页分配器中分配一个物理页,并将其映射到指定的虚拟地址
|
||||
pub unsafe fn map(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<PageFlush<Arch>> {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
let phys: PhysAddr = self.frame_allocator.allocate_one()?;
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
return self.map_phys(virt, phys, flags);
|
||||
}
|
||||
|
||||
/// 映射一个物理页到指定的虚拟地址
|
||||
pub unsafe fn map_phys(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
phys: PhysAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<PageFlush<Arch>> {
|
||||
// 验证虚拟地址和物理地址是否对齐
|
||||
if !(virt.check_aligned(Arch::PAGE_SIZE) && phys.check_aligned(Arch::PAGE_SIZE)) {
|
||||
kerror!(
|
||||
"Try to map unaligned page: virt={:?}, phys={:?}",
|
||||
virt,
|
||||
phys
|
||||
);
|
||||
return None;
|
||||
}
|
||||
let virt = VirtAddr::new(virt.data() & (!Arch::PAGE_NEGATIVE_MASK));
|
||||
|
||||
// TODO: 验证flags是否合法
|
||||
|
||||
// 创建页表项
|
||||
let entry = PageEntry::new(phys.data() | flags.data());
|
||||
let mut table = self.table();
|
||||
loop {
|
||||
let i = table.index_of(virt)?;
|
||||
assert!(i < Arch::PAGE_ENTRY_NUM);
|
||||
if table.level() == 0 {
|
||||
// todo: 检查是否已经映射
|
||||
// 现在不检查的原因是,刚刚启动系统时,内核会映射一些页。
|
||||
if table.entry_mapped(i)? == true {
|
||||
kwarn!("Page {:?} already mapped", virt);
|
||||
}
|
||||
// kdebug!("Mapping {:?} to {:?}, i = {i}, entry={:?}, flags={:?}", virt, phys, entry, flags);
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
table.set_entry(i, entry);
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
return Some(PageFlush::new(virt));
|
||||
} else {
|
||||
let next_table = table.next_level_table(i);
|
||||
if let Some(next_table) = next_table {
|
||||
table = next_table;
|
||||
// kdebug!("Mapping {:?} to next level table...", virt);
|
||||
} else {
|
||||
// kdebug!("Allocating next level table for {:?}..., i={i}", virt);
|
||||
// 分配下一级页表
|
||||
let frame = self.frame_allocator.allocate_one()?;
|
||||
// 清空这个页帧
|
||||
MMArch::write_bytes(MMArch::phys_2_virt(frame).unwrap(), 0, MMArch::PAGE_SIZE);
|
||||
|
||||
// 设置页表项的flags
|
||||
// let flags = Arch::ENTRY_FLAG_READWRITE
|
||||
// | Arch::ENTRY_FLAG_DEFAULT_TABLE
|
||||
// | if virt.kind() == PageTableKind::User {
|
||||
// Arch::ENTRY_FLAG_USER
|
||||
// } else {
|
||||
// 0
|
||||
// };
|
||||
let flags: PageFlags<MMArch> =
|
||||
PageFlags::new_page_table(virt.kind() == PageTableKind::User);
|
||||
|
||||
// kdebug!("Flags: {:?}", flags);
|
||||
|
||||
// 把新分配的页表映射到当前页表
|
||||
table.set_entry(i, PageEntry::new(frame.data() | flags.data()));
|
||||
|
||||
// 获取新分配的页表
|
||||
table = table.next_level_table(i)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 将物理地址映射到具有线性偏移量的虚拟地址
|
||||
#[allow(dead_code)]
|
||||
pub unsafe fn map_linearly(
|
||||
&mut self,
|
||||
phys: PhysAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<(VirtAddr, PageFlush<Arch>)> {
|
||||
let virt: VirtAddr = Arch::phys_2_virt(phys)?;
|
||||
return self.map_phys(virt, phys, flags).map(|flush| (virt, flush));
|
||||
}
|
||||
|
||||
/// 修改虚拟地址的页表项的flags,并返回页表项刷新器
|
||||
///
|
||||
/// 请注意,需要在修改完flags后,调用刷新器的flush方法,才能使修改生效
|
||||
///
|
||||
/// ## 参数
|
||||
/// - virt 虚拟地址
|
||||
/// - flags 新的页表项的flags
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果修改成功,返回刷新器,否则返回None
|
||||
pub unsafe fn remap(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
flags: PageFlags<Arch>,
|
||||
) -> Option<PageFlush<Arch>> {
|
||||
return self
|
||||
.visit(virt, |p1, i| {
|
||||
let mut entry = p1.entry(i)?;
|
||||
entry.set_flags(flags);
|
||||
p1.set_entry(i, entry);
|
||||
Some(PageFlush::new(virt))
|
||||
})
|
||||
.flatten();
|
||||
}
|
||||
|
||||
/// 根据虚拟地址,查找页表,获取对应的物理地址和页表项的flags
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - virt 虚拟地址
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果查找成功,返回物理地址和页表项的flags,否则返回None
|
||||
pub fn translate(&self, virt: VirtAddr) -> Option<(PhysAddr, PageFlags<Arch>)> {
|
||||
let entry: PageEntry<Arch> = self.visit(virt, |p1, i| unsafe { p1.entry(i) })??;
|
||||
let paddr = entry.address().ok()?;
|
||||
let flags = entry.flags();
|
||||
return Some((paddr, flags));
|
||||
}
|
||||
|
||||
/// 取消虚拟地址的映射,释放页面,并返回页表项刷新器
|
||||
///
|
||||
/// 请注意,需要在取消映射后,调用刷新器的flush方法,才能使修改生效
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - virt 虚拟地址
|
||||
/// - unmap_parents 是否在父页表内,取消空闲子页表的映射
|
||||
///
|
||||
/// ## 返回值
|
||||
/// 如果取消成功,返回刷新器,否则返回None
|
||||
pub unsafe fn unmap(&mut self, virt: VirtAddr, unmap_parents: bool) -> Option<PageFlush<Arch>> {
|
||||
let (paddr, _, flusher) = self.unmap_phys(virt, unmap_parents)?;
|
||||
self.frame_allocator.free_one(paddr);
|
||||
return Some(flusher);
|
||||
}
|
||||
|
||||
/// 取消虚拟地址的映射,并返回物理地址和页表项的flags
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - vaddr 虚拟地址
|
||||
/// - unmap_parents 是否在父页表内,取消空闲子页表的映射
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果取消成功,返回物理地址和页表项的flags,否则返回None
|
||||
pub unsafe fn unmap_phys(
|
||||
&mut self,
|
||||
virt: VirtAddr,
|
||||
unmap_parents: bool,
|
||||
) -> Option<(PhysAddr, PageFlags<Arch>, PageFlush<Arch>)> {
|
||||
if !virt.check_aligned(Arch::PAGE_SIZE) {
|
||||
kerror!("Try to unmap unaligned page: virt={:?}", virt);
|
||||
return None;
|
||||
}
|
||||
|
||||
let mut table = self.table();
|
||||
return unmap_phys_inner(virt, &mut table, unmap_parents, self.allocator_mut())
|
||||
.map(|(paddr, flags)| (paddr, flags, PageFlush::<Arch>::new(virt)));
|
||||
}
|
||||
|
||||
/// 在页表中,访问虚拟地址对应的页表项,并调用传入的函数F
|
||||
fn visit<T>(
|
||||
&self,
|
||||
virt: VirtAddr,
|
||||
f: impl FnOnce(&mut PageTable<Arch>, usize) -> T,
|
||||
) -> Option<T> {
|
||||
let mut table = self.table();
|
||||
unsafe {
|
||||
loop {
|
||||
let i = table.index_of(virt)?;
|
||||
if table.level() == 0 {
|
||||
return Some(f(&mut table, i));
|
||||
} else {
|
||||
table = table.next_level_table(i)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 取消页面映射,返回被取消映射的页表项的:【物理地址】和【flags】
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - vaddr 虚拟地址
|
||||
/// - table 页表
|
||||
/// - unmap_parents 是否在父页表内,取消空闲子页表的映射
|
||||
/// - allocator 页面分配器(如果页表从这个分配器分配,那么在取消映射时,也需要归还到这个分配器内)
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 如果取消成功,返回被取消映射的页表项的:【物理地址】和【flags】,否则返回None
|
||||
unsafe fn unmap_phys_inner<Arch: MemoryManagementArch>(
|
||||
vaddr: VirtAddr,
|
||||
table: &mut PageTable<Arch>,
|
||||
unmap_parents: bool,
|
||||
allocator: &mut impl FrameAllocator,
|
||||
) -> Option<(PhysAddr, PageFlags<Arch>)> {
|
||||
// 获取页表项的索引
|
||||
let i = table.index_of(vaddr)?;
|
||||
|
||||
// 如果当前是最后一级页表,直接取消页面映射
|
||||
if table.level() == 0 {
|
||||
let entry = table.entry(i)?;
|
||||
table.set_entry(i, PageEntry::new(0));
|
||||
return Some((entry.address().ok()?, entry.flags()));
|
||||
}
|
||||
|
||||
let mut subtable = table.next_level_table(i)?;
|
||||
// 递归地取消映射
|
||||
let result = unmap_phys_inner(vaddr, &mut subtable, unmap_parents, allocator)?;
|
||||
|
||||
// TODO: This is a bad idea for architectures where the kernel mappings are done in the process tables,
|
||||
// as these mappings may become out of sync
|
||||
if unmap_parents {
|
||||
// 如果子页表已经没有映射的页面了,就取消子页表的映射
|
||||
|
||||
// 检查子页表中是否还有映射的页面
|
||||
let x = (0..Arch::PAGE_ENTRY_NUM)
|
||||
.map(|k| subtable.entry(k).expect("invalid page entry"))
|
||||
.any(|e| e.present());
|
||||
if !x {
|
||||
// 如果没有,就取消子页表的映射
|
||||
table.set_entry(i, PageEntry::new(0));
|
||||
// 释放子页表
|
||||
allocator.free_one(subtable.phys());
|
||||
}
|
||||
}
|
||||
|
||||
return Some(result);
|
||||
}
|
||||
|
||||
impl<Arch, F: Debug> Debug for PageMapper<Arch, F> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("PageMapper")
|
||||
.field("table_paddr", &self.table_paddr)
|
||||
.field("frame_allocator", &self.frame_allocator)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
/// 页表刷新器的trait
|
||||
pub trait Flusher<Arch> {
|
||||
/// 取消对指定的page flusher的刷新
|
||||
fn consume(&mut self, flush: PageFlush<Arch>);
|
||||
}
|
||||
|
||||
/// 用于刷新某个虚拟地址的刷新器。这个刷新器一经产生,就必须调用flush()方法,
|
||||
/// 否则会造成对页表的更改被忽略,这是不安全的
|
||||
#[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
|
||||
pub struct PageFlush<Arch> {
|
||||
virt: VirtAddr,
|
||||
phantom: PhantomData<Arch>,
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> PageFlush<Arch> {
|
||||
pub fn new(virt: VirtAddr) -> Self {
|
||||
return Self {
|
||||
virt,
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn flush(self) {
|
||||
unsafe { Arch::invalidate_page(self.virt) };
|
||||
}
|
||||
|
||||
/// 忽略掉这个刷新器
|
||||
pub unsafe fn ignore(self) {
|
||||
mem::forget(self);
|
||||
}
|
||||
}
|
||||
|
||||
/// 用于刷新整个页表的刷新器。这个刷新器一经产生,就必须调用flush()方法,
|
||||
/// 否则会造成对页表的更改被忽略,这是不安全的
|
||||
#[must_use = "The flusher must call the 'flush()', or the changes to page table will be unsafely ignored."]
