添加rust重构版本的HPET驱动和tsc驱动,并使用HPET校准tsc频率和cpu总线频率 (#412)

* 添加rust重构版本的HPET驱动和tsc驱动,并使用HPET校准tsc频率和cpu总线频率

* 把hpet.c移动到arch文件夹下
This commit is contained in:
LoGin 2023-10-26 23:08:39 +08:00 committed by GitHub
parent ad1d649edd
commit fbe6becd6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 946 additions and 391 deletions

View File

@ -172,7 +172,8 @@
"cmd_test.h": "c",
"cmpxchg.h": "c",
"mman.h": "c",
"clocksource.h": "c"
"clocksource.h": "c",
"ata.h": "c"
},
"C_Cpp.errorSquiggles": "enabled",
"esbonio.sphinx.confDir": "",

View File

@ -40,7 +40,7 @@ ida = { path = "src/libs/ida" }
# 构建时依赖项
[build-dependencies]
bindgen = "0.61.0"
cc = { version = "1.0.83", features = ["parallel"] }
[dependencies.lazy_static]
version = "1.4.0"

View File

@ -1,13 +1,21 @@
extern crate bindgen;
extern crate cc;
// use ::std::env;
use std::path::PathBuf;
use cc::Build;
fn main() {
// Tell cargo to look for shared libraries in the specified directory
println!("cargo:rustc-link-search=src");
println!("cargo:rerun-if-changed=src/include/bindings/wrapper.h");
generate_bindings();
CFilesBuilder::build();
}
fn generate_bindings() {
// let crate_dir = env::var("CARGO_MANIFEST_DIR").unwrap();
let out_path = PathBuf::from(String::from("src/include/bindings/"));
@ -45,3 +53,58 @@ fn main() {
.expect("Couldn't write bindings!");
}
}
/// 构建项目的c文件
struct CFilesBuilder;
impl CFilesBuilder {
fn build() {
let mut c = cc::Build::new();
Self::setup_global_flags(&mut c);
Self::setup_defines(&mut c);
Self::setup_global_include_dir(&mut c);
Self::setup_files(&mut c);
c.compile("dragonos_kernel_cfiles");
}
fn setup_global_flags(c: &mut Build) {
c.flag("-mcmodel=large")
.flag("-fno-builtin")
.flag("-nostdlib")
.flag("-fno-stack-protector")
.flag("-fno-pie")
.flag("-Wno-expansion-to-defined")
.flag("-Wno-unused-parameter")
.flag("-m64")
.flag("-O1");
}
fn setup_defines(c: &mut Build) {
if let Ok(k) = std::env::var("EMULATOR") {
c.define("EMULATOR", Some(k.as_str()));
} else {
c.define("EMULATOR", "__NO_EMULATION__");
}
{
#[cfg(target_arch = "x86_64")]
c.define("__x86_64__", None);
}
c.define("PIC", "_INTR_APIC_");
}
fn setup_global_include_dir(c: &mut Build) {
c.include("src/include");
c.include("src");
c.include(".");
#[cfg(target_arch = "x86_64")]
c.include("src/arch/x86_64/include");
}
/// 设置需要编译的文件
fn setup_files(c: &mut Build) {
c.file("src/arch/x86_64/driver/hpet.c");
}
}

View File

@ -1,4 +1,6 @@
use super::setup::setup_arch;
use crate::time::TimeArch;
use super::{driver::tsc::TSCManager, setup::setup_arch, CurrentTimeArch};
#[no_mangle]
unsafe extern "C" fn rs_setup_arch() -> i32 {
@ -6,3 +8,14 @@ unsafe extern "C" fn rs_setup_arch() -> i32 {
.map(|_| 0)
.unwrap_or_else(|e| e.to_posix_errno());
}
/// 获取当前的时间戳
#[no_mangle]
unsafe extern "C" fn rs_get_cycles() -> u64 {
return CurrentTimeArch::get_cycles() as u64;
}
#[no_mangle]
unsafe extern "C" fn rs_tsc_get_cpu_khz() -> u64 {
return TSCManager::cpu_khz();
}

