new: mstat()函数,查询内存信息

This commit is contained in:
fslongjin
2022-08-06 23:31:25 +08:00
parent fdd5d3cf66
commit fb51b0dd6f
8 changed files with 270 additions and 7 deletions

View File

@ -2,7 +2,7 @@
CFLAGS += -I .
all:mm.o slab.o
all:mm.o slab.o mm-stat.o
mm.o: mm.c
gcc $(CFLAGS) -c mm.c -o mm.o
@ -10,3 +10,5 @@ mm.o: mm.c
slab.o: slab.c
gcc $(CFLAGS) -c slab.c -o slab.o
mm-stat.o: mm-stat.c
gcc $(CFLAGS) -c mm-stat.c -o mm-stat.o

195
kernel/mm/mm-stat.c Normal file
View File

@ -0,0 +1,195 @@
/**
* @file mm-stat.c
* @author longjin(longjin@RinGoTek.cn)
* @brief 查询内存信息
* @version 0.1
* @date 2022-08-06
*
* @copyright Copyright (c) 2022
*
*/
#include "mm.h"
#include "slab.h"
#include <common/errno.h>
#include <process/ptrace.h>
extern const struct slab kmalloc_cache_group[16];
static int __empty_2m_pages(int zone);
static int __count_in_using_2m_pages(int zone);
static uint64_t __count_kmalloc_free();
static uint64_t __count_kmalloc_using();
static uint64_t __count_kmalloc_total();
uint64_t sys_mm_stat(struct pt_regs *regs);
/**
* @brief 获取指定zone中的空闲2M页的数量
*
* @param zone 内存zone号
* @return int 空闲2M页数量
*/
static int __count_empty_2m_pages(int zone)
{
int zone_start = 0, zone_end = 0;
uint64_t attr = 0;
switch (zone)
{
case ZONE_DMA:
// DMA区域
zone_start = 0;
zone_end = ZONE_DMA_INDEX;
attr |= PAGE_PGT_MAPPED;
break;
case ZONE_NORMAL:
zone_start = ZONE_DMA_INDEX;
zone_end = ZONE_NORMAL_INDEX;
attr |= PAGE_PGT_MAPPED;
break;
case ZONE_UNMAPPED_IN_PGT:
zone_start = ZONE_NORMAL_INDEX;
zone_end = ZONE_UNMAPPED_INDEX;
attr = 0;
break;
default:
kerror("In __count_empty_2m_pages: param: zone invalid.");
// 返回错误码
return -EINVAL;
break;
}
uint64_t result = 0;
for (int i = zone_start; i <= zone_end; ++i)
{
result += (memory_management_struct.zones_struct + i)->count_pages_free;
}
return result;
}
/**
* @brief 获取指定zone中的正在使用的2M页的数量
*
* @param zone 内存zone号
* @return int 空闲2M页数量
*/
static int __count_in_using_2m_pages(int zone)
{
int zone_start = 0, zone_end = 0;
uint64_t attr = 0;
switch (zone)
{
case ZONE_DMA:
// DMA区域
zone_start = 0;
zone_end = ZONE_DMA_INDEX;
attr |= PAGE_PGT_MAPPED;
break;
case ZONE_NORMAL:
zone_start = ZONE_DMA_INDEX;
zone_end = ZONE_NORMAL_INDEX;
attr |= PAGE_PGT_MAPPED;
break;
case ZONE_UNMAPPED_IN_PGT:
zone_start = ZONE_NORMAL_INDEX;
zone_end = ZONE_UNMAPPED_INDEX;
attr = 0;
break;
default:
kerror("In __count_in_using_2m_pages: param: zone invalid.");
// 返回错误码
return -EINVAL;
break;
}
uint64_t result = 0;
for (int i = zone_start; i <= zone_end; ++i)
{
result += (memory_management_struct.zones_struct + i)->count_pages_using;
}
return result;
}
/**
* @brief 计算kmalloc缓冲区中的空闲内存
*
* @return uint64_t 空闲内存(字节)
*/
static uint64_t __count_kmalloc_free()
{
uint64_t result = 0;
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
{
result += kmalloc_cache_group[i].size * kmalloc_cache_group[i].count_total_free;
}
return result;
}
/**
* @brief 计算kmalloc缓冲区中已使用的内存
*
* @return uint64_t 已使用的内存(字节)
*/
static uint64_t __count_kmalloc_using()
{
uint64_t result = 0;
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
{
result += kmalloc_cache_group[i].size * kmalloc_cache_group[i].count_total_using;
}
return result;
}
/**
* @brief 计算kmalloc缓冲区中总共占用的内存
*
* @return uint64_t 缓冲区占用的内存(字节)
*/
static uint64_t __count_kmalloc_total()
{
uint64_t result = 0;
for (int i = 0; i < sizeof(kmalloc_cache_group) / sizeof(struct slab); ++i)
{
result += kmalloc_cache_group[i].size * (kmalloc_cache_group[i].count_total_free + kmalloc_cache_group[i].count_total_using);
}
return result;
}
/**
* @brief 获取系统当前的内存信息(未上锁,不一定精准)
*
* @return struct mm_stat_t 内存信息结构体
*/
struct mm_stat_t mm_stat()
{
struct mm_stat_t tmp = {0};
// 统计物理页的信息
tmp.used = __count_in_using_2m_pages(ZONE_NORMAL) * PAGE_2M_SIZE;
tmp.free = __count_empty_2m_pages(ZONE_NORMAL) * PAGE_2M_SIZE;
tmp.total = tmp.used + tmp.free;
tmp.shared = 0;
// 统计kmalloc slab中的信息
tmp.cache_free = __count_kmalloc_free();
tmp.cache_used = __count_kmalloc_using();
tmp.available = tmp.free + tmp.cache_free;
return tmp;
}
/**
* @brief 获取内存信息的系统调用
*
* @param r8 返回的内存信息结构体的地址
* @return uint64_t
*/
uint64_t sys_mstat(struct pt_regs *regs)
{
if (regs->r8 == NULL)
return -EINVAL;
struct mm_stat_t stat = mm_stat();
if (regs->cs == (USER_CS | 0x3))
copy_to_user((void *)regs->r8, &stat, sizeof(struct mm_stat_t));
else
memcpy((void *)regs->r8, &stat, sizeof(struct mm_stat_t));
return 0;
}

View File

@ -145,7 +145,7 @@
do \
{ \
ul tmp; \
io_mfence();\
io_mfence(); \
__asm__ __volatile__( \
"movq %%cr3, %0\n\t" \
"movq %0, %%cr3\n\t" \
@ -227,6 +227,21 @@ struct Page
ul age;
};
/**
* @brief 系统内存信息结构体(单位:字节)
*
*/
struct mm_stat_t
{
uint64_t total; // 计算机的总内存数量大小
uint64_t used; // 已使用的内存大小
uint64_t free; // 空闲物理页所占的内存大小
uint64_t shared; // 共享的内存大小
uint64_t cache_used; // 位于slab缓冲区中的已使用的内存大小
uint64_t cache_free; // 位于slab缓冲区中的空闲的内存大小
uint64_t available; // 系统总空闲内存大小包括kmalloc缓冲区
};
extern struct memory_desc memory_management_struct;
// 导出内核程序的几个段的起止地址
@ -443,4 +458,11 @@ int8_t mm_check_page_table(uint64_t *ptr);
* @param offset 新的地址相对于原地址的偏移量
* @return uint64_t
*/
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset);
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset);
/**
* @brief 获取系统当前的内存信息(未上锁,不一定精准)
*
* @return struct mm_stat_t 内存信息结构体
*/
struct mm_stat_t mm_stat();