|
||||
pub struct PageFlushAll<Arch: MemoryManagementArch> {
|
||||
phantom: PhantomData<fn() -> Arch>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<Arch: MemoryManagementArch> PageFlushAll<Arch> {
|
||||
pub fn new() -> Self {
|
||||
return Self {
|
||||
phantom: PhantomData,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn flush(self) {
|
||||
unsafe { Arch::invalidate_all() };
|
||||
}
|
||||
|
||||
/// 忽略掉这个刷新器
|
||||
pub unsafe fn ignore(self) {
|
||||
mem::forget(self);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> Flusher<Arch> for PageFlushAll<Arch> {
|
||||
/// 为page flush all 实现consume,消除对单个页面的刷新。(刷新整个页表了就不需要刷新单个页面了)
|
||||
fn consume(&mut self, flush: PageFlush<Arch>) {
|
||||
unsafe { flush.ignore() };
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch, T: Flusher<Arch> + ?Sized> Flusher<Arch> for &mut T {
|
||||
/// 允许一个flusher consume掉另一个flusher
|
||||
fn consume(&mut self, flush: PageFlush<Arch>) {
|
||||
<T as Flusher<Arch>>::consume(self, flush);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> Flusher<Arch> for () {
|
||||
fn consume(&mut self, _flush: PageFlush<Arch>) {}
|
||||
}
|
||||
|
||||
impl<Arch: MemoryManagementArch> Drop for PageFlushAll<Arch> {
|
||||
fn drop(&mut self) {
|
||||
unsafe {
|
||||
Arch::invalidate_all();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// 未在当前CPU上激活的页表的刷新器
|
||||
///
|
||||
/// 如果页表没有在当前cpu上激活,那么需要发送ipi到其他核心,尝试在其他核心上刷新页表
|
||||
///
|
||||
/// TODO: 这个方式很暴力,也许把它改成在指定的核心上刷新页表会更好。(可以测试一下开销)
|
||||
#[derive(Debug)]
|
||||
pub struct InactiveFlusher;
|
||||
|
||||
impl InactiveFlusher {
|
||||
pub fn new() -> Self {
|
||||
return Self {};
|
||||
}
|
||||
}
|
||||
|
||||
impl Flusher<MMArch> for InactiveFlusher {
|
||||
fn consume(&mut self, flush: PageFlush<MMArch>) {
|
||||
unsafe {
|
||||
flush.ignore();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for InactiveFlusher {
|
||||
fn drop(&mut self) {
|
||||
// 发送刷新页表的IPI
|
||||
send_ipi(IpiKind::FlushTLB, IpiTarget::Other);
|
||||
}
|
||||
}
|
||||
|
||||
/// # 把一个地址向下对齐到页大小
|
||||
pub fn round_down_to_page_size(addr: usize) -> usize {
|
||||
addr & !(MMArch::PAGE_SIZE - 1)
|
||||
}
|
||||
|
||||
/// # 把一个地址向上对齐到页大小
|
||||
pub fn round_up_to_page_size(addr: usize) -> usize {
|
||||
round_down_to_page_size(addr + MMArch::PAGE_SIZE - 1)
|
||||
}
|
@ -1,713 +0,0 @@
|
||||
#include "slab.h"
|
||||
#include <common/compiler.h>
|
||||
|
||||
struct slab kmalloc_cache_group[16] =
|
||||
{
|
||||
{32, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{64, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{128, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{256, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{512, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{1024, 0, 0, NULL, NULL, NULL, NULL}, // 1KB
|
||||
{2048, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{4096, 0, 0, NULL, NULL, NULL, NULL}, // 4KB
|
||||
{8192, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{16384, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{32768, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{65536, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{131072, 0, 0, NULL, NULL, NULL, NULL}, // 128KB
|
||||
{262144, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{524288, 0, 0, NULL, NULL, NULL, NULL},
|
||||
{1048576, 0, 0, NULL, NULL, NULL, NULL}, // 1MB
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 创建一个内存池
|
||||
*
|
||||
* @param size 内存池容量大小
|
||||
* @param constructor 构造函数
|
||||
* @param destructor 析构函数
|
||||
* @param arg 参数
|
||||
* @return struct slab* 构建好的内存池对象
|
||||
*/
|
||||
struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), void *(*destructor)(void *vaddr, ul arg), ul arg)
|
||||
{
|
||||
struct slab *slab_pool = (struct slab *)kmalloc(sizeof(struct slab), 0);
|
||||
|
||||
// BUG
|
||||
if (slab_pool == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab == NULL");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(slab_pool, 0, sizeof(struct slab));
|
||||
|
||||
slab_pool->size = SIZEOF_LONG_ALIGN(size);
|
||||
slab_pool->count_total_using = 0;
|
||||
slab_pool->count_total_free = 0;
|
||||
// 直接分配cache_pool_entry结构体,避免每次访问都要检测是否为NULL,提升效率
|
||||
slab_pool->cache_pool_entry = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
|
||||
|
||||
// BUG
|
||||
if (slab_pool->cache_pool_entry == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
|
||||
kfree(slab_pool);
|
||||
return NULL;
|
||||
}
|
||||
memset(slab_pool->cache_pool_entry, 0, sizeof(struct slab_obj));
|
||||
|
||||
// dma内存池设置为空
|
||||
slab_pool->cache_dma_pool_entry = NULL;
|
||||
|
||||
// 设置构造及析构函数
|
||||
slab_pool->constructor = constructor;
|
||||
slab_pool->destructor = destructor;
|
||||
|
||||
list_init(&slab_pool->cache_pool_entry->list);
|
||||
|
||||
// 分配属于内存池的内存页
|
||||
slab_pool->cache_pool_entry->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
|
||||
|
||||
// BUG
|
||||
if (slab_pool->cache_pool_entry->page == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
|
||||
kfree(slab_pool->cache_pool_entry);
|
||||
kfree(slab_pool);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// page_init(slab_pool->cache_pool_entry->page, PAGE_KERNEL);
|
||||
|
||||
slab_pool->cache_pool_entry->count_using = 0;
|
||||
slab_pool->cache_pool_entry->count_free = PAGE_2M_SIZE / slab_pool->size;
|
||||
|
||||
slab_pool->count_total_free = slab_pool->cache_pool_entry->count_free;
|
||||
|
||||
slab_pool->cache_pool_entry->vaddr = phys_2_virt(slab_pool->cache_pool_entry->page->addr_phys);
|
||||
|
||||
// bitmap有多少有效位
|
||||
slab_pool->cache_pool_entry->bmp_count = slab_pool->cache_pool_entry->count_free;
|
||||
|
||||
// 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
|
||||
slab_pool->cache_pool_entry->bmp_len = ((slab_pool->cache_pool_entry->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
// 初始化位图
|
||||
slab_pool->cache_pool_entry->bmp = (ul *)kmalloc(slab_pool->cache_pool_entry->bmp_len, 0);
|
||||
|
||||
// BUG
|
||||
if (slab_pool->cache_pool_entry->bmp == NULL)
|
||||
{
|
||||
kBUG("slab_create()->kmalloc()->slab->cache_pool_entry == NULL");
|
||||
free_pages(slab_pool->cache_pool_entry->page, 1);
|
||||
kfree(slab_pool->cache_pool_entry);
|
||||
kfree(slab_pool);
|
||||
return NULL;
|
||||
}
|
||||
// 将位图清空
|
||||
memset(slab_pool->cache_pool_entry->bmp, 0, slab_pool->cache_pool_entry->bmp_len);
|
||||
|
||||
return slab_pool;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 销毁内存池
|
||||
* 只有当slab是空的时候才能销毁
|
||||
* @param slab_pool 要销毁的内存池
|
||||
* @return ul
|
||||
*
|
||||
*/
|
||||
ul slab_destroy(struct slab *slab_pool)
|
||||
{
|
||||
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
|
||||
if (slab_pool->count_total_using)
|
||||
{
|
||||
kBUG("slab_cache->count_total_using != 0");
|
||||
return ESLAB_NOTNULL;
|
||||
}
|
||||
|
||||
struct slab_obj *tmp_slab_obj = NULL;
|
||||
while (!list_empty(&slab_obj_ptr->list))
|
||||
{
|
||||
tmp_slab_obj = slab_obj_ptr;
|
||||
// 获取下一个slab_obj的起始地址
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
|
||||
list_del(&tmp_slab_obj->list);
|
||||
|
||||
kfree(tmp_slab_obj->bmp);
|
||||
|
||||
page_clean(tmp_slab_obj->page);
|
||||
|
||||
free_pages(tmp_slab_obj->page, 1);
|
||||
|
||||
kfree(tmp_slab_obj);
|
||||
}
|
||||
|
||||
kfree(slab_obj_ptr->bmp);
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
kfree(slab_obj_ptr);
|
||||
kfree(slab_pool);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 分配SLAB内存池中的内存对象
|
||||
*
|
||||
* @param slab_pool slab内存池
|
||||
* @param arg 传递给内存对象构造函数的参数
|
||||
* @return void* 内存空间的虚拟地址
|
||||
*/
|
||||
void *slab_malloc(struct slab *slab_pool, ul arg)
|
||||
{
|
||||
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
|
||||
struct slab_obj *tmp_slab_obj = NULL;
|
||||
|
||||
// slab内存池中已经没有空闲的内存对象,进行扩容
|
||||
if (slab_pool->count_total_free == 0)
|
||||
{
|
||||
tmp_slab_obj = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
|
||||
|
||||
// BUG
|
||||
if (tmp_slab_obj == NULL)
|
||||
{
|
||||
kBUG("slab_malloc()->kmalloc()->slab->tmp_slab_obj == NULL");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(tmp_slab_obj, 0, sizeof(struct slab_obj));
|
||||
list_init(&tmp_slab_obj->list);
|
||||
|
||||
tmp_slab_obj->page = alloc_pages(ZONE_NORMAL, 1, PAGE_KERNEL);
|
||||
|
||||
// BUG
|
||||
if (tmp_slab_obj->page == NULL)
|
||||
{
|
||||
kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->page == NULL");
|
||||
kfree(tmp_slab_obj);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
tmp_slab_obj->count_using = 0;
|
||||
tmp_slab_obj->count_free = PAGE_2M_SIZE / slab_pool->size;
|
||||
tmp_slab_obj->vaddr = phys_2_virt(tmp_slab_obj->page->addr_phys);
|
||||
tmp_slab_obj->bmp_count = tmp_slab_obj->count_free;
|
||||
// 计算位图所占的空间 占用多少byte(按unsigned long大小的上边缘对齐)
|
||||
tmp_slab_obj->bmp_len = ((tmp_slab_obj->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
tmp_slab_obj->bmp = (ul *)kmalloc(tmp_slab_obj->bmp_len, 0);
|
||||
|
||||
// BUG
|
||||
if (tmp_slab_obj->bmp == NULL)
|
||||
{
|
||||
kBUG("slab_malloc()->kmalloc()=>tmp_slab_obj->bmp == NULL");
|
||||
free_pages(tmp_slab_obj->page, 1);
|
||||
kfree(tmp_slab_obj);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(tmp_slab_obj->bmp, 0, tmp_slab_obj->bmp_len);
|
||||
|
||||
list_add(&slab_pool->cache_pool_entry->list, &tmp_slab_obj->list);
|
||||
|
||||
slab_pool->count_total_free += tmp_slab_obj->count_free;
|
||||
|
||||
slab_obj_ptr = tmp_slab_obj;
|
||||
}
|
||||
|
||||
// 扩容完毕或无需扩容,开始分配内存对象
|
||||
int tmp_md;
|
||||
do
|
||||
{
|
||||
if (slab_obj_ptr->count_free == 0)
|
||||
{
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
{
|
||||
// 当前bmp对应的内存对象都已经被分配
|
||||
if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
|
||||
{
|
||||
i += 63;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 第i个内存对象是空闲的
|
||||
tmp_md = i % 64;
|
||||
if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << tmp_md)) == 0)
|
||||
{
|
||||
// 置位bmp
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << tmp_md);
|
||||
|
||||
// 更新当前slab对象的计数器
|
||||
++(slab_obj_ptr->count_using);
|
||||
--(slab_obj_ptr->count_free);
|
||||
// 更新slab内存池的计数器
|
||||
++(slab_pool->count_total_using);
|
||||
--(slab_pool->count_total_free);
|
||||
|
||||
if (slab_pool->constructor != NULL)
|
||||
{
|
||||
// 返回内存对象指针(要求构造函数返回内存对象指针)
|
||||
return slab_pool->constructor((char *)slab_obj_ptr->vaddr + slab_pool->size * i, arg);
|
||||
}
|
||||
// 返回内存对象指针
|
||||
else
|
||||
return (void *)((char *)slab_obj_ptr->vaddr + slab_pool->size * i);
|
||||
}
|
||||
}
|
||||
|
||||
} while (slab_obj_ptr != slab_pool->cache_pool_entry);
|
||||
|
||||
// should not be here
|
||||
|
||||
kBUG("slab_malloc() ERROR: can't malloc");
|
||||
|
||||
// 释放内存
|
||||
if (tmp_slab_obj != NULL)
|
||||
{
|
||||
list_del(&tmp_slab_obj->list);
|
||||
kfree(tmp_slab_obj->bmp);
|
||||
page_clean(tmp_slab_obj->page);
|
||||
free_pages(tmp_slab_obj->page, 1);
|
||||
kfree(tmp_slab_obj);
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 回收slab内存池中的对象
|
||||
*
|
||||
* @param slab_pool 对应的内存池
|
||||
* @param addr 内存对象的虚拟地址
|
||||
* @param arg 传递给虚构函数的参数
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_free(struct slab *slab_pool, void *addr, ul arg)
|
||||
{
|
||||
struct slab_obj *slab_obj_ptr = slab_pool->cache_pool_entry;
|
||||
|
||||
do
|
||||
{
|
||||
// 虚拟地址不在当前内存池对象的管理范围内
|
||||
if (!(slab_obj_ptr->vaddr <= addr && addr <= (slab_obj_ptr->vaddr + PAGE_2M_SIZE)))
|
||||
{
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
// 计算出给定内存对象是第几个
|
||||
int index = (addr - slab_obj_ptr->vaddr) / slab_pool->size;
|
||||
|
||||
// 复位位图中对应的位
|
||||
*(slab_obj_ptr->bmp + (index >> 6)) ^= (1UL << index % 64);
|
||||
|
||||
++(slab_obj_ptr->count_free);
|
||||
--(slab_obj_ptr->count_using);
|
||||
|
||||
++(slab_pool->count_total_free);
|
||||
--(slab_pool->count_total_using);
|
||||
|
||||
// 有对应的析构函数,调用析构函数
|
||||
if (slab_pool->destructor != NULL)
|
||||
slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
|
||||
|
||||
// 当前内存对象池的正在使用的内存对象为0,且内存池的空闲对象大于当前对象池的2倍,则销毁当前对象池,以减轻系统内存压力
|
||||
if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free) && (slab_obj_ptr != slab_pool->cache_pool_entry))
|
||||
{
|
||||
|
||||
list_del(&slab_obj_ptr->list);
|
||||
slab_pool->count_total_free -= slab_obj_ptr->count_free;
|
||||
|
||||
kfree(slab_obj_ptr->bmp);
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
|
||||
kfree(slab_obj_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
} while (slab_obj_ptr != slab_pool->cache_pool_entry);
|
||||
|
||||
kwarn("slab_free(): address not in current slab");
|
||||
return ENOT_IN_SLAB;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 初始化内存池组
|
||||
* 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_init()
|
||||
{
|
||||
kinfo("Initializing SLAB...");
|
||||
// 将slab的内存池空间放置在mms的后方
|
||||
ul tmp_addr = memory_management_struct.end_of_struct;
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
io_mfence();
|
||||
spin_init(&kmalloc_cache_group[i].lock);
|
||||
// 将slab内存池对象的空间放置在mms的后面,并且预留4个unsigned long 的空间以防止内存越界
|
||||
kmalloc_cache_group[i].cache_pool_entry = (struct slab_obj *)memory_management_struct.end_of_struct;
|
||||
|
||||
memory_management_struct.end_of_struct += sizeof(struct slab_obj) + (sizeof(ul) << 2);
|
||||
|
||||
list_init(&kmalloc_cache_group[i].cache_pool_entry->list);
|
||||
|
||||
// 初始化内存池对象
|
||||
kmalloc_cache_group[i].cache_pool_entry->count_using = 0;
|
||||
kmalloc_cache_group[i].cache_pool_entry->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
|
||||
kmalloc_cache_group[i].cache_pool_entry->bmp_len = (((kmalloc_cache_group[i].cache_pool_entry->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
|
||||
kmalloc_cache_group[i].cache_pool_entry->bmp_count = kmalloc_cache_group[i].cache_pool_entry->count_free;