View File

@ -0,0 +1,31 @@
use super::{
hpet::{hpet_init, hpet_instance},
tsc::TSCManager,
};
#[no_mangle]
unsafe extern "C" fn rs_hpet_init() -> i32 {
hpet_init()
.map(|_| 0)
.unwrap_or_else(|e| e.to_posix_errno())
}
#[no_mangle]
unsafe extern "C" fn rs_hpet_enable() -> i32 {
hpet_instance()
.hpet_enable()
.map(|_| 0)
.unwrap_or_else(|e| e.to_posix_errno())
}
#[no_mangle]
unsafe extern "C" fn rs_tsc_init() -> i32 {
TSCManager::init()
.map(|_| 0)
.unwrap_or_else(|e| e.to_posix_errno())
}
#[no_mangle]
unsafe extern "C" fn rs_handle_hpet_irq(timer_num: u32) {
hpet_instance().handle_irq(timer_num);
}

View File

@ -0,0 +1,26 @@
#include <common/glib.h>
#include <common/kprint.h>
#include <driver/interrupt/apic/apic.h>
extern void rs_handle_hpet_irq(uint32_t timer_num);
hardware_intr_controller HPET_intr_controller =
{
.enable = apic_ioapic_enable,
.disable = apic_ioapic_disable,
.install = apic_ioapic_install,
.uninstall = apic_ioapic_uninstall,
.ack = apic_ioapic_edge_ack,
};
void HPET_handler(uint64_t number, uint64_t param, struct pt_regs *regs)
{
rs_handle_hpet_irq(param);
}
void c_hpet_register_irq()
{
struct apic_IO_APIC_RTE_entry entry;
apic_make_rte_entry(&entry, 34, IO_APIC_FIXED, DEST_PHYSICAL, IDLE, POLARITY_HIGH, IRR_RESET, EDGE_TRIGGER, MASKED, 0);
irq_register(34, &entry, &HPET_handler, 0, &HPET_intr_controller, "HPET0");
}