|
||||
|
||||
// 在slab对象后方放置bmp
|
||||
kmalloc_cache_group[i].cache_pool_entry->bmp = (ul *)memory_management_struct.end_of_struct;
|
||||
|
||||
// bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
|
||||
memory_management_struct.end_of_struct = (ul)(memory_management_struct.end_of_struct + kmalloc_cache_group[i].cache_pool_entry->bmp_len + (sizeof(ul) << 2)) & (~(sizeof(ul) - 1));
|
||||
io_mfence();
|
||||
// @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
|
||||
memset(kmalloc_cache_group[i].cache_pool_entry->bmp, 0xff, kmalloc_cache_group[i].cache_pool_entry->bmp_len);
|
||||
for (int j = 0; j < kmalloc_cache_group[i].cache_pool_entry->bmp_count; ++j)
|
||||
*(kmalloc_cache_group[i].cache_pool_entry->bmp + (j >> 6)) ^= 1UL << (j % 64);
|
||||
|
||||
kmalloc_cache_group[i].count_total_using = 0;
|
||||
kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool_entry->count_free;
|
||||
io_mfence();
|
||||
}
|
||||
|
||||
struct Page *page = NULL;
|
||||
|
||||
// 将上面初始化内存池组时,所占用的内存页进行初始化
|
||||
ul tmp_page_mms_end = virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT;
|
||||
|
||||
ul page_num = 0;
|
||||
for (int i = PAGE_2M_ALIGN(virt_2_phys(tmp_addr)) >> PAGE_2M_SHIFT; i <= tmp_page_mms_end; ++i)
|
||||
{
|
||||
|
||||
page = memory_management_struct.pages_struct + i;
|
||||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||||
++page->zone->count_pages_using;
|
||||
io_mfence();
|
||||
--page->zone->count_pages_free;
|
||||
page_init(page, PAGE_KERNEL_INIT | PAGE_KERNEL | PAGE_PGT_MAPPED);
|
||||
}
|
||||
io_mfence();
|
||||
|
||||
// 为slab内存池对象分配内存空间
|
||||
ul *virt = NULL;
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
// 获取一个新的空页并添加到空页表,然后返回其虚拟地址
|
||||
virt = (ul *)((memory_management_struct.end_of_struct + PAGE_2M_SIZE * i + PAGE_2M_SIZE - 1) & PAGE_2M_MASK);
|
||||
|
||||
page = Virt_To_2M_Page(virt);
|
||||
|
||||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||||
|
||||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||||
|
||||
++page->zone->count_pages_using;
|
||||
io_mfence(); // 该位置必须加一个mfence,否则O3优化运行时会报错
|
||||
--page->zone->count_pages_free;
|
||||
page_init(page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
|
||||
|
||||
kmalloc_cache_group[i].cache_pool_entry->page = page;
|
||||
|
||||
kmalloc_cache_group[i].cache_pool_entry->vaddr = virt;
|
||||
}
|
||||
|
||||
kinfo("SLAB initialized successfully!");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 在kmalloc中创建slab_obj的函数(与slab_malloc()中的类似)
|
||||
*
|
||||
* @param size
|
||||
* @return struct slab_obj* 创建好的slab_obj
|
||||
*/
|
||||
|
||||
struct slab_obj *kmalloc_create_slab_obj(ul size)
|
||||
{
|
||||
struct Page *page = alloc_pages(ZONE_NORMAL, 1, 0);
|
||||
|
||||
// BUG
|
||||
if (page == NULL)
|
||||
{
|
||||
kBUG("kmalloc_create()->alloc_pages()=>page == NULL");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
page_init(page, PAGE_KERNEL);
|
||||
|
||||
ul *vaddr = NULL;
|
||||
ul struct_size = 0;
|
||||
struct slab_obj *slab_obj_ptr;
|
||||
|
||||
// 根据size大小,选择不同的分支来处理
|
||||
// 之所以选择512byte为分界点,是因为,此时bmp大小刚好为512byte。显而易见,选择过小的话会导致kmalloc函数与当前函数反复互相调用,最终导致栈溢出
|
||||
switch (size)
|
||||
{
|
||||
// ============ 对于size<=512byte的内存池对象,将slab_obj结构体和bmp放置在物理页的内部 ========
|
||||
// 由于这些对象的特征是,bmp占的空间大,而内存块的空间小,这样做的目的是避免再去申请一块内存来存储bmp,减少浪费。
|
||||
case 32:
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
case 512:
|
||||
vaddr = phys_2_virt(page->addr_phys);
|
||||
// slab_obj结构体的大小 (本身的大小+bmp的大小)
|
||||
struct_size = sizeof(struct slab_obj) + PAGE_2M_SIZE / size / 8;
|
||||
// 将slab_obj放置到物理页的末尾
|
||||
slab_obj_ptr = (struct slab_obj *)((unsigned char *)vaddr + PAGE_2M_SIZE - struct_size);
|
||||
slab_obj_ptr->bmp = (void *)slab_obj_ptr + sizeof(struct slab_obj);
|
||||
|
||||
slab_obj_ptr->count_free = (PAGE_2M_SIZE - struct_size) / size;
|
||||
slab_obj_ptr->count_using = 0;
|
||||
slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
|
||||
slab_obj_ptr->vaddr = vaddr;
|
||||
slab_obj_ptr->page = page;
|
||||
|
||||
list_init(&slab_obj_ptr->list);
|
||||
|
||||
slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
|
||||
// @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
|
||||
memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
|
||||
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
|
||||
|
||||
break;
|
||||
// ================= 较大的size时,slab_obj和bmp不再放置于当前物理页内部 ============
|
||||
// 因为在这种情况下,bmp很短,继续放置在当前物理页内部则会造成可分配的对象少,加剧了内存空间的浪费
|
||||
case 1024: // 1KB
|
||||
case 2048:
|
||||
case 4096: // 4KB
|
||||
case 8192:
|
||||
case 16384:
|
||||
case 32768:
|
||||
case 65536:
|
||||
case 131072: // 128KB
|
||||
case 262144:
|
||||
case 524288:
|
||||
case 1048576: // 1MB
|
||||
slab_obj_ptr = (struct slab_obj *)kmalloc(sizeof(struct slab_obj), 0);
|
||||
|
||||
slab_obj_ptr->count_free = PAGE_2M_SIZE / size;
|
||||
slab_obj_ptr->count_using = 0;
|
||||
slab_obj_ptr->bmp_count = slab_obj_ptr->count_free;
|
||||
|
||||
slab_obj_ptr->bmp_len = ((slab_obj_ptr->bmp_count + sizeof(ul) * 8 - 1) >> 6) << 3;
|
||||
|
||||
slab_obj_ptr->bmp = (ul *)kmalloc(slab_obj_ptr->bmp_len, 0);
|
||||
|
||||
// @todo:此处可优化,直接把所有位设置为0,然后再对部分不存在对应的内存对象的位设置为1
|
||||
memset(slab_obj_ptr->bmp, 0xff, slab_obj_ptr->bmp_len);
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) ^= 1UL << (i % 64);
|
||||
|
||||
slab_obj_ptr->vaddr = phys_2_virt(page->addr_phys);
|
||||
slab_obj_ptr->page = page;
|
||||
list_init(&slab_obj_ptr->list);
|
||||
break;
|
||||
// size 错误
|
||||
default:
|
||||
kerror("kamlloc_create(): Wrong size%d", size);
|
||||
free_pages(page, 1);
|
||||
return NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
return slab_obj_ptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 通用内存分配函数
|
||||
*
|
||||
* @param size 要分配的内存大小
|
||||
* @param gfp 内存的flag
|
||||
* @return void* 内核内存虚拟地址
|
||||
*/
|
||||
void *kmalloc(unsigned long size, gfp_t gfp)
|
||||
{
|
||||
void *result = NULL;
|
||||
if (size > 1048576)
|
||||
{
|
||||
kwarn("kmalloc(): Can't alloc such memory: %ld bytes, because it is too large.", size);
|
||||
return NULL;
|
||||
}
|
||||
int index;
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
if (kmalloc_cache_group[i].size >= size)
|
||||
{
|
||||
index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 对当前内存池加锁
|
||||
spin_lock(&kmalloc_cache_group[index].lock);
|
||||
|
||||
struct slab_obj *slab_obj_ptr = kmalloc_cache_group[index].cache_pool_entry;
|
||||
|
||||
// 内存池没有可用的内存对象,需要进行扩容
|
||||
if (unlikely(kmalloc_cache_group[index].count_total_free == 0))
|
||||
{
|
||||
// 创建slab_obj
|
||||
slab_obj_ptr = kmalloc_create_slab_obj(kmalloc_cache_group[index].size);
|
||||
|
||||
// BUG
|
||||
if (unlikely(slab_obj_ptr == NULL))
|
||||
{
|
||||
kBUG("kmalloc()->kmalloc_create_slab_obj()=>slab == NULL");
|
||||
goto failed;
|
||||
}
|
||||
|
||||
kmalloc_cache_group[index].count_total_free += slab_obj_ptr->count_free;
|
||||
list_add(&kmalloc_cache_group[index].cache_pool_entry->list, &slab_obj_ptr->list);
|
||||
}
|
||||
else // 内存对象充足
|
||||
{
|
||||
do
|
||||
{
|
||||
// 跳转到下一个内存池对象
|
||||
if (slab_obj_ptr->count_free == 0)
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
else
|
||||
break;
|
||||
} while (slab_obj_ptr != kmalloc_cache_group[index].cache_pool_entry);
|
||||
}
|
||||
// 寻找一块可用的内存对象
|
||||
int md;
|
||||
for (int i = 0; i < slab_obj_ptr->bmp_count; ++i)
|
||||
{
|
||||
|
||||
// 当前bmp全部被使用
|
||||
if (*(slab_obj_ptr->bmp + (i >> 6)) == 0xffffffffffffffffUL)
|
||||
{
|
||||
i += 63;
|
||||
continue;
|
||||
}
|
||||
md = i % 64;
|
||||
// 找到相应的内存对象
|
||||
if ((*(slab_obj_ptr->bmp + (i >> 6)) & (1UL << md)) == 0)
|
||||
{
|
||||
*(slab_obj_ptr->bmp + (i >> 6)) |= (1UL << md);
|
||||
++(slab_obj_ptr->count_using);
|
||||
--(slab_obj_ptr->count_free);
|
||||
|
||||
--kmalloc_cache_group[index].count_total_free;
|
||||
++kmalloc_cache_group[index].count_total_using;
|
||||
// 放锁
|
||||
spin_unlock(&kmalloc_cache_group[index].lock);
|
||||
// 返回内存对象
|
||||
result = (void *)((char *)slab_obj_ptr->vaddr + kmalloc_cache_group[index].size * i);
|
||||
goto done;
|
||||
}
|
||||
}
|
||||
goto failed;
|
||||
done:;
|
||||
if (gfp & __GFP_ZERO)
|
||||
memset(result, 0, size);
|
||||
return result;
|
||||
failed:;
|
||||
spin_unlock(&kmalloc_cache_group[index].lock);
|
||||
kerror("kmalloc(): Cannot alloc more memory: %d bytes", size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 通用内存释放函数
|
||||
*
|
||||
* @param address 要释放的内存线性地址
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long kfree(void *address)
|
||||
{
|
||||
if (unlikely(address == NULL))
|
||||
return 0;
|
||||
struct slab_obj *slab_obj_ptr = NULL;
|
||||
|
||||
// 将线性地址按照2M物理页对齐, 获得所在物理页的起始线性地址
|
||||
void *page_base_addr = (void *)((ul)address & PAGE_2M_MASK);
|
||||
|
||||
int index;
|
||||
|
||||
for (int i = 0; i < 16; ++i)
|
||||
{
|
||||
slab_obj_ptr = kmalloc_cache_group[i].cache_pool_entry;
|
||||
|
||||
do
|
||||
{
|
||||
// 不属于当前slab_obj的管理范围
|
||||
if (likely(slab_obj_ptr->vaddr != page_base_addr))
|
||||
{
|
||||
slab_obj_ptr = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
|
||||
}
|
||||
else
|
||||
{
|
||||
// 对当前内存池加锁
|
||||
spin_lock(&kmalloc_cache_group[i].lock);
|
||||
// 计算地址属于哪一个内存对象
|
||||
index = (address - slab_obj_ptr->vaddr) / kmalloc_cache_group[i].size;
|
||||
|
||||
// 复位bmp
|
||||
*(slab_obj_ptr->bmp + (index >> 6)) ^= 1UL << (index % 64);
|
||||
|
||||
++(slab_obj_ptr->count_free);
|
||||
--(slab_obj_ptr->count_using);
|
||||
++kmalloc_cache_group[i].count_total_free;
|
||||
--kmalloc_cache_group[i].count_total_using;
|
||||
|
||||
// 回收空闲的slab_obj
|
||||
// 条件:当前slab_obj_ptr的使用为0、总空闲内存对象>=当前slab_obj的总对象的2倍 且当前slab_pool不为起始slab_obj
|
||||
if ((slab_obj_ptr->count_using == 0) && (kmalloc_cache_group[i].count_total_free >= ((slab_obj_ptr->bmp_count) << 1)) && (kmalloc_cache_group[i].cache_pool_entry != slab_obj_ptr))
|
||||
{
|
||||
switch (kmalloc_cache_group[i].size)
|
||||
{
|
||||
case 32:
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
case 512:
|
||||
// 在这种情况下,slab_obj是被安放在page内部的
|
||||
list_del(&slab_obj_ptr->list);
|
||||
|
||||
kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
break;
|
||||
|
||||
default:
|
||||
// 在这种情况下,slab_obj是被安放在额外获取的内存对象中的
|
||||
list_del(&slab_obj_ptr->list);
|
||||
kmalloc_cache_group[i].count_total_free -= slab_obj_ptr->bmp_count;
|
||||
|
||||
kfree(slab_obj_ptr->bmp);
|
||||
|
||||
page_clean(slab_obj_ptr->page);
|
||||
free_pages(slab_obj_ptr->page, 1);
|
||||
|
||||
kfree(slab_obj_ptr);
|
||||
break;
|
||||
}
|
||||
}
|
||||
// 放锁
|
||||
spin_unlock(&kmalloc_cache_group[i].lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
} while (slab_obj_ptr != kmalloc_cache_group[i].cache_pool_entry);
|
||||
}
|
||||
kBUG("kfree(): Can't free memory. address=%#018lx", address);
|
||||
return ECANNOT_FREE_MEM;
|
||||
}
|
@ -1,54 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "mm.h"
|
||||
#include <common/glib.h>
|
||||
#include <common/printk.h>
|
||||
#include <common/kprint.h>
|
||||
#include <common/spinlock.h>
|
||||
|
||||
#define SIZEOF_LONG_ALIGN(size) ((size + sizeof(long) - 1) & ~(sizeof(long) - 1))
|
||||
#define SIZEOF_INT_ALIGN(size) ((size + sizeof(int) - 1) & ~(sizeof(int) - 1))
|
||||
|
||||
// SLAB存储池count_using不为空
|
||||
#define ESLAB_NOTNULL 101
|
||||
#define ENOT_IN_SLAB 102 // 地址不在当前slab内存池中
|
||||
#define ECANNOT_FREE_MEM 103 // 无法释放内存
|
||||
|
||||
struct slab_obj
|
||||
{
|
||||
struct List list;
|
||||
// 当前slab对象所使用的内存页
|
||||
struct Page *page;
|
||||
|
||||
ul count_using;
|
||||
ul count_free;
|
||||
|
||||
// 当前页面所在的线性地址
|
||||
void *vaddr;
|
||||
|
||||
// 位图
|
||||
ul bmp_len; // 位图的长度(字节)
|
||||
ul bmp_count; // 位图的有效位数
|
||||
ul *bmp;
|
||||
};
|
||||
|
||||
// slab内存池
|
||||
struct slab
|
||||
{
|
||||
ul size; // 单位:byte
|
||||
ul count_total_using;
|
||||
ul count_total_free;
|
||||
// 内存池对象
|
||||
struct slab_obj *cache_pool_entry;
|
||||
// dma内存池对象
|
||||
struct slab_obj *cache_dma_pool_entry;
|
||||
|
||||
spinlock_t lock; // 当前内存池的操作锁
|
||||
|
||||
// 内存池的构造函数和析构函数
|
||||
void *(*constructor)(void *vaddr, ul arg);
|
||||
void *(*destructor)(void *vaddr, ul arg);
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief 通用内存分配函数
|
||||
@ -57,19 +9,16 @@ struct slab
|
||||
* @param gfp 内存的flag
|
||||
* @return void* 分配得到的内存的指针
|
||||
*/
|
||||
void *kmalloc(unsigned long size, gfp_t gfp);
|
||||
extern void *kmalloc(unsigned long size, gfp_t gfp);
|
||||
|
||||
/**
|
||||
* @brief 从kmalloc申请一块内存,并将这块内存清空
|
||||
*
|
||||
*
|
||||
* @param size 要分配的内存大小
|
||||
* @param gfp 内存的flag
|
||||
* @return void* 分配得到的内存的指针
|
||||
*/
|
||||
static __always_inline void *kzalloc(size_t size, gfp_t gfp)
|
||||
{
|
||||
return kmalloc(size, gfp | __GFP_ZERO);
|
||||
}
|
||||
extern void *kzalloc(size_t size, gfp_t gfp);
|
||||
|
||||
/**
|
||||
* @brief 通用内存释放函数
|
||||
@ -77,58 +26,4 @@ static __always_inline void *kzalloc(size_t size, gfp_t gfp)
|
||||
* @param address 要释放的内存地址
|
||||
* @return unsigned long
|
||||
*/
|
||||
unsigned long kfree(void *address);
|
||||
|
||||
/**
|
||||
* @brief 创建一个内存池
|
||||
*
|
||||
* @param size 内存池容量大小
|
||||
* @param constructor 构造函数
|
||||
* @param destructor 析构函数
|
||||
* @param arg 参数
|
||||
* @return struct slab* 构建好的内存池对象
|
||||
*/
|
||||
struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), void *(*destructor)(void *vaddr, ul arg), ul arg);
|
||||
|
||||
/**
|
||||
* @brief 销毁内存池对象
|
||||
* 只有当slab对象是空的时候才能销毁
|
||||
* @param slab_pool 要销毁的内存池对象
|
||||
* @return ul
|
||||
*
|
||||
*/
|
||||
ul slab_destroy(struct slab *slab_pool);
|
||||
|
||||
/**
|
||||
* @brief 分配SLAB内存池中的内存对象
|
||||
*
|
||||
* @param slab_pool slab内存池
|
||||
* @param arg 传递给内存对象构造函数的参数
|
||||
* @return void* 内存空间的虚拟地址
|
||||
*/
|
||||
void *slab_malloc(struct slab *slab_pool, ul arg);
|
||||
|
||||
/**
|
||||
* @brief 回收slab内存池中的对象
|
||||
*
|
||||
* @param slab_pool 对应的内存池
|
||||
* @param addr 内存对象的虚拟地址
|
||||
* @param arg 传递给虚构函数的参数
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_free(struct slab *slab_pool, void *addr, ul arg);
|
||||
|
||||
/**
|
||||
* @brief 在kmalloc中创建slab_obj的函数(与slab_malloc()类似)
|
||||
*
|
||||
* @param size
|
||||
* @return struct slab_obj* 创建好的slab_obj
|
||||
*/
|
||||
struct slab_obj *kmalloc_create_slab_obj(ul size);
|
||||
|
||||
/**
|
||||
* @brief 初始化内存池组
|
||||
* 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
|
||||
* @return ul
|
||||
*/
|
||||
ul slab_init();
|
||||
extern unsigned long kfree(void *address);
|
||||
|
@ -1,43 +1,219 @@
|
||||
use core::intrinsics::unlikely;
|
||||
|
||||
use alloc::sync::Arc;
|
||||
|
||||
use crate::{
|
||||
include::bindings::bindings::mm_stat_t,
|
||||
arch::MMArch,
|
||||
kerror,
|
||||
libs::align::{check_aligned, page_align_up},
|
||||
mm::MemoryManagementArch,
|
||||
syscall::{Syscall, SystemError},
|
||||
};
|
||||
|
||||
extern "C" {
|
||||
fn sys_do_brk(new_addr: usize) -> usize;
|
||||
fn sys_do_sbrk(incr: isize) -> usize;
|
||||
fn sys_do_mstat(dst: *mut mm_stat_t, from_user: bool) -> usize;
|
||||
use super::{
|
||||
allocator::page_frame::{PageFrameCount, VirtPageFrame},
|
||||
ucontext::{AddressSpace, DEFAULT_MMAP_MIN_ADDR},
|
||||
verify_area, VirtAddr,
|
||||
};
|
||||
|
||||
bitflags! {
|
||||
/// Memory protection flags
|
||||
pub struct ProtFlags: u64 {
|
||||
const PROT_NONE = 0x0;
|
||||
const PROT_READ = 0x1;
|
||||
const PROT_WRITE = 0x2;
|
||||
const PROT_EXEC = 0x4;
|
||||
}
|
||||
|
||||
/// Memory mapping flags
|
||||
pub struct MapFlags: u64 {
|
||||
const MAP_NONE = 0x0;
|
||||
/// share changes
|
||||
const MAP_SHARED = 0x1;
|
||||
/// changes are private
|
||||
const MAP_PRIVATE = 0x2;
|
||||
/// Interpret addr exactly
|
||||
const MAP_FIXED = 0x10;
|
||||
/// don't use a file
|
||||
const MAP_ANONYMOUS = 0x20;
|
||||
// linux-6.1-rc5/include/uapi/asm-generic/mman.h#7
|
||||
/// stack-like segment
|
||||
const MAP_GROWSDOWN = 0x100;
|
||||
/// ETXTBSY
|
||||
const MAP_DENYWRITE = 0x800;
|
||||
/// Mark it as an executable
|
||||
const MAP_EXECUTABLE = 0x1000;
|
||||
/// Pages are locked
|
||||
const MAP_LOCKED = 0x2000;
|
||||
/// don't check for reservations
|
||||
const MAP_NORESERVE = 0x4000;
|
||||
/// populate (prefault) pagetables
|
||||
const MAP_POPULATE = 0x8000;
|
||||
/// do not block on IO
|
||||
const MAP_NONBLOCK = 0x10000;
|
||||
/// give out an address that is best suited for process/thread stacks
|
||||
const MAP_STACK = 0x20000;
|
||||
/// create a huge page mapping
|
||||
const MAP_HUGETLB = 0x40000;
|
||||
/// perform synchronous page faults for the mapping
|
||||
const MAP_SYNC = 0x80000;
|
||||
/// MAP_FIXED which doesn't unmap underlying mapping
|
||||
const MAP_FIXED_NOREPLACE = 0x100000;
|
||||
|
||||
/// For anonymous mmap, memory could be uninitialized
|
||||
const MAP_UNINITIALIZED = 0x4000000;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
impl Syscall {
|
||||
pub fn brk(new_addr: usize) -> Result<usize, SystemError> {
|
||||
let ret = unsafe { sys_do_brk(new_addr) };
|
||||
if (ret as isize) < 0 {
|
||||
return Err(
|
||||
SystemError::from_posix_errno(-(ret as isize) as i32).expect("brk: Invalid errno")
|
||||
);
|
||||
pub fn brk(new_addr: VirtAddr) -> Result<VirtAddr, SystemError> {
|
||||
// kdebug!("brk: new_addr={:?}", new_addr);
|
||||
let address_space = AddressSpace::current()?;
|
||||
let mut address_space = address_space.write();
|
||||
|
||||
unsafe {
|
||||
address_space
|
||||
.set_brk(VirtAddr::new(page_align_up(new_addr.data())))
|
||||
.ok();
|
||||
|
||||
return Ok(address_space.sbrk(0).unwrap());
|
||||
}
|
||||
return Ok(ret);
|
||||
}
|
||||
|
||||
pub fn sbrk(incr: isize) -> Result<usize, SystemError> {
|
||||
let ret = unsafe { sys_do_sbrk(incr) };
|
||||
if (ret as isize) < 0 {
|
||||
return Err(
|
||||
SystemError::from_posix_errno(-(ret as isize) as i32).expect("sbrk: Invalid errno")
|
||||
);
|
||||
}
|
||||
return Ok(ret);
|
||||
pub fn sbrk(incr: isize) -> Result<VirtAddr, SystemError> {
|
||||
// kdebug!("pid:{}, sbrk: incr={}", current_pcb().pid, incr);
|
||||
|
||||
let address_space = AddressSpace::current()?;
|
||||
let mut address_space = address_space.write();
|
||||
let r = unsafe { address_space.sbrk(incr) };
|
||||
|
||||
// kdebug!("pid:{}, sbrk: r={:?}", current_pcb().pid, r);
|
||||
return r;
|
||||
}
|
||||
|
||||
/// 获取内存统计信息
|
||||
/// ## mmap系统调用
|
||||
///
|
||||
/// TODO: 该函数不是符合POSIX标准的,在将来需要删除!
|
||||
pub fn mstat(dst: *mut mm_stat_t, from_user: bool) -> Result<usize, SystemError> {
|
||||
let ret = unsafe { sys_do_mstat(dst, from_user) };
|
||||
if (ret as isize) < 0 {
|
||||
return Err(SystemError::from_posix_errno(-(ret as isize) as i32)
|
||||
.expect("mstat: Invalid errno"));
|
||||
/// 该函数的实现参考了Linux内核的实现,但是并不完全相同。因为有些功能咱们还没实现
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `start_vaddr`:映射的起始地址
|
||||
/// - `len`:映射的长度
|
||||
/// - `prot`:保护标志
|
||||
/// - `flags`:映射标志
|
||||
/// - `fd`:文件描述符(暂时不支持)
|
||||
/// - `offset`:文件偏移量 (暂时不支持)
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 成功时返回映射的起始地址,失败时返回错误码
|
||||
pub fn mmap(
|
||||
start_vaddr: VirtAddr,
|
||||
len: usize,
|
||||
prot_flags: usize,
|
||||
map_flags: usize,
|
||||
_fd: i32,
|
||||
_offset: usize,
|
||||
) -> Result<usize, SystemError> {
|
||||
let map_flags = MapFlags::from_bits_truncate(map_flags as u64);
|
||||
let prot_flags = ProtFlags::from_bits_truncate(prot_flags as u64);
|
||||
|
||||
if start_vaddr < VirtAddr::new(DEFAULT_MMAP_MIN_ADDR)
|
||||
&& map_flags.contains(MapFlags::MAP_FIXED)
|
||||
{
|
||||
kerror!(
|
||||
"mmap: MAP_FIXED is not supported for address below {}",
|
||||
DEFAULT_MMAP_MIN_ADDR
|
||||
);
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
return Ok(ret);
|
||||
// 暂时不支持除匿名页以外的映射
|
||||
if !map_flags.contains(MapFlags::MAP_ANONYMOUS) {
|
||||
kerror!("mmap: not support file mapping");
|
||||
return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP);
|
||||
}
|
||||
|
||||
// 暂时不支持巨页映射
|
||||
if map_flags.contains(MapFlags::MAP_HUGETLB) {
|
||||
kerror!("mmap: not support huge page mapping");
|
||||
return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP);
|
||||
}
|
||||
let current_address_space = AddressSpace::current()?;
|
||||
let start_page = current_address_space.write().map_anonymous(
|
||||
start_vaddr,
|
||||
len,
|
||||
prot_flags,
|
||||
map_flags,
|
||||
true,
|
||||
)?;
|
||||
return Ok(start_page.virt_address().data());
|
||||
}
|
||||
|
||||
/// ## munmap系统调用
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `start_vaddr`:取消映射的起始地址(已经对齐到页)
|
||||
/// - `len`:取消映射的字节数(已经对齐到页)
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 成功时返回0,失败时返回错误码
|
||||
pub fn munmap(start_vaddr: VirtAddr, len: usize) -> Result<usize, SystemError> {
|
||||
assert!(start_vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(check_aligned(len, MMArch::PAGE_SIZE));
|
||||
|
||||
if unlikely(verify_area(start_vaddr, len).is_err()) {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
if unlikely(len == 0) {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
|
||||
let current_address_space: Arc<AddressSpace> = AddressSpace::current()?;
|
||||
let start_frame = VirtPageFrame::new(start_vaddr);
|
||||
let page_count = PageFrameCount::new(len / MMArch::PAGE_SIZE);
|
||||
|
||||
current_address_space
|
||||
.write()
|
||||
.munmap(start_frame, page_count)
|
||||
.map_err(|_| SystemError::EINVAL)?;
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
/// ## mprotect系统调用
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `start_vaddr`:起始地址(已经对齐到页)
|
||||
/// - `len`:长度(已经对齐到页)
|
||||
/// - `prot_flags`:保护标志
|
||||
pub fn mprotect(
|
||||
start_vaddr: VirtAddr,
|
||||
len: usize,
|
||||
prot_flags: usize,
|
||||
) -> Result<usize, SystemError> {
|
||||
assert!(start_vaddr.check_aligned(MMArch::PAGE_SIZE));
|
||||
assert!(check_aligned(len, MMArch::PAGE_SIZE));
|
||||
|
||||
if unlikely(verify_area(start_vaddr, len).is_err()) {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
if unlikely(len == 0) {
|
||||
return Err(SystemError::EINVAL);
|
||||
}
|
||||
|
||||
let prot_flags = ProtFlags::from_bits(prot_flags as u64).ok_or(SystemError::EINVAL)?;
|
||||
|
||||
let current_address_space: Arc<AddressSpace> = AddressSpace::current()?;
|
||||
let start_frame = VirtPageFrame::new(start_vaddr);
|
||||
let page_count = PageFrameCount::new(len / MMArch::PAGE_SIZE);
|
||||
|
||||
current_address_space
|
||||
.write()
|
||||
.mprotect(start_frame, page_count, prot_flags)
|
||||
.map_err(|_| SystemError::EINVAL)?;
|
||||
return Ok(0);
|
||||
}
|
||||
}
|
||||
|
1319
kernel/src/mm/ucontext.rs
Normal file
1319
kernel/src/mm/ucontext.rs
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,109 +0,0 @@
|
||||
#include "internal.h"
|
||||
|
||||
extern uint64_t mm_total_2M_pages;
|
||||
|
||||
/**
|
||||
* @brief 获取指定虚拟地址处映射的物理地址
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vaddr 虚拟地址
|
||||
* @return uint64_t 已映射的物理地址
|
||||
*/
|
||||
uint64_t __mm_get_paddr(struct mm_struct *mm, uint64_t vaddr)
|
||||
{
|
||||
ul *tmp;
|
||||
|
||||
tmp = phys_2_virt((ul *)(((ul)mm->pgd) & (~0xfffUL)) + ((vaddr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||||
|
||||
// pml4页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((vaddr >> PAGE_1G_SHIFT) & 0x1ff));
|
||||
|
||||
// pdpt页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
// 读取pdt页表项
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(vaddr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||||
|
||||
// pde页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
if (*tmp & (1 << 7))
|
||||
{
|
||||
// 当前为2M物理页
|
||||
return (*tmp) & (~0x1fffUL);
|
||||
}
|
||||
else
|
||||
{
|
||||
// 存在4级页表
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(vaddr) >> PAGE_4K_SHIFT) & 0x1ff)));
|
||||
|
||||
return (*tmp) & (~0x1ffUL);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 检测指定地址是否已经被映射
|
||||
*
|
||||
* @param page_table_phys_addr 页表的物理地址
|
||||
* @param virt_addr 要检测的地址
|
||||
* @return true 已经被映射
|
||||
* @return false
|
||||
*/
|
||||
bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
|
||||
{
|
||||
ul *tmp;
|
||||
|
||||
tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||||
|
||||
// pml4页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||||
|
||||
// pdpt页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
// 读取pdt页表项
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||||
|
||||
// pde页表项为0
|
||||
if (*tmp == 0)
|
||||
return 0;
|
||||
|
||||
if (*tmp & (1 << 7))
|
||||
{
|
||||
// 当前为2M物理页
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
// 存在4级页表
|
||||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_4K_SHIFT) & 0x1ff)));
|
||||
if (*tmp != 0)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 检测是否为有效的2M页(物理内存页)
|
||||
*
|
||||
* @param paddr 物理地址
|
||||
* @return int8_t 是 -> 1
|
||||
* 否 -> 0
|
||||
*/
|
||||
int8_t mm_is_2M_page(uint64_t paddr)
|
||||
{
|
||||
if (likely((paddr >> PAGE_2M_SHIFT) < mm_total_2M_pages))
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
@ -1,275 +0,0 @@
|
||||
#include "mm.h"
|
||||
#include "slab.h"
|
||||
#include "internal.h"
|
||||
|
||||
/**
|
||||
* @brief 获取一块新的vma结构体,并将其与指定的mm进行绑定
|
||||
*
|
||||
* @param mm 与VMA绑定的内存空间分布结构体
|
||||
* @return struct vm_area_struct* 新的VMA
|
||||
*/
|
||||
struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
|
||||
{
|
||||
struct vm_area_struct *vma = (struct vm_area_struct *)kmalloc(sizeof(struct vm_area_struct), 0);
|
||||
if (vma)
|
||||
vma_init(vma, mm);
|
||||
return vma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从链表中删除指定的vma结构体
|
||||
*
|
||||
* @param vma
|
||||
*/
|
||||
void vm_area_del(struct vm_area_struct *vma)
|
||||
{
|
||||
if (vma->vm_mm == NULL)
|
||||
return;
|
||||
__vma_unlink_list(vma->vm_mm, vma);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 释放vma结构体
|
||||
*
|
||||
* @param vma 待释放的vma结构体
|
||||
*/
|
||||
void vm_area_free(struct vm_area_struct *vma)
|
||||
{
|
||||
if (vma->vm_prev == NULL && vma->vm_next == NULL) // 如果当前是剩余的最后一个vma
|
||||
vma->vm_mm->vmas = NULL;
|
||||
kfree(vma);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将vma结构体插入mm_struct的链表之中
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
* @param prev 链表的前一个结点
|
||||
*/
|
||||
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev)
|
||||
{
|
||||
struct vm_area_struct *next = NULL;
|
||||
vma->vm_prev = prev;
|
||||
if (prev) // 若指定了前一个结点,则直接连接
|
||||
{
|
||||
next = prev->vm_next;
|
||||
prev->vm_next = vma;
|
||||
}
|
||||
else // 否则将vma直接插入到给定的mm的vma链表之中
|
||||
{
|
||||
next = mm->vmas;
|
||||
mm->vmas = vma;
|
||||
}
|
||||
|
||||
vma->vm_next = next;
|
||||
|
||||
if (next != NULL)
|
||||
next->vm_prev = vma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将vma给定结构体从vma链表的结点之中删除
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param vma 待插入的VMA结构体
|
||||
*/
|
||||
void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
|
||||
{
|
||||
struct vm_area_struct *prev, *next;
|
||||
next = vma->vm_next;
|
||||
prev = vma->vm_prev;
|
||||
if (prev)
|
||||
prev->vm_next = next;
|
||||
else // 当前vma是链表中的第一个vma
|
||||
mm->vmas = next;
|
||||
|
||||
if (next)
|
||||
next->vm_prev = prev;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 查找第一个符合“addr < vm_end”条件的vma
|
||||
*
|
||||
* @param mm 内存空间分布结构体
|
||||
* @param addr 虚拟地址
|
||||
* @return struct vm_area_struct* 符合条件的vma
|
||||
*/
|
||||
struct vm_area_struct *vma_find(struct mm_struct *mm, uint64_t addr)
|
||||
{
|
||||
struct vm_area_struct *vma = mm->vmas;
|
||||
struct vm_area_struct *result = NULL;
|
||||
while (vma != NULL)
|
||||
{
|
||||
if (vma->vm_end > addr)
|
||||