View File

@ -0,0 +1,251 @@
use core::{
ffi::c_void,
intrinsics::unlikely,
mem::size_of,
ptr::NonNull,
sync::atomic::{AtomicBool, Ordering},
};
use acpi::HpetInfo;
use crate::{
driver::{
acpi::acpi_manager,
timers::hpet::{HpetRegisters, HpetTimerRegisters},
},
exception::softirq::{softirq_vectors, SoftirqNumber},
kdebug, kerror, kinfo,
libs::{
rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
volatile::volwrite,
},
mm::{
mmio_buddy::{mmio_pool, MMIOSpaceGuard},
PhysAddr,
},
syscall::SystemError,
time::timer::{clock, timer_get_first_expire, update_timer_jiffies},
};
extern "C" {
fn c_hpet_register_irq() -> c_void;
}
static mut HPET_INSTANCE: Option<Hpet> = None;
#[inline(always)]
pub fn hpet_instance() -> &'static Hpet {
unsafe { HPET_INSTANCE.as_ref().unwrap() }
}
pub struct Hpet {
info: HpetInfo,
_mmio_guard: MMIOSpaceGuard,
inner: RwLock<InnerHpet>,
enabled: AtomicBool,
}
struct InnerHpet {
registers_ptr: NonNull<HpetRegisters>,
timer_registers_ptr: NonNull<HpetTimerRegisters>,
}
impl Hpet {
/// HPET0 中断间隔为500us
pub const HPET0_INTERVAL_USEC: u64 = 500;
fn new(mut hpet_info: HpetInfo) -> Result<Self, SystemError> {
let paddr = PhysAddr::new(hpet_info.base_address);
let map_size = size_of::<HpetRegisters>();
let mmio = mmio_pool().create_mmio(map_size)?;
unsafe { mmio.map_phys(paddr, map_size)? };
let hpet = unsafe {
(mmio.vaddr().data() as *const HpetRegisters)
.as_ref()
.unwrap()
};
let tm_num = hpet.timers_num();
kinfo!("HPET has {} timers", tm_num);
hpet_info.hpet_number = tm_num as u8;
drop(hpet);
drop(mmio);
if tm_num == 0 {
return Err(SystemError::ENODEV);
}
let bytes_to_map = size_of::<HpetRegisters>()
+ hpet_info.hpet_number as usize * size_of::<HpetTimerRegisters>();
let mmio = mmio_pool().create_mmio(bytes_to_map)?;
unsafe { mmio.map_phys(paddr, bytes_to_map)? };
let ptr = NonNull::new(mmio.vaddr().data() as *mut HpetRegisters).unwrap();
let timer_ptr = NonNull::new(
(mmio.vaddr().data() + size_of::<HpetRegisters>()) as *mut HpetTimerRegisters,
)
.unwrap();
let hpet = Hpet {
info: hpet_info,
_mmio_guard: mmio,
inner: RwLock::new(InnerHpet {
registers_ptr: ptr,
timer_registers_ptr: timer_ptr,
}),
enabled: AtomicBool::new(false),
};
return Ok(hpet);
}
pub fn enabled(&self) -> bool {
self.enabled.load(Ordering::SeqCst)
}
/// 使能HPET
pub(super) fn hpet_enable(&self) -> Result<(), SystemError> {
// 这里是临时糊代码的需要在apic重构的时候修改
let (inner_guard, regs) = unsafe { self.hpet_regs_mut() };
let freq = regs.frequency();
kdebug!("HPET frequency: {} Hz", freq);
let ticks = Self::HPET0_INTERVAL_USEC * freq / 1000000;
if ticks <= 0 || ticks > freq * 8 {
kerror!("HPET enable: ticks '{ticks}' is invalid");
return Err(SystemError::EINVAL);
}
if unlikely(regs.timers_num() == 0) {
return Err(SystemError::ENODEV);
}
unsafe { regs.write_main_counter_value(0) };
drop(regs);
drop(inner_guard);