{
|
||||
result = vma;
|
||||
break;
|
||||
}
|
||||
vma = vma->vm_next;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 插入vma
|
||||
*
|
||||
* @param mm
|
||||
* @param vma
|
||||
* @return int
|
||||
*/
|
||||
int vma_insert(struct mm_struct *mm, struct vm_area_struct *vma)
|
||||
{
|
||||
|
||||
struct vm_area_struct *prev;
|
||||
|
||||
prev = vma_find(mm, vma->vm_start);
|
||||
|
||||
if (prev && prev->vm_start <= vma->vm_start && prev->vm_end >= vma->vm_end)
|
||||
{
|
||||
// 已经存在了相同的vma
|
||||
return -EEXIST;
|
||||
}
|
||||
// todo: bugfix: 这里的第二种情况貌似从来不会满足
|
||||
else if (prev && ((vma->vm_start >= prev->vm_start && vma->vm_start <= prev->vm_end) || (prev->vm_start <= vma->vm_end && prev->vm_start >= vma->vm_start)))
|
||||
{
|
||||
//部分重叠
|
||||
if ((!CROSS_2M_BOUND(vma->vm_start, prev->vm_start)) && (!CROSS_2M_BOUND(vma->vm_end, prev->vm_end))&& vma->vm_end)
|
||||
{
|
||||
//合并vma 并改变链表vma的范围
|
||||
kdebug("before combining vma:vm_start = %#018lx, vm_end = %#018lx\n", vma->vm_start, vma->vm_end);
|
||||
|
||||
prev->vm_start = (vma->vm_start < prev->vm_start )? vma->vm_start : prev->vm_start;
|
||||
prev->vm_end = (vma->vm_end > prev->vm_end) ? vma->vm_end : prev->vm_end;
|
||||
// 计算page_offset
|
||||
prev->page_offset = prev->vm_start - (prev->vm_start & PAGE_2M_MASK);
|
||||
kdebug("combined vma:vm_start = %#018lx, vm_end = %#018lx\nprev:vm_start = %018lx, vm_end = %018lx\n", vma->vm_start, vma->vm_end, prev->vm_start, prev->vm_end);
|
||||
kinfo("vma has same part\n");
|
||||
return __VMA_MERGED;
|
||||
}
|
||||
}
|
||||
|
||||
// prev = vma_find(mm, vma->vm_start);
|
||||
|
||||
if (prev == NULL) // 要将当前vma插入到链表的尾部
|
||||
{
|
||||
struct vm_area_struct *ptr = mm->vmas;
|
||||
while (ptr)
|
||||
{
|
||||
if (ptr->vm_next)
|
||||
ptr = ptr->vm_next;
|
||||
else
|
||||
{
|
||||
prev = ptr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
prev = prev->vm_prev;
|
||||
__vma_link_list(mm, vma, prev);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 创建anon_vma,并将其与页面结构体进行绑定
|
||||
* 若提供的页面结构体指针为NULL,则只创建,不绑定
|
||||
*
|
||||
* @param page 页面结构体的指针
|
||||
* @param lock_page 是否将页面结构体加锁
|
||||
* @return struct anon_vma_t* 创建好的anon_vma
|
||||
*/
|
||||
struct anon_vma_t *__anon_vma_create_alloc(struct Page *page, bool lock_page)
|
||||
{
|
||||
struct anon_vma_t *anon_vma = (struct anon_vma_t *)kmalloc(sizeof(struct anon_vma_t), 0);
|
||||
if (unlikely(anon_vma == NULL))
|
||||
return NULL;
|
||||
memset(anon_vma, 0, sizeof(struct anon_vma_t));
|
||||
|
||||
list_init(&anon_vma->vma_list);
|
||||
semaphore_init(&anon_vma->sem, 1);
|
||||
|
||||
// 需要和page进行绑定
|
||||
if (page != NULL)
|
||||
{
|
||||
if (lock_page == true) // 需要加锁
|
||||
{
|
||||
uint64_t rflags;
|
||||
spin_lock(&page->op_lock);
|
||||
page->anon_vma = anon_vma;
|
||||
spin_unlock(&page->op_lock);
|
||||
}
|
||||
else
|
||||
page->anon_vma = anon_vma;
|
||||
|
||||
anon_vma->page = page;
|
||||
}
|
||||
return anon_vma;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 将指定的vma加入到anon_vma的管理范围之中
|
||||
*
|
||||
* @param anon_vma 页面的anon_vma
|
||||
* @param vma 待加入的vma
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_add(struct anon_vma_t *anon_vma, struct vm_area_struct *vma)
|
||||
{
|
||||
semaphore_down(&anon_vma->sem);
|
||||
list_add(&anon_vma->vma_list, &vma->anon_vma_list);
|
||||
vma->anon_vma = anon_vma;
|
||||
atomic_inc(&anon_vma->ref_count);
|
||||
semaphore_up(&anon_vma->sem);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 释放anon vma结构体
|
||||
*
|
||||
* @param anon_vma 待释放的anon_vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_free(struct anon_vma_t *anon_vma)
|
||||
{
|
||||
if (anon_vma->page != NULL)
|
||||
{
|
||||
spin_lock(&anon_vma->page->op_lock);
|
||||
anon_vma->page->anon_vma = NULL;
|
||||
spin_unlock(&anon_vma->page->op_lock);
|
||||
}
|
||||
kfree(anon_vma);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 从anon_vma的管理范围中删除指定的vma
|
||||
* (在进入这个函数之前,应该要对anon_vma加锁)
|
||||
* @param vma 将要取消对应的anon_vma管理的vma结构体
|
||||
* @return int 返回码
|
||||
*/
|
||||
int __anon_vma_del(struct vm_area_struct *vma)
|
||||
{
|
||||
// 当前vma没有绑定anon_vma
|
||||
if (vma->anon_vma == NULL)
|
||||
return -EINVAL;
|
||||
|
||||
list_del(&vma->anon_vma_list);
|
||||
atomic_dec(&vma->anon_vma->ref_count);
|
||||
|
||||
// 若当前anon_vma的引用计数归零,则意味着可以释放内存页
|
||||
if (unlikely(atomic_read(&vma->anon_vma->ref_count) == 0)) // 应当释放该anon_vma
|
||||
{
|
||||
// 若页面结构体是mmio创建的,则释放页面结构体
|
||||
if (vma->anon_vma->page->attr & PAGE_DEVICE)
|
||||
kfree(vma->anon_vma->page);
|
||||
else
|
||||
free_pages(vma->anon_vma->page, 1);
|
||||
__anon_vma_free(vma->anon_vma);
|
||||
}
|
||||
|
||||
// 清理当前vma的关联数据
|
||||
vma->anon_vma = NULL;
|
||||
list_init(&vma->anon_vma_list);
|
||||
}
|
86
kernel/src/process/abi.rs
Normal file
86
kernel/src/process/abi.rs
Normal file
@ -0,0 +1,86 @@
|
||||
/// An enumeration of the possible values for the `AT_*` constants.
|
||||
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
|
||||
pub enum AtType {
|
||||
/// End of vector.
|
||||
Null,
|
||||
/// Entry should be ignored.
|
||||
Ignore,
|
||||
/// File descriptor of program.
|
||||
ExecFd,
|
||||
/// Program headers for program.
|
||||
Phdr,
|
||||
/// Size of program header entry.
|
||||
PhEnt,
|
||||
/// Number of program headers.
|
||||
PhNum,
|
||||
/// System page size.
|
||||
PageSize,
|
||||
/// Base address of interpreter.
|
||||
Base,
|
||||
/// Flags.
|
||||
Flags,
|
||||
/// Entry point of program.
|
||||
Entry,
|
||||
/// Program is not ELF.
|
||||
NotElf,
|
||||
/// Real uid.
|
||||
Uid,
|
||||
/// Effective uid.
|
||||
EUid,
|
||||
/// Real gid.
|
||||
Gid,
|
||||
/// Effective gid.
|
||||
EGid,
|
||||
/// String identifying CPU for optimizations.
|
||||
Platform,
|
||||
/// Arch dependent hints at CPU capabilities.
|
||||
HwCap,
|
||||
/// Frequency at which times() increments.
|
||||
ClkTck,
|
||||
/// Secure mode boolean.
|
||||
Secure,
|
||||
/// String identifying real platform, may differ from AT_PLATFORM.
|
||||
BasePlatform,
|
||||
/// Address of 16 random bytes.
|
||||
Random,
|
||||
/// Extension of AT_HWCAP.
|
||||
HwCap2,
|
||||
/// Filename of program.
|
||||
ExecFn,
|
||||
/// Minimal stack size for signal delivery.
|
||||
MinSigStackSize,
|
||||
}
|
||||
|
||||
impl TryFrom<u32> for AtType {
|
||||
type Error = &'static str;
|
||||
|
||||
fn try_from(value: u32) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
0 => Ok(AtType::Null),
|
||||
1 => Ok(AtType::Ignore),
|
||||
2 => Ok(AtType::ExecFd),
|
||||
3 => Ok(AtType::Phdr),
|
||||
4 => Ok(AtType::PhEnt),
|
||||
5 => Ok(AtType::PhNum),
|
||||
6 => Ok(AtType::PageSize),
|
||||
7 => Ok(AtType::Base),
|
||||
8 => Ok(AtType::Flags),
|
||||
9 => Ok(AtType::Entry),
|
||||
10 => Ok(AtType::NotElf),
|
||||
11 => Ok(AtType::Uid),
|
||||
12 => Ok(AtType::EUid),
|
||||
13 => Ok(AtType::Gid),
|
||||
14 => Ok(AtType::EGid),
|
||||
15 => Ok(AtType::Platform),
|
||||
16 => Ok(AtType::HwCap),
|
||||
17 => Ok(AtType::ClkTck),
|
||||
23 => Ok(AtType::Secure),
|
||||
24 => Ok(AtType::BasePlatform),
|
||||
25 => Ok(AtType::Random),
|
||||
26 => Ok(AtType::HwCap2),
|
||||
31 => Ok(AtType::ExecFn),
|
||||
51 => Ok(AtType::MinSigStackSize),
|
||||
_ => Err("Invalid value for AtType"),
|
||||
}
|
||||
}
|
||||
}
|
115
kernel/src/process/c_adapter.rs
Normal file
115
kernel/src/process/c_adapter.rs
Normal file
@ -0,0 +1,115 @@
|
||||
use core::{ffi::c_void, ptr::null_mut};
|
||||
|
||||
use alloc::boxed::Box;
|
||||
|
||||
use crate::{
|
||||
arch::{asm::current::current_pcb, fpu::FpState},
|
||||
include::bindings::bindings::process_control_block,
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
use super::{fork::copy_mm, process::init_stdio, process_init};
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_process_init() {
|
||||
process_init();
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_process_copy_mm(clone_vm: bool, new_pcb: &mut process_control_block) -> usize {
|
||||
return copy_mm(clone_vm, new_pcb)
|
||||
.map(|_| 0)
|
||||
.unwrap_or_else(|err| err.to_posix_errno() as usize);
|
||||
}
|
||||
|
||||
/// @brief 初始化当前进程的文件描述符数组
|
||||
/// 请注意,如果当前进程已经有文件描述符数组,那么本操作将被禁止
|
||||
#[no_mangle]
|
||||
pub extern "C" fn process_init_files() -> i32 {
|
||||
let r = current_pcb().init_files();
|
||||
if r.is_ok() {
|
||||
return 0;
|
||||
} else {
|
||||
return r.unwrap_err().to_posix_errno();
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_drop_address_space(pcb: &'static mut process_control_block) -> i32 {
|
||||
unsafe {
|
||||
pcb.drop_address_space();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// @brief 拷贝当前进程的文件描述符信息
|
||||
///
|
||||
/// @param clone_flags 克隆标志位
|
||||
/// @param pcb 新的进程的pcb
|
||||
#[no_mangle]
|
||||
pub extern "C" fn process_copy_files(
|
||||
clone_flags: u64,
|
||||
from: &'static process_control_block,
|
||||
) -> i32 {
|
||||
let r = current_pcb().copy_files(clone_flags, from);
|
||||
if r.is_ok() {
|
||||
return 0;
|
||||
} else {
|
||||
return r.unwrap_err().to_posix_errno();
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 回收进程的文件描述符数组
|
||||
///
|
||||
/// @param pcb 要被回收的进程的pcb
|
||||
///
|
||||
/// @return i32
|
||||
#[no_mangle]
|
||||
pub extern "C" fn process_exit_files(pcb: &'static mut process_control_block) -> i32 {
|
||||
let r: Result<(), SystemError> = pcb.exit_files();
|
||||
if r.is_ok() {
|
||||
return 0;
|
||||
} else {
|
||||
return r.unwrap_err().to_posix_errno();
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 复制当前进程的浮点状态
|
||||
#[allow(dead_code)]
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_dup_fpstate() -> *mut c_void {
|
||||
// 如果当前进程没有浮点状态,那么就返回一个默认的浮点状态
|
||||
if current_pcb().fp_state == null_mut() {
|
||||
return Box::leak(Box::new(FpState::default())) as *mut FpState as usize as *mut c_void;
|
||||
} else {
|
||||
// 如果当前进程有浮点状态,那么就复制一个新的浮点状态
|
||||
let state = current_pcb().fp_state as usize as *mut FpState;
|
||||
unsafe {
|
||||
let s = state.as_ref().unwrap();
|
||||
let state: &mut FpState = Box::leak(Box::new(s.clone()));
|
||||
|
||||
return state as *mut FpState as usize as *mut c_void;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @brief 释放进程的浮点状态所占用的内存
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_process_exit_fpstate(pcb: &'static mut process_control_block) {
|
||||
if pcb.fp_state != null_mut() {
|
||||
let state = pcb.fp_state as usize as *mut FpState;
|
||||
unsafe {
|
||||
drop(Box::from_raw(state));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "C" fn rs_init_stdio() -> i32 {
|
||||
let r = init_stdio();
|
||||
if r.is_ok() {
|
||||
return 0;
|
||||
} else {
|
||||
return r.unwrap_err().to_posix_errno();
|
||||
}
|
||||
}
|
288
kernel/src/process/exec.rs
Normal file
288
kernel/src/process/exec.rs
Normal file
@ -0,0 +1,288 @@
|
||||
use core::{fmt::Debug, ptr::null};
|
||||
|
||||
use alloc::{collections::BTreeMap, string::String, sync::Arc, vec::Vec};
|
||||
|
||||
use crate::{
|
||||
filesystem::vfs::{
|
||||
file::{File, FileMode},
|
||||
ROOT_INODE,
|
||||
},
|
||||
io::SeekFrom,
|
||||
libs::elf::ELF_LOADER,
|
||||
mm::{
|
||||
ucontext::{AddressSpace, UserStack},
|
||||
VirtAddr,
|
||||
},
|
||||
syscall::SystemError,
|
||||
};
|
||||
|
||||
/// 系统支持的所有二进制文件加载器的列表
|
||||
const BINARY_LOADERS: [&'static dyn BinaryLoader; 1] = [&ELF_LOADER];
|
||||
|
||||
pub trait BinaryLoader: 'static + Debug {
|
||||
/// 检查二进制文件是否为当前加载器支持的格式
|
||||
fn probe(self: &'static Self, param: &ExecParam, buf: &[u8]) -> Result<(), ExecError>;
|
||||
|
||||
fn load(
|
||||
self: &'static Self,
|
||||
param: &mut ExecParam,
|
||||
head_buf: &[u8],
|
||||
) -> Result<BinaryLoaderResult, ExecError>;
|
||||
}
|
||||
|
||||
/// 二进制文件加载结果
|
||||
#[derive(Debug)]
|
||||
pub struct BinaryLoaderResult {
|
||||
/// 程序入口地址
|
||||
entry_point: VirtAddr,
|
||||
}
|
||||
|
||||
impl BinaryLoaderResult {
|
||||
pub fn new(entry_point: VirtAddr) -> Self {
|
||||
Self { entry_point }
|
||||
}
|
||||
|
||||
pub fn entry_point(&self) -> VirtAddr {
|
||||
self.entry_point
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Debug)]
|
||||
pub enum ExecError {
|
||||
/// 二进制文件不可执行
|
||||
NotExecutable,
|
||||
/// 二进制文件不是当前架构的
|
||||
WrongArchitecture,
|
||||
/// 访问权限不足
|
||||
PermissionDenied,
|
||||
/// 不支持的操作
|
||||
NotSupported,
|
||||
/// 解析文件本身的时候出现错误(比如一些字段本身不合法)
|
||||
ParseError,
|
||||
/// 内存不足
|
||||
OutOfMemory,
|
||||
/// 参数错误
|
||||
InvalidParemeter,
|
||||
/// 无效的地址
|
||||
BadAddress(Option<VirtAddr>),
|
||||
Other(String),
|
||||
}
|
||||
|
||||
impl Into<SystemError> for ExecError {
|
||||
fn into(self) -> SystemError {
|
||||
match self {
|
||||
ExecError::NotExecutable => SystemError::ENOEXEC,
|
||||
ExecError::WrongArchitecture => SystemError::EOPNOTSUPP_OR_ENOTSUP,
|
||||
ExecError::PermissionDenied => SystemError::EACCES,
|
||||
ExecError::NotSupported => SystemError::EOPNOTSUPP_OR_ENOTSUP,
|
||||
ExecError::ParseError => SystemError::ENOEXEC,
|
||||
ExecError::OutOfMemory => SystemError::ENOMEM,
|
||||
ExecError::InvalidParemeter => SystemError::EINVAL,
|
||||
ExecError::BadAddress(_addr) => SystemError::EFAULT,
|
||||
ExecError::Other(_msg) => SystemError::ENOEXEC,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bitflags! {
|
||||
pub struct ExecParamFlags: u32 {
|
||||
// 是否以可执行文件的形式加载
|
||||
const EXEC = 1 << 0;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct ExecParam<'a> {
|
||||
file_path: &'a str,
|
||||
file: Option<File>,
|
||||
vm: Arc<AddressSpace>,
|
||||
/// 一些标志位
|
||||
flags: ExecParamFlags,
|
||||
/// 用来初始化进程的一些信息。这些信息由二进制加载器和exec机制来共同填充
|
||||
init_info: ProcInitInfo,
|
||||
}
|
||||
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
pub enum ExecLoadMode {
|
||||
/// 以可执行文件的形式加载
|
||||
Exec,
|
||||
/// 以动态链接库的形式加载
|
||||
DSO,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl<'a> ExecParam<'a> {