let (inner_guard, timer_reg) = unsafe { self.timer_mut(0).ok_or(SystemError::ENODEV) }?;
let timer_reg = NonNull::new(timer_reg as *mut HpetTimerRegisters).unwrap();
unsafe {
// 设置定时器0为周期定时边沿触发默认投递到IO APIC的2号引脚(看conf寄存器的高32bit哪一位被置1则可以投递到哪一个I/O apic引脚)
volwrite!(timer_reg, config, 0x004c);
volwrite!(timer_reg, comparator_value, ticks);
}
drop(timer_reg);
drop(inner_guard);
// todo!("register irq in C");
unsafe { c_hpet_register_irq() };
self.enabled.store(true, Ordering::SeqCst);
let (inner_guard, regs) = unsafe { self.hpet_regs_mut() };
// 置位旧设备中断路由兼容标志位、定时器组使能标志位
unsafe { regs.write_general_config(3) };
drop(regs);
drop(inner_guard);
kinfo!("HPET enabled");
return Ok(());
}
fn inner(&self) -> RwLockReadGuard<InnerHpet> {
self.inner.read()
}
fn inner_mut(&self) -> RwLockWriteGuard<InnerHpet> {
self.inner.write()
}
#[allow(dead_code)]
fn timer(&self, index: u8) -> Option<(RwLockReadGuard<InnerHpet>, &HpetTimerRegisters)> {
let inner = self.inner();
if index >= self.info.hpet_number {
return None;
}
let timer_regs = unsafe {
inner
.timer_registers_ptr
.as_ptr()
.add(index as usize)
.as_ref()
.unwrap()
};
return Some((inner, timer_regs));
}
unsafe fn timer_mut(
&self,
index: u8,
) -> Option<(RwLockWriteGuard<InnerHpet>, &mut HpetTimerRegisters)> {
let inner = self.inner_mut();
if index >= self.info.hpet_number {
return None;
}
let timer_regs = unsafe {
inner
.timer_registers_ptr
.as_ptr()
.add(index as usize)
.as_mut()
.unwrap()
};
return Some((inner, timer_regs));
}
unsafe fn hpet_regs(&self) -> (RwLockReadGuard<InnerHpet>, &HpetRegisters) {
let inner = self.inner();
let regs = unsafe { inner.registers_ptr.as_ref() };
return (inner, regs);
}
unsafe fn hpet_regs_mut(&self) -> (RwLockWriteGuard<InnerHpet>, &mut HpetRegisters) {
let mut inner = self.inner_mut();
let regs = unsafe { inner.registers_ptr.as_mut() };
return (inner, regs);
}
pub fn main_counter_value(&self) -> u64 {
let (inner_guard, regs) = unsafe { self.hpet_regs() };
let value = regs.main_counter_value();
drop(regs);
drop(inner_guard);
return value;
}
pub fn period(&self) -> u64 {
let (inner_guard, regs) = unsafe { self.hpet_regs() };
let period = regs.counter_clock_period();
kdebug!("HPET period: {}", period);
drop(regs);
drop(inner_guard);
return period;
}
/// 处理HPET的中断
pub(super) fn handle_irq(&self, timer_num: u32) {
if timer_num == 0 {
update_timer_jiffies(Self::HPET0_INTERVAL_USEC);
if let Ok(first_expire) = timer_get_first_expire() {
if first_expire <= clock() {
softirq_vectors().raise_softirq(SoftirqNumber::TIMER);
}
}
}
}
}
pub fn hpet_init() -> Result<(), SystemError> {
let hpet_info = HpetInfo::new(acpi_manager().tables().unwrap()).map_err(|e| {
kerror!("Failed to get HPET info: {:?}", e);
SystemError::ENODEV
})?;
let hpet_instance = Hpet::new(hpet_info)?;
unsafe {
HPET_INSTANCE = Some(hpet_instance);
}
return Ok(());
}

View File

@ -0,0 +1,3 @@
mod c_adapter;
pub mod hpet;
pub mod tsc;

View File

@ -0,0 +1,384 @@
use core::{
cmp::{max, min},
intrinsics::unlikely,
};
use crate::{
arch::{io::PortIOArch, CurrentIrqArch, CurrentPortIOArch, CurrentTimeArch},
driver::acpi::pmtmr::{ACPI_PM_OVERRUN, PMTMR_TICKS_PER_SEC},
exception::InterruptArch,
kdebug, kerror, kinfo, kwarn,
syscall::SystemError,
time::TimeArch,
};
use super::hpet::hpet_instance;
/// The clock frequency of the i8253/i8254 PIT
const PIT_TICK_RATE: u64 = 1193182;
#[derive(Debug)]
pub struct TSCManager;
static mut TSC_KHZ: u64 = 0;
static mut CPU_KHZ: u64 = 0;
impl TSCManager {
const DEFAULT_THRESHOLD: u64 = 0x20000;
/// 初始化TSC
///
/// 目前由于未支持acpi pm timer, 因此调用该函数时HPET应当完成初始化否则将无法校准TSC
///
/// 参考 https://opengrok.ringotek.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#1511
pub fn init() -> Result<(), SystemError> {
let cpuid = x86::cpuid::CpuId::new();
let feat = cpuid.get_feature_info().ok_or(SystemError::ENODEV)?;
if !feat.has_tsc() {
kerror!("TSC is not available");
return Err(SystemError::ENODEV);
}
if unsafe { TSC_KHZ == 0 } {
if let Err(e) = Self::determine_cpu_tsc_frequency(false) {
kerror!("Failed to determine CPU TSC frequency: {:?}", e);
// todo: mark TSC as unstable clock source
return Err(e);
}
}
// todo: register TSC as clock source and deal with unstable clock source
return Ok(());
}
/// 获取TSC和CPU总线的频率
///
/// ## 参数
///
/// - `early`:是否在早期初始化
///
/// 参考 https://opengrok.ringotek.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#1438
fn determine_cpu_tsc_frequency(early: bool) -> Result<(), SystemError> {
if unlikely(Self::cpu_khz() != 0 || Self::tsc_khz() != 0) {
kwarn!("TSC and CPU frequency already determined");
}
if early {
// todo: 先根据cpuid或者读取msr或者pit来测量TSC和CPU总线的频率
todo!("detect TSC and CPU frequency by cpuid or msr or pit");
} else {
// 使用pit来测量TSC和CPU总线的频率
Self::set_cpu_khz(Self::calibrate_cpu_by_pit_hpet_ptimer()?);
}
// 认为非0的TSC频率是可靠的并且使用它来检查CPU总线的频率
if Self::tsc_khz() == 0 {
Self::set_tsc_khz(Self::cpu_khz());
} else if (Self::cpu_khz() as i64 - Self::tsc_khz() as i64).abs() * 10
> Self::cpu_khz() as i64
{
// 如果TSC和CPU总线的频率相差太大那么认为CPU总线的频率是不可靠的,使用TSC的频率
Self::set_cpu_khz(Self::tsc_khz());
}
if Self::cpu_khz() == 0 {
kerror!("Failed to determine CPU frequency");
return Err(SystemError::ENODEV);
}
kinfo!(
"Detected {}.{} MHz processor",
Self::cpu_khz() / 1000,
Self::cpu_khz() % 1000
);
kinfo!(
"Detected {}.{} MHz TSC",
Self::tsc_khz() / 1000,
Self::tsc_khz() % 1000
);
return Ok(());
}
/// 测量CPU总线的频率
///
/// 使用pit、hpet、ptimer来测量CPU总线的频率
fn calibrate_cpu_by_pit_hpet_ptimer() -> Result<u64, SystemError> {
let hpet = hpet_instance().enabled();
kdebug!(
"Calibrating TSC with {}",
if hpet { "HPET" } else { "PMTIMER" }
);
let mut tsc_pit_min = u64::MAX;
let mut tsc_ref_min = u64::MAX;
// 默认的校准参数
let cal_ms = 10;
let cal_latch = PIT_TICK_RATE / (1000 / cal_ms);
let cal_pit_loops = 1000;
// 如果第一轮校准失败,那么使用这些参数(因为虚拟化平台的问题,第一轮校准可能失败)
let cal2_ms = 50;
let cal2_latch = PIT_TICK_RATE / (1000 / cal2_ms);
let cal2_pit_loops = 5000;
let mut latch = cal_latch;
let mut loopmin = cal_pit_loops;
let mut ms = cal_ms;
let mut global_ref1 = 0;
let mut global_ref2 = 0;
for i in 0..3 {
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
let (tsc1, ref1) = Self::read_refs(hpet);
let tsc_pit_khz = Self::pit_calibrate_tsc(latch, ms, loopmin).unwrap_or(u64::MAX);
let (tsc2, ref2) = Self::read_refs(hpet);
drop(irq_guard);
global_ref1 = ref1;
global_ref2 = ref2;
// 选用最小的tsc_pit_khz
tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
// HPET或者PTIMER可能是不可用的
if ref1 == ref2 {