|
||||
pub fn new(file_path: &'a str, vm: Arc<AddressSpace>, flags: ExecParamFlags) -> Self {
|
||||
Self {
|
||||
file_path,
|
||||
file: None,
|
||||
vm,
|
||||
flags,
|
||||
init_info: ProcInitInfo::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn file_path(&self) -> &'a str {
|
||||
self.file_path
|
||||
}
|
||||
|
||||
pub fn vm(&self) -> &Arc<AddressSpace> {
|
||||
&self.vm
|
||||
}
|
||||
|
||||
pub fn flags(&self) -> &ExecParamFlags {
|
||||
&self.flags
|
||||
}
|
||||
|
||||
pub fn init_info(&self) -> &ProcInitInfo {
|
||||
&self.init_info
|
||||
}
|
||||
|
||||
pub fn init_info_mut(&mut self) -> &mut ProcInitInfo {
|
||||
&mut self.init_info
|
||||
}
|
||||
|
||||
/// 获取加载模式
|
||||
pub fn load_mode(&self) -> ExecLoadMode {
|
||||
if self.flags.contains(ExecParamFlags::EXEC) {
|
||||
ExecLoadMode::Exec
|
||||
} else {
|
||||
ExecLoadMode::DSO
|
||||
}
|
||||
}
|
||||
|
||||
pub fn file_mut(&mut self) -> &mut File {
|
||||
self.file.as_mut().unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// ## 加载二进制文件
|
||||
pub fn load_binary_file(param: &mut ExecParam) -> Result<BinaryLoaderResult, SystemError> {
|
||||
let inode = ROOT_INODE().lookup(param.file_path)?;
|
||||
|
||||
// 读取文件头部,用于判断文件类型
|
||||
let file = File::new(inode, FileMode::O_RDONLY)?;
|
||||
param.file = Some(file);
|
||||
let mut head_buf = [0u8; 512];
|
||||
param.file_mut().lseek(SeekFrom::SeekSet(0))?;
|
||||
let _bytes = param.file_mut().read(512, &mut head_buf)?;
|
||||
// kdebug!("load_binary_file: read {} bytes", _bytes);
|
||||
|
||||
let mut loader = None;
|
||||
for bl in BINARY_LOADERS.iter() {
|
||||
let probe_result = bl.probe(param, &head_buf);
|
||||
if probe_result.is_ok() {
|
||||
loader = Some(bl);
|
||||
break;
|
||||
}
|
||||
}
|
||||
// kdebug!("load_binary_file: loader: {:?}", loader);
|
||||
if loader.is_none() {
|
||||
return Err(SystemError::ENOEXEC);
|
||||
}
|
||||
|
||||
let loader: &&dyn BinaryLoader = loader.unwrap();
|
||||
assert!(param.vm().is_current());
|
||||
// kdebug!("load_binary_file: to load with param: {:?}", param);
|
||||
|
||||
let result: BinaryLoaderResult = loader
|
||||
.load(param, &head_buf)
|
||||
.unwrap_or_else(|e| panic!("load_binary_file failed: error: {e:?}, param: {param:?}"));
|
||||
|
||||
// kdebug!("load_binary_file: load success");
|
||||
return Ok(result);
|
||||
}
|
||||
|
||||
/// 程序初始化信息,这些信息会被压入用户栈中
|
||||
#[derive(Debug)]
|
||||
pub struct ProcInitInfo {
|
||||
pub args: Vec<String>,
|
||||
pub envs: Vec<String>,
|
||||
pub auxv: BTreeMap<u8, usize>,
|
||||
}
|
||||
|
||||
impl ProcInitInfo {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
args: Vec::new(),
|
||||
envs: Vec::new(),
|
||||
auxv: BTreeMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// 把程序初始化信息压入用户栈中
|
||||
/// 这个函数会把参数、环境变量、auxv等信息压入用户栈中
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// 返回值是一个元组,第一个元素是最终的用户栈顶地址,第二个元素是环境变量pointer数组的起始地址
|
||||
pub unsafe fn push_at(
|
||||
&self,
|
||||
ustack: &mut UserStack,
|
||||
) -> Result<(VirtAddr, VirtAddr), SystemError> {
|
||||
// 先把程序的名称压入栈中
|
||||
self.push_str(ustack, self.args[0].as_str())?;
|
||||
|
||||
// 然后把环境变量压入栈中
|
||||
let envps = self
|
||||
.envs
|
||||
.iter()
|
||||
.map(|s| {
|
||||
self.push_str(ustack, s.as_str()).expect("push_str failed");
|
||||
ustack.sp()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// 然后把参数压入栈中
|
||||
let argps = self
|
||||
.args
|
||||
.iter()
|
||||
.map(|s| {
|
||||
self.push_str(ustack, s.as_str()).expect("push_str failed");
|
||||
ustack.sp()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// 压入auxv
|
||||
self.push_slice(ustack, &[null::<u8>(), null::<u8>()])?;
|
||||
for (&k, &v) in self.auxv.iter() {
|
||||
self.push_slice(ustack, &[k as usize, v])?;
|
||||
}
|
||||
|
||||
// 把环境变量指针压入栈中
|
||||
self.push_slice(ustack, &[null::<u8>()])?;
|
||||
self.push_slice(ustack, envps.as_slice())?;
|
||||
|
||||
// 把参数指针压入栈中
|
||||
self.push_slice(ustack, &[null::<u8>()])?;
|
||||
self.push_slice(ustack, argps.as_slice())?;
|
||||
|
||||
let argv_ptr = ustack.sp();
|
||||
|
||||
// 把argc压入栈中
|
||||
self.push_slice(ustack, &[self.args.len()])?;
|
||||
|
||||
return Ok((ustack.sp(), argv_ptr));
|
||||
}
|
||||
|
||||
fn push_slice<T: Copy>(&self, ustack: &mut UserStack, slice: &[T]) -> Result<(), SystemError> {
|
||||
let mut sp = ustack.sp();
|
||||
sp -= slice.len() * core::mem::size_of::<T>();
|
||||
sp -= sp.data() % core::mem::align_of::<T>();
|
||||
|
||||
unsafe { core::slice::from_raw_parts_mut(sp.data() as *mut T, slice.len()) }
|
||||
.copy_from_slice(slice);
|
||||
unsafe {
|
||||
ustack.set_sp(sp);
|
||||
}
|
||||
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
fn push_str(&self, ustack: &mut UserStack, s: &str) -> Result<(), SystemError> {
|
||||
self.push_slice(ustack, &[b'\0'])?;
|
||||
self.push_slice(ustack, s.as_bytes())?;
|
||||
return Ok(());
|
||||
}
|
||||
}
|
@ -10,6 +10,7 @@ extern void kernel_thread_func(void);
|
||||
extern uint64_t rs_procfs_register_pid(uint64_t);
|
||||
extern uint64_t rs_procfs_unregister_pid(uint64_t);
|
||||
extern void *rs_dup_fpstate();
|
||||
extern uint64_t rs_process_copy_mm(bool clone_vm, struct process_control_block *new_pcb);
|
||||
|
||||
extern int process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
|
||||
int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
|
||||
@ -137,7 +138,7 @@ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned
|
||||
|
||||
// 创建对应procfs文件
|
||||
rs_procfs_register_pid(tsk->pid);
|
||||
|
||||
// kdebug("Fork ok. pid: %d\n", tsk->pid);
|
||||
// 唤醒进程
|
||||
process_wakeup(tsk);
|
||||
|
||||
@ -185,88 +186,9 @@ int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
|
||||
*/
|
||||
int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
|
||||
{
|
||||
int retval = 0;
|
||||
// 与父进程共享内存空间
|
||||
if (clone_flags & CLONE_VM)
|
||||
{
|
||||
pcb->mm = current_pcb->mm;
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
// 分配新的内存空间分布结构体
|
||||
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
||||
memset(new_mms, 0, sizeof(struct mm_struct));
|
||||
|
||||
memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
|
||||
new_mms->vmas = NULL;
|
||||
pcb->mm = new_mms;
|
||||
|
||||
// 分配顶层页表, 并设置顶层页表的物理地址
|
||||
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
||||
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
||||
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
||||
|
||||
// 拷贝内核空间的页表指针
|
||||
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256,
|
||||
PAGE_4K_SIZE / 2);
|
||||
|
||||
uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
|
||||
|
||||
uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
|
||||
|
||||
// 拷贝用户空间的vma
|
||||
struct vm_area_struct *vma = current_pcb->mm->vmas;
|
||||
while (vma != NULL)
|
||||
{
|
||||
if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
|
||||
{
|
||||
vma = vma->vm_next;
|
||||
continue;
|
||||
}
|
||||
|
||||
int64_t vma_size = vma->vm_end - vma->vm_start;
|
||||
// kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
|
||||
if (vma_size > PAGE_2M_SIZE / 2)
|
||||
{
|
||||
int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
|
||||
for (int i = 0; i < page_to_alloc; ++i)
|
||||
{
|
||||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||||
|
||||
struct vm_area_struct *new_vma = NULL;
|
||||
int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags,
|
||||
vma->vm_ops, &new_vma);
|
||||
// 防止内存泄露
|
||||
if (unlikely(ret == -EEXIST))
|
||||
free_pages(Phy_to_2M_Page(pa), 1);
|
||||
else
|
||||
mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
|
||||
|
||||
memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE),
|
||||
(vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
|
||||
vma_size -= PAGE_2M_SIZE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
uint64_t map_size = PAGE_4K_ALIGN(vma_size);
|
||||
uint64_t va = (uint64_t)kmalloc(map_size, 0);
|
||||
|
||||
struct vm_area_struct *new_vma = NULL;
|
||||
int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
|
||||
// 防止内存泄露
|
||||
if (unlikely(ret == -EEXIST))
|
||||
kfree((void *)va);
|
||||
else
|
||||
mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
|
||||
|
||||
memcpy((void *)va, (void *)vma->vm_start, vma_size);
|
||||
}
|
||||
vma = vma->vm_next;
|
||||
}
|
||||
|
||||
return retval;
|
||||
pcb->address_space = NULL;
|
||||
bool clone_vm = (clone_flags & CLONE_VM);
|
||||
return (int)rs_process_copy_mm(clone_vm, pcb);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -44,7 +44,7 @@ pub extern "C" fn process_copy_sighand(clone_flags: u64, pcb: *mut process_contr
|
||||
// kdebug!("DEFAULT_SIGACTION.sa_flags={}", DEFAULT_SIGACTION.sa_flags);
|
||||
|
||||
// 拷贝sigaction
|
||||
let mut flags: u64 = 0;
|
||||
let mut flags: usize = 0;
|
||||
|
||||
spin_lock_irqsave(unsafe { &mut (*current_pcb().sighand).siglock }, &mut flags);
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
@ -64,7 +64,7 @@ pub extern "C" fn process_copy_sighand(clone_flags: u64, pcb: *mut process_contr
|
||||
}
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
|
||||
spin_unlock_irqrestore(unsafe { &mut (*current_pcb().sighand).siglock }, &flags);
|
||||
spin_unlock_irqrestore(unsafe { &mut (*current_pcb().sighand).siglock }, flags);
|
||||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||||
|
||||
// 将信号的处理函数设置为default(除了那些被手动屏蔽的)
|
||||
@ -131,3 +131,39 @@ pub extern "C" fn process_exit_sighand(pcb: *mut process_control_block) {
|
||||
(*pcb).signal = 0 as *mut crate::include::bindings::bindings::signal_struct;
|
||||
}
|
||||
}
|
||||
|
||||
/// 拷贝进程的地址空间
|
||||
///
|
||||
/// ## 参数
|
||||
///
|
||||
/// - `clone_vm`: 是否与父进程共享地址空间。true表示共享
|
||||
/// - `new_pcb`: 新进程的pcb
|
||||
///
|
||||
/// ## 返回值
|
||||
///
|
||||
/// - 成功:返回Ok(())
|
||||
/// - 失败:返回Err(SystemError)
|
||||
///
|
||||
/// ## Panic
|
||||
///
|
||||
/// - 如果当前进程没有用户地址空间,则panic
|
||||
pub fn copy_mm(clone_vm: bool, new_pcb: &mut process_control_block) -> Result<(), SystemError> {
|
||||
// kdebug!("copy_mm, clone_vm: {}", clone_vm);
|
||||
let old_address_space = current_pcb()
|
||||
.address_space()
|
||||
.expect("copy_mm: Failed to get address space of current process.");
|
||||
|
||||
if clone_vm {
|
||||
unsafe { new_pcb.set_address_space(old_address_space) };
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
let new_address_space = old_address_space.write().try_clone().unwrap_or_else(|e| {
|
||||
panic!(
|
||||
"copy_mm: Failed to clone address space of current process, current pid: [{}], new pid: [{}]. Error: {:?}",
|
||||
current_pcb().pid, new_pcb.pid, e
|
||||
)
|
||||
});
|
||||
unsafe { new_pcb.set_address_space(new_address_space) };
|
||||
return Ok(());
|
||||
}
|
||||
|
@ -1,6 +1,38 @@
|
||||
use core::{
|
||||
ptr::null_mut,
|
||||
sync::atomic::{compiler_fence, Ordering},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
arch::asm::current::current_pcb,
|
||||
kdebug,
|
||||
mm::{
|
||||
set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, INITIAL_PROCESS_ADDRESS_SPACE,
|
||||
},
|
||||
};
|
||||
|
||||
pub mod abi;
|
||||
pub mod c_adapter;
|
||||
pub mod exec;
|
||||
pub mod fork;
|
||||
pub mod initial_proc;
|
||||
pub mod pid;
|
||||
pub mod preempt;
|
||||
pub mod process;
|
||||
pub mod syscall;
|
||||
|
||||
pub fn process_init() {
|
||||
unsafe {
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
current_pcb().address_space = null_mut();
|
||||
kdebug!("To create address space for INIT process.");
|
||||
// test_buddy();
|
||||
set_INITIAL_PROCESS_ADDRESS_SPACE(
|
||||
AddressSpace::new(true).expect("Failed to create address space for INIT process."),
|
||||
);
|
||||
kdebug!("INIT process address space created.");
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
current_pcb().set_address_space(INITIAL_PROCESS_ADDRESS_SPACE());
|
||||
compiler_fence(Ordering::SeqCst);
|
||||
};
|
||||
}
|
||||
|
@ -61,14 +61,14 @@ struct thread_struct
|
||||
|
||||
// ========= pcb->flags =========
|
||||
// 进程标志位
|
||||
#define PF_KTHREAD (1UL << 0) // 内核线程
|
||||
#define PF_NEED_SCHED (1UL << 1) // 进程需要被调度
|
||||
#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享
|
||||
#define PF_KFORK (1UL << 3) // 标志在内核态下调用fork(临时标记,do_fork()结束后会将其复位)
|
||||
#define PF_NOFREEZE (1UL << 4) // 当前进程不能被冻结
|
||||
#define PF_EXITING (1UL << 5) // 进程正在退出
|
||||
#define PF_WAKEKILL (1UL << 6) // 进程由于接收到终止信号唤醒
|
||||
#define PF_SIGNALED (1UL << 7) // 进程由于接收到信号而退出
|
||||
#define PF_KTHREAD (1UL << 0) // 内核线程
|
||||
#define PF_NEED_SCHED (1UL << 1) // 进程需要被调度
|
||||
#define PF_VFORK (1UL << 2) // 标志进程是否由于vfork而存在资源共享
|
||||
#define PF_KFORK (1UL << 3) // 标志在内核态下调用fork(临时标记,do_fork()结束后会将其复位)
|
||||
#define PF_NOFREEZE (1UL << 4) // 当前进程不能被冻结
|
||||
#define PF_EXITING (1UL << 5) // 进程正在退出
|
||||
#define PF_WAKEKILL (1UL << 6) // 进程由于接收到终止信号唤醒
|
||||
#define PF_SIGNALED (1UL << 7) // 进程由于接收到信号而退出
|
||||
#define PF_NEED_MIGRATE (1UL << 8) // 进程需要迁移到其他的核心
|
||||
|
||||
/**
|
||||
@ -87,9 +87,6 @@ struct process_control_block
|
||||
// pcb的名字
|
||||
char name[PCB_NAME_LEN];
|
||||
|
||||
// 内存空间分布结构体, 记录内存页表和程序段信息
|
||||
struct mm_struct *mm;
|
||||
|
||||
// 进程切换时保存的状态信息
|
||||
struct thread_struct *thread;
|
||||
|
||||
@ -111,7 +108,7 @@ struct process_control_block
|
||||
int64_t rt_time_slice; // 由实时调度器管理的时间片
|
||||
|
||||
// 进程拥有的文件描述符的指针数组(由Rust进行管理)
|
||||
void * fds;
|
||||
void *fds;
|
||||
|
||||
// 链表中的下一个pcb
|
||||
struct process_control_block *prev_pcb, *next_pcb;
|
||||
@ -136,11 +133,15 @@ struct process_control_block
|
||||
// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
|
||||
// 该字段存储要被迁移到的目标处理器核心号
|
||||
uint32_t migrate_to;
|
||||
void* fp_state;//Fpstate 用于用户态切换到内核态时保存浮点寄存器里面的值
|
||||
// Fpstate 用于用户态切换到内核态时保存浮点寄存器里面的值
|
||||
void *fp_state;
|
||||
// 指向进程的地址空间的arc指针.
|
||||
void *address_space;
|
||||
};
|
||||
|
||||
// 将进程的pcb和内核栈融合到一起,8字节对齐
|
||||
union proc_union {
|
||||
union proc_union
|
||||
{
|
||||
struct process_control_block pcb;
|
||||
ul stack[STACK_SIZE / sizeof(ul)];
|
||||
} __attribute__((aligned(8)));
|
||||
|
@ -38,7 +38,6 @@ extern void kernel_thread_func(void);
|
||||
extern void rs_procfs_unregister_pid(uint64_t);
|
||||
|
||||
ul _stack_start; // initial proc的栈基地址(虚拟地址)
|
||||
extern struct mm_struct initial_mm;
|
||||
extern struct signal_struct INITIAL_SIGNALS;
|
||||
extern struct sighand_struct INITIAL_SIGHAND;
|
||||
|
||||
@ -46,17 +45,20 @@ extern void process_exit_sighand(struct process_control_block *pcb);
|
||||
extern void process_exit_signal(struct process_control_block *pcb);
|
||||
extern void initial_proc_init_signal(struct process_control_block *pcb);
|
||||
extern void rs_process_exit_fpstate(struct process_control_block *pcb);
|
||||
extern void rs_drop_address_space(struct process_control_block *pcb);
|
||||
extern int process_init_files();
|
||||
extern int rs_init_stdio();
|
||||
extern uint64_t rs_do_execve(const char *filename, const char *const argv[], const char *const envp[], struct pt_regs *regs);
|
||||
extern uint64_t rs_exec_init_process(struct pt_regs *regs);
|
||||
|
||||
// 设置初始进程的PCB
|
||||
#define INITIAL_PROC(proc) \
|
||||
{ \
|
||||
.state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \
|
||||
.mm = &initial_mm, .thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \
|
||||
.virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \
|
||||
.wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL, .sig_blocked = 0, \
|
||||
.signal = &INITIAL_SIGNALS, .sighand = &INITIAL_SIGHAND, \
|
||||
#define INITIAL_PROC(proc) \
|
||||
{ \
|
||||
.state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \
|
||||
.thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \
|
||||
.virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \
|
||||
.wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL, .sig_blocked = 0, \
|
||||
.signal = &INITIAL_SIGNALS, .sighand = &INITIAL_SIGHAND, .address_space = NULL \
|
||||
}
|
||||
|
||||
struct thread_struct initial_thread = {
|
||||
@ -113,8 +115,10 @@ void __switch_to(struct process_control_block *prev, struct process_control_bloc
|
||||
// initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5,
|
||||
// initial_tss[0].ist6, initial_tss[0].ist7);
|
||||
|
||||
__asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs));
|
||||
__asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs));
|
||||
__asm__ __volatile__("movq %%fs, %0 \n\t"
|
||||
: "=a"(prev->thread->fs));
|
||||
__asm__ __volatile__("movq %%gs, %0 \n\t"
|
||||
: "=a"(prev->thread->gs));
|
||||
|
||||
__asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
|
||||
__asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
|
||||
@ -145,359 +149,6 @@ int process_open_exec_file(char *path)
|
||||
return fd;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief 加载elf格式的程序文件到内存中,并设置regs
|
||||
*
|
||||
* @param regs 寄存器
|
||||
* @param path 文件路径
|
||||
* @return int
|
||||
*/
|
||||
static int process_load_elf_file(struct pt_regs *regs, char *path)
|
||||
{
|
||||
int retval = 0;
|
||||
int fd = process_open_exec_file(path);
|
||||
|
||||
if ((long)fd < 0)
|
||||
{
|
||||
kdebug("(long)fd=%ld", (long)fd);
|
||||
return (unsigned long)fd;
|
||||
}
|
||||
|
||||
void *buf = kzalloc(PAGE_4K_SIZE, 0);
|
||||
uint64_t pos = 0;
|
||||
|
||||
retval = enter_syscall_int(SYS_LSEEK, fd, 0, SEEK_SET, 0, 0, 0, 0, 0);
|
||||
|
||||
// 读取 Elf64_Ehdr
|
||||
retval = enter_syscall_int(SYS_READ, fd, (uint64_t)buf, sizeof(Elf64_Ehdr), 0, 0, 0, 0, 0);
|
||||
|
||||
pos = enter_syscall_int(SYS_LSEEK, fd, 0, SEEK_CUR, 0, 0, 0, 0, 0);
|
||||
|
||||
if (retval != sizeof(Elf64_Ehdr))
|
||||
{
|
||||
kerror("retval=%d, not equal to sizeof(Elf64_Ehdr):%d", retval, sizeof(Elf64_Ehdr));
|
||||
}
|
||||
retval = 0;
|
||||
if (!elf_check(buf))
|
||||
{
|
||||
kerror("Not an ELF file: %s", path);
|
||||
retval = -ENOTSUP;
|
||||
goto load_elf_failed;
|
||||
}
|
||||
|
||||
#if ARCH(X86_64)
|
||||
// 暂时只支持64位的文件
|
||||
if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
|
||||
{
|
||||
kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
|
||||
retval = -EUNSUPPORTED;
|
||||
goto load_elf_failed;
|
||||
}
|
||||
Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
|
||||
// 暂时只支持AMD64架构
|
||||
if (ehdr.e_machine != EM_AMD64)
|
||||
{
|
||||
kerror("e_machine=%d", ehdr.e_machine);
|
||||
retval = -EUNSUPPORTED;
|
||||
goto load_elf_failed;
|
||||
}
|
||||
#else
|
||||
#error Unsupported architecture!
|
||||
#endif
|
||||
if (ehdr.e_type != ET_EXEC)
|
||||
{
|
||||
kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
|
||||
retval = -EUNSUPPORTED;
|
||||
goto load_elf_failed;
|
||||
}
|
||||
// kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
|
||||
regs->rip = ehdr.e_entry;
|
||||
current_pcb->mm->code_addr_start = ehdr.e_entry;
|
||||
|
||||
// kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize,
|
||||
// ehdr.e_phnum); 将指针移动到program header处
|
||||
|
||||
// 读取所有的phdr
|
||||
pos = ehdr.e_phoff;
|
||||
|
||||
pos = enter_syscall_int(SYS_LSEEK, fd, pos, SEEK_SET, 0, 0, 0, 0, 0);
|
||||
|
||||
memset(buf, 0, PAGE_4K_SIZE);
|
||||
|
||||
enter_syscall_int(SYS_READ, fd, (uint64_t)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, 0, 0, 0, 0, 0);
|
||||
|
||||
pos = enter_syscall_int(SYS_LSEEK, fd, 0, SEEK_CUR, 0, 0, 0, 0, 0);
|
||||
|
||||
if ((long)retval < 0)
|
||||
{
|
||||
kdebug("(unsigned long)filp=%d", (long)retval);
|
||||
retval = -ENOEXEC;
|
||||
goto load_elf_failed;
|
||||
}
|
||||
|
||||
Elf64_Phdr *phdr = buf;
|
||||
// 将程序加载到内存中
|
||||
for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
|
||||
{
|
||||
// kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld
|
||||
// phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
|
||||
|
||||
// 不是可加载的段
|
||||
if (phdr->p_type != PT_LOAD)
|
||||
continue;
|
||||
|
||||
int64_t remain_mem_size = phdr->p_memsz;
|
||||
int64_t remain_file_size = phdr->p_filesz;
|
||||
pos = phdr->p_offset;
|
||||
|
||||
uint64_t virt_base = 0;
|
||||
uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
|
||||
|
||||
if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
|
||||
virt_base = phdr->p_vaddr & PAGE_2M_MASK;
|
||||
else // 接下来只有4K页的映射
|
||||
virt_base = phdr->p_vaddr & PAGE_4K_MASK;
|
||||
|
||||
beginning_offset = phdr->p_vaddr - virt_base;
|
||||
remain_mem_size += beginning_offset;
|
||||
|
||||
while (remain_mem_size > 0)
|
||||
{
|
||||
// kdebug("loading...");
|
||||
int64_t map_size = 0;
|
||||
if (remain_mem_size >= PAGE_2M_SIZE)
|
||||
{
|
||||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||||
struct vm_area_struct *vma = NULL;
|
||||
int ret =
|
||||
mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||||
|
||||
// 防止内存泄露
|
||||
if (ret == -EEXIST)
|
||||
free_pages(Phy_to_2M_Page(pa), 1);
|
||||
else
|
||||
mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
|
||||
// mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
|
||||
io_mfence();
|
||||
memset((void *)virt_base, 0, PAGE_2M_SIZE);
|
||||
map_size = PAGE_2M_SIZE;
|
||||
}
|
||||
else
|
||||
{
|
||||
// todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
|
||||
map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
|
||||
// 循环分配4K大小内存块
|
||||
for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
|
||||
{
|
||||
uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
|
||||
|
||||
struct vm_area_struct *vma = NULL;
|
||||
int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS,
|
||||
NULL, &vma);
|
||||
// kdebug("virt_base=%#018lx", virt_base + off);
|
||||
if (val == -EEXIST)
|
||||
kfree(phys_2_virt(paddr));
|
||||
else
|
||||
mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
|
||||
// mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
|
||||
io_mfence();
|
||||
memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
pos = enter_syscall_int(SYS_LSEEK, fd, pos, SEEK_SET, 0, 0, 0, 0, 0);
|
||||
|
||||
int64_t val = 0;
|
||||
if (remain_file_size > 0)
|
||||
{
|
||||
int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
|
||||
|
||||
void *buf3 = kzalloc(PAGE_4K_SIZE, 0);
|
||||
while (to_trans > 0)
|
||||
{
|
||||
int64_t x = 0;
|
||||
|
||||
x = enter_syscall_int(SYS_READ, fd, (uint64_t)buf3, to_trans, 0, 0, 0, 0, 0);
|
||||
memcpy(virt_base + beginning_offset + val, buf3, x);
|
||||
val += x;
|
||||
to_trans -= x;
|
||||
|
||||
pos = enter_syscall_int(SYS_LSEEK, fd, 0, SEEK_CUR, 0, 0, 0, 0, 0);
|
||||
}
|
||||
kfree(buf3);
|
||||
|
||||
// kdebug("virt_base + beginning_offset=%#018lx, val=%d, to_trans=%d", virt_base + beginning_offset,
|
||||
// val,
|
||||
// to_trans);
|
||||
// kdebug("to_trans=%d", to_trans);
|
||||
}
|
||||
|
||||
if (val < 0)
|
||||
goto load_elf_failed;
|
||||
|
||||
remain_mem_size -= map_size;
|
||||
remain_file_size -= val;
|
||||
virt_base += map_size;
|
||||
}
|
||||
}
|
||||
|
||||
// 分配2MB的栈内存空间
|
||||
regs->rsp = current_pcb->mm->stack_start;
|
||||
regs->rbp = current_pcb->mm->stack_start;
|
||||
|
||||
{
|
||||
struct vm_area_struct *vma = NULL;
|
||||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||||
int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE,
|
||||
VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||||
if (val == -EEXIST)
|
||||
free_pages(Phy_to_2M_Page(pa), 1);
|
||||
else
|
||||
mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
|
||||
}
|
||||
|
||||
// 清空栈空间
|
||||
memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
|
||||
|
||||
load_elf_failed:;
|
||||
{
|
||||
enter_syscall_int(SYS_CLOSE, fd, 0, 0, 0, 0, 0, 0, 0);
|
||||
}
|
||||
|
||||
if (buf != NULL)
|
||||
kfree(buf);
|
||||
return retval;
|
||||
}
|
||||
/**
|
||||
* @brief 使当前进程去执行新的代码
|
||||
*
|
||||
* @param regs 当前进程的寄存器
|
||||
* @param path 可执行程序的路径
|
||||
* @param argv 参数列表
|
||||
* @param envp 环境变量
|
||||
* @return ul 错误码
|
||||
*/
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize("O0")
|
||||
ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
|
||||
{
|
||||
|
||||
// 当前进程正在与父进程共享地址空间,需要创建
|
||||
// 独立的地址空间才能使新程序正常运行
|
||||
if (current_pcb->flags & PF_VFORK)
|
||||
{
|
||||
// kdebug("proc:%d creating new mem space", current_pcb->pid);
|
||||
// 分配新的内存空间分布结构体
|
||||
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
||||
memset(new_mms, 0, sizeof(struct mm_struct));
|
||||
current_pcb->mm = new_mms;
|
||||
|
||||
// 分配顶层页表, 并设置顶层页表的物理地址
|
||||
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
||||
|
||||
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
||||
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
||||
|
||||
// 拷贝内核空间的页表指针
|
||||
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
|
||||
}
|
||||
|
||||
// 设置用户栈和用户堆的基地址
|
||||
unsigned long stack_start_addr = 0x6ffff0a00000UL;
|
||||
const uint64_t brk_start_addr = 0x700000000000UL;
|
||||
|
||||
process_switch_mm(current_pcb);
|
||||
|
||||
// 为用户态程序设置地址边界
|
||||
if (!(current_pcb->flags & PF_KTHREAD))
|
||||
current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
|
||||
|
||||
current_pcb->mm->code_addr_end = 0;
|
||||
current_pcb->mm->data_addr_start = 0;
|
||||
current_pcb->mm->data_addr_end = 0;
|
||||
current_pcb->mm->rodata_addr_start = 0;
|
||||
current_pcb->mm->rodata_addr_end = 0;
|
||||
current_pcb->mm->bss_start = 0;
|
||||
current_pcb->mm->bss_end = 0;
|
||||
current_pcb->mm->brk_start = brk_start_addr;
|
||||
current_pcb->mm->brk_end = brk_start_addr;