kdebug!("HPET/PMTIMER not available");
continue;
}
// 检查采样是否被打断
if tsc1 == u64::MAX || tsc2 == u64::MAX {
continue;
}
let mut tsc2 = (tsc2 - tsc1) * 1000000;
if hpet {
tsc2 = Self::calc_hpet_ref(tsc2, ref1, ref2);
} else {
tsc2 = Self::calc_pmtimer_ref(tsc2, ref1, ref2);
}
tsc_ref_min = min(tsc_ref_min, tsc2);
// 检查与参考值的误差
let mut delta = tsc_pit_min * 100;
delta /= tsc_ref_min;
// 如果误差在10%以内,那么认为测量成功
// 返回参考值,因为它是更精确的
if delta >= 90 && delta <= 110 {
kinfo!(
"PIT calibration matches {}. {} loops",
if hpet { "HPET" } else { "PMTIMER" },
i + 1
);
return Ok(tsc_ref_min);
}
if i == 1 && tsc_pit_min == u64::MAX {
latch = cal2_latch;
ms = cal2_ms;
loopmin = cal2_pit_loops;
}
}
if tsc_pit_min == u64::MAX {
kwarn!("Unable to calibrate against PIT");
// 如果没有参考值那么禁用tsc
if (!hpet) && (global_ref1 == 0) && (global_ref2 == 0) {
kwarn!("No reference (HPET/PMTIMER) available");
return Err(SystemError::ENODEV);
}
if tsc_ref_min == u64::MAX {
kwarn!("Unable to calibrate against HPET/PMTIMER");
return Err(SystemError::ENODEV);
}
kinfo!(
"Using {} reference calibration",
if hpet { "HPET" } else { "PMTIMER" }
);
return Ok(tsc_ref_min);
}
// We don't have an alternative source, use the PIT calibration value
if (!hpet) && (global_ref1 == 0) && (global_ref2 == 0) {
kinfo!("Using PIT calibration value");
return Ok(tsc_pit_min);
}
// The alternative source failed, use the PIT calibration value
if tsc_ref_min == u64::MAX {
kwarn!("Unable to calibrate against HPET/PMTIMER, using PIT calibration value");
return Ok(tsc_pit_min);
}
// The calibration values differ too much. In doubt, we use
// the PIT value as we know that there are PMTIMERs around
// running at double speed. At least we let the user know:
kwarn!(
"PIT calibration deviates from {}: tsc_pit_min={}, tsc_ref_min={}",
if hpet { "HPET" } else { "PMTIMER" },
tsc_pit_min,
tsc_ref_min
);
kinfo!("Using PIT calibration value");
return Ok(tsc_pit_min);
}
/// 尝试使用PIT来校准tsc时间并且返回tsc的频率khz
/// 如果失败那么返回None
///
/// 参考 https://opengrok.ringotek.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#389
fn pit_calibrate_tsc(latch: u64, ms: u64, loopmin: u64) -> Option<u64> {
unsafe {
// Set the Gate high, disable speaker
let d = (CurrentPortIOArch::in8(0x61) & (!0x02)) | 0x01;
CurrentPortIOArch::out8(0x61, d);
// Setup CTC channel 2* for mode 0, (interrupt on terminal
// count mode), binary count. Set the latch register to 50ms
// (LSB then MSB) to begin countdown.
CurrentPortIOArch::out8(0x43, 0xb0);
CurrentPortIOArch::out8(0x42, (latch & 0xff) as u8);
CurrentPortIOArch::out8(0x42, ((latch >> 8) & 0xff) as u8);
}
let mut tsc = CurrentTimeArch::get_cycles() as u64;
let t1 = tsc;
let mut t2 = tsc;
let mut pitcnt = 0u64;
let mut tscmax = 0u64;
let mut tscmin = u64::MAX;
while unsafe { (CurrentPortIOArch::in8(0x61) & 0x20) == 0 } {
t2 = CurrentTimeArch::get_cycles() as u64;
let delta = t2 - tsc;
tsc = t2;
tscmin = min(tscmin, delta);
tscmax = max(tscmax, delta);
pitcnt += 1;
}
// Sanity checks:
//
// If we were not able to read the PIT more than loopmin
// times, then we have been hit by a massive SMI
//
// If the maximum is 10 times larger than the minimum,
// then we got hit by an SMI as well.
if pitcnt < loopmin || tscmax > 10 * tscmin {
return None;
}
let mut delta = t2 - t1;
delta /= ms;
return Some(delta);
}
/// 读取tsc和参考值
///
/// ## 参数
///
/// - `hpet_enabled`是否启用hpet
///
/// ## 返回
///
/// - `Ok((tsc, ref))`tsc和参考值
///
/// 参考 https://opengrok.ringotek.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#317
fn read_refs(hpet_enabled: bool) -> (u64, u64) {
let thresh = if Self::tsc_khz() == 0 {
Self::DEFAULT_THRESHOLD
} else {
Self::tsc_