|
||||
current_pcb->mm->stack_start = stack_start_addr;
|
||||
|
||||
// 清除进程的vfork标志位
|
||||
current_pcb->flags &= ~PF_VFORK;
|
||||
|
||||
// 加载elf格式的可执行文件
|
||||
int tmp = process_load_elf_file(regs, path);
|
||||
|
||||
if (tmp < 0)
|
||||
goto exec_failed;
|
||||
|
||||
int argc = 0;
|
||||
char **dst_argv = NULL;
|
||||
// kdebug("stack_start_addr=%#018lx", stack_start_addr);
|
||||
// 拷贝参数列表
|
||||
if (argv != NULL)
|
||||
{
|
||||
|
||||
// 目标程序的argv基地址指针,最大8个参数
|
||||
dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
|
||||
uint64_t str_addr = (uint64_t)dst_argv;
|
||||
|
||||
for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
|
||||
{
|
||||
|
||||
if (*argv[argc] == NULL)
|
||||
break;
|
||||
|
||||
// 测量参数的长度(最大1023)
|
||||
int argv_len = strnlen_user(argv[argc], 1023) + 1;
|
||||
strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
|
||||
str_addr -= argv_len;
|
||||
dst_argv[argc] = (char *)str_addr;
|
||||
// 字符串加上结尾字符
|
||||
((char *)str_addr)[argv_len] = '\0';
|
||||
}
|
||||
|
||||
// 重新设定栈基址,并预留空间防止越界
|
||||
|
||||
stack_start_addr = str_addr - 8;
|
||||
}
|
||||
|
||||
// kdebug("stack_start_addr=%#018lx", stack_start_addr);
|
||||
// ==== 生成relibc所需的Stack结构体
|
||||
{
|
||||
uint64_t *ptr_stack = (uint64_t *)(stack_start_addr - 8);
|
||||
if (argc == 0)
|
||||
*ptr_stack = 0;
|
||||
else
|
||||
*ptr_stack = (uint64_t)dst_argv;
|
||||
ptr_stack--;
|
||||
*ptr_stack = argc;
|
||||
stack_start_addr -= 16;
|
||||
}
|
||||
|
||||
// 传递参数(旧版libc)
|
||||
regs->rdi = argc;
|
||||
regs->rsi = (uint64_t)dst_argv;
|
||||
// 设置用户栈基地址
|
||||
current_pcb->mm->stack_start = stack_start_addr;
|
||||
regs->rsp = regs->rbp = stack_start_addr;
|
||||
// kdebug("execve ok");
|
||||
// 设置进程的段选择子为用户态可访问
|
||||
regs->cs = USER_CS | 3;
|
||||
regs->ds = USER_DS | 3;
|
||||
regs->ss = USER_DS | 0x3;
|
||||
regs->rflags = 0x200246;
|
||||
regs->rax = 1;
|
||||
regs->es = 0;
|
||||
|
||||
return 0;
|
||||
|
||||
exec_failed:;
|
||||
process_do_exit(tmp);
|
||||
}
|
||||
#pragma GCC pop_options
|
||||
|
||||
/**
|
||||
* @brief 初始化实时进程rt_pcb
|
||||
*
|
||||
@ -527,43 +178,24 @@ ul initial_kernel_thread(ul arg)
|
||||
kinfo("initial proc running...\targ:%#018lx, vruntime=%d", arg, current_pcb->virtual_runtime);
|
||||
int val = 0;
|
||||
val = scm_enable_double_buffer();
|
||||
|
||||
io_mfence();
|
||||
rs_init_stdio();
|
||||
io_mfence();
|
||||
// block_io_scheduler_init();
|
||||
ahci_init();
|
||||
mount_root_fs();
|
||||
io_mfence();
|
||||
rs_virtio_probe();
|
||||
io_mfence();
|
||||
|
||||
// 使用单独的内核线程来初始化usb驱动程序
|
||||
// 注释:由于目前usb驱动程序不完善,因此先将其注释掉
|
||||
// int usb_pid = kernel_thread(usb_init, 0, 0);
|
||||
|
||||
kinfo("LZ4 lib Version=%s", LZ4_versionString());
|
||||
io_mfence();
|
||||
__rust_demo_func();
|
||||
// while (1)
|
||||
// {
|
||||
// /* code */
|
||||
// }
|
||||
|
||||
// 对completion完成量进行测试
|
||||
// __test_completion();
|
||||
|
||||
// // 对一些组件进行单元测试
|
||||
uint64_t tpid[] = {
|
||||
// ktest_start(ktest_test_bitree, 0), ktest_start(ktest_test_kfifo, 0), ktest_start(ktest_test_mutex, 0),
|
||||
// ktest_start(ktest_test_idr, 0),
|
||||
// usb_pid,
|
||||
};
|
||||
|
||||
// kinfo("Waiting test thread exit...");
|
||||
// // 等待测试进程退出
|
||||
// for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
|
||||
// waitpid(tpid[i], NULL, NULL);
|
||||
// kinfo("All test done.");
|
||||
|
||||
// 测试实时进程
|
||||
|
||||
// struct process_control_block *test_rt1 = kthread_run_rt(&test, NULL, "test rt");
|
||||
// kdebug("process:rt test kthread is created!!!!");
|
||||
io_mfence();
|
||||
|
||||
// 准备切换到用户态
|
||||
struct pt_regs *regs;
|
||||
@ -588,8 +220,8 @@ ul initial_kernel_thread(ul arg)
|
||||
// 这里的设计思路和switch_to类似 加载用户态程序:shell.elf
|
||||
__asm__ __volatile__("movq %1, %%rsp \n\t"
|
||||
"pushq %2 \n\t"
|
||||
"jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
|
||||
"m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/bin/shell.elf"), "c"(NULL),
|
||||
"jmp rs_exec_init_process \n\t" ::"D"(current_pcb->thread->rsp),
|
||||
"m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "c"(NULL),
|
||||
"d"(NULL)
|
||||
: "memory");
|
||||
|
||||
@ -678,9 +310,15 @@ pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
|
||||
* @brief 初始化进程模块
|
||||
* ☆前置条件:已完成系统调用模块的初始化
|
||||
*/
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize("O0")
|
||||
void process_init()
|
||||
{
|
||||
kinfo("Initializing process...");
|
||||
// rs_test_buddy();
|
||||
io_mfence();
|
||||
rs_process_init();
|
||||
io_mfence();
|
||||
|
||||
initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
|
||||
|
||||
@ -692,18 +330,23 @@ void process_init()
|
||||
list_init(&initial_proc_union.pcb.list);
|
||||
wait_queue_init(&initial_proc_union.pcb.wait_child_proc_exit, NULL);
|
||||
|
||||
io_mfence();
|
||||
// 初始化init进程的signal相关的信息
|
||||
initial_proc_init_signal(current_pcb);
|
||||
kdebug("Initial process to init files");
|
||||
io_mfence();
|
||||
process_init_files();
|
||||
kdebug("Initial process init files ok");
|
||||
io_mfence();
|
||||
|
||||
// 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
|
||||
current_pcb->virtual_runtime = 0;
|
||||
|
||||
barrier();
|
||||
kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
|
||||
barrier();
|
||||
kthread_mechanism_init(); // 初始化kthread机制
|
||||
barrier();
|
||||
|
||||
initial_proc_union.pcb.state = PROC_RUNNING;
|
||||
initial_proc_union.pcb.preempt_count = 0;
|
||||
@ -712,6 +355,7 @@ void process_init()
|
||||
// 将IDLE进程的虚拟运行时间设置为一个很大的数值
|
||||
current_pcb->virtual_runtime = (1UL << 60);
|
||||
}
|
||||
#pragma GCC pop_options
|
||||
|
||||
/**
|
||||
* @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
|
||||
@ -786,57 +430,7 @@ int process_wakeup_immediately(struct process_control_block *pcb)
|
||||
*/
|
||||
uint64_t process_exit_mm(struct process_control_block *pcb)
|
||||
{
|
||||
if (pcb->flags & CLONE_VM)
|
||||
return 0;
|
||||
if (pcb->mm == NULL)
|
||||
{
|
||||
kdebug("pcb->mm==NULL");
|
||||
return 0;
|
||||
}
|
||||
if (pcb->mm->pgd == NULL)
|
||||
{
|
||||
kdebug("pcb->mm->pgd==NULL");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// // 获取顶层页表
|
||||
pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
|
||||
|
||||
// 循环释放VMA中的内存
|
||||
struct vm_area_struct *vma = pcb->mm->vmas;
|
||||
while (vma != NULL)
|
||||
{
|
||||
|
||||
struct vm_area_struct *cur_vma = vma;
|
||||
vma = cur_vma->vm_next;
|
||||
|
||||
uint64_t pa;
|
||||
mm_unmap_vma(pcb->mm, cur_vma, &pa);
|
||||
|
||||
uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
|
||||
|
||||
// 释放内存
|
||||
switch (size)
|
||||
{
|
||||
case PAGE_4K_SIZE:
|
||||
kfree(phys_2_virt(pa));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
vm_area_del(cur_vma);
|
||||
vm_area_free(cur_vma);
|
||||
}
|
||||
|
||||
// 释放顶层页表
|
||||
kfree(current_pgd);
|
||||
if (unlikely(pcb->mm->vmas != NULL))
|
||||
{
|
||||
kwarn("pcb.mm.vmas!=NULL");
|
||||
}
|
||||
// 释放内存空间分布结构体
|
||||
kfree(pcb->mm);
|
||||
|
||||
rs_drop_address_space(pcb);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -857,9 +451,6 @@ void process_exit_thread(struct process_control_block *pcb)
|
||||
*/
|
||||
int process_release_pcb(struct process_control_block *pcb)
|
||||
{
|
||||
// 释放子进程的页表
|
||||
// BUG 暂时注释process_exit_mm
|
||||
// process_exit_mm(pcb);
|
||||
if ((pcb->flags & PF_KTHREAD)) // 释放内核线程的worker private结构体
|
||||
free_kthread_struct(pcb);
|
||||
|
||||
@ -871,6 +462,8 @@ int process_release_pcb(struct process_control_block *pcb)
|
||||
process_exit_signal(pcb);
|
||||
rs_process_exit_fpstate(pcb);
|
||||
rs_procfs_unregister_pid(pcb->pid);
|
||||
// 释放进程的地址空间
|
||||
process_exit_mm(pcb);
|
||||
// 释放当前pcb
|
||||
kfree(pcb);
|
||||
return 0;
|
||||
|
@ -31,18 +31,18 @@ extern int process_exit_files(struct process_control_block *pcb);
|
||||
*/
|
||||
|
||||
// 设置初始进程的tss
|
||||
#define INITIAL_TSS \
|
||||
{ \
|
||||
.reserved0 = 0, .rsp0 = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), \
|
||||
.rsp1 = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), \
|
||||
.rsp2 = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .reserved1 = 0, .ist1 = 0xffff800000007c00, \
|
||||
.ist2 = 0xffff800000007c00, .ist3 = 0xffff800000007c00, .ist4 = 0xffff800000007c00, \
|
||||
.ist5 = 0xffff800000007c00, .ist6 = 0xffff800000007c00, .ist7 = 0xffff800000007c00, .reserved2 = 0, \
|
||||
.reserved3 = 0, .io_map_base_addr = 0 \
|
||||
#define INITIAL_TSS \
|
||||
{ \
|
||||
.reserved0 = 0, .rsp0 = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), \
|
||||
.rsp1 = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), \
|
||||
.rsp2 = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)), .reserved1 = 0, .ist1 = 0xffff800000007c00, \
|
||||
.ist2 = 0xffff800000007c00, .ist3 = 0xffff800000007c00, .ist4 = 0xffff800000007c00, \
|
||||
.ist5 = 0xffff800000007c00, .ist6 = 0xffff800000007c00, .ist7 = 0xffff800000007c00, .reserved2 = 0, \
|
||||
.reserved3 = 0, .io_map_base_addr = 0 \
|
||||
}
|
||||
|
||||
#define GET_CURRENT_PCB \
|
||||
"movq %rsp, %rbx \n\t" \
|
||||
#define GET_CURRENT_PCB \
|
||||
"movq %rsp, %rbx \n\t" \
|
||||
"andq $-32768, %rbx\n\t"
|
||||
|
||||
/**
|
||||
@ -51,23 +51,23 @@ extern int process_exit_files(struct process_control_block *pcb);
|
||||
* 然后调用__switch_to切换栈,配置其他信息,最后恢复下一个进程的rax rbp。
|
||||
*/
|
||||
|
||||
#define switch_to(prev, next) \
|
||||
do \
|
||||
{ \
|
||||
__asm__ __volatile__("pushq %%rbp \n\t" \
|
||||
"pushq %%rax \n\t" \
|
||||
"movq %%rsp, %0 \n\t" \
|
||||
"movq %2, %%rsp \n\t" \
|
||||
"leaq 2f(%%rip), %%rax \n\t" \
|
||||
"movq %%rax, %1 \n\t" \
|
||||
"pushq %3 \n\t" \
|
||||
"jmp __switch_to \n\t" \
|
||||
"2: \n\t" \
|
||||
"popq %%rax \n\t" \
|
||||
"popq %%rbp \n\t" \
|
||||
: "=m"(prev->thread->rsp), "=m"(prev->thread->rip) \
|
||||
: "m"(next->thread->rsp), "m"(next->thread->rip), "D"(prev), "S"(next) \
|
||||
: "memory", "rax"); \
|
||||
#define switch_to(prev, next) \
|
||||
do \
|
||||
{ \
|
||||
__asm__ __volatile__("pushq %%rbp \n\t" \
|
||||
"pushq %%rax \n\t" \
|
||||
"movq %%rsp, %0 \n\t" \
|
||||
"movq %2, %%rsp \n\t" \
|
||||
"leaq 2f(%%rip), %%rax \n\t" \
|
||||
"movq %%rax, %1 \n\t" \
|
||||
"pushq %3 \n\t" \
|
||||
"jmp __switch_to \n\t" \
|
||||
"2: \n\t" \
|
||||
"popq %%rax \n\t" \
|
||||
"popq %%rbp \n\t" \
|
||||
: "=m"(prev->thread->rsp), "=m"(prev->thread->rip) \
|
||||
: "m"(next->thread->rsp), "m"(next->thread->rip), "D"(prev), "S"(next) \
|
||||
: "memory", "rax"); \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
@ -112,17 +112,6 @@ int process_wakeup(struct process_control_block *pcb);
|
||||
*/
|
||||
int process_wakeup_immediately(struct process_control_block *pcb);
|
||||
|
||||
/**
|
||||
* @brief 使当前进程去执行新的代码
|
||||
*
|
||||
* @param regs 当前进程的寄存器
|
||||
* @param path 可执行程序的路径
|
||||
* @param argv 参数列表
|
||||
* @param envp 环境变量
|
||||
* @return ul 错误码
|
||||
*/
|
||||
ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[]);
|
||||
|
||||
/**
|
||||
* @brief 释放进程的页表
|
||||
*
|
||||
@ -166,10 +155,11 @@ int process_release_pcb(struct process_control_block *pcb);
|
||||
* @param next 下一个进程的pcb
|
||||
*
|
||||
*/
|
||||
#define process_switch_mm(next_pcb) \
|
||||
do \
|
||||
{ \
|
||||
asm volatile("movq %0, %%cr3 \n\t" ::"r"(next_pcb->mm->pgd) : "memory"); \
|
||||
#define process_switch_mm(next_pcb) \
|
||||
do \
|
||||
{ \
|
||||
asm volatile("movq %0, %%cr3 \n\t" ::"r"(next_pcb->mm->pgd) \
|
||||
: "memory"); \
|
||||
} while (0)
|
||||
// flush_tlb();
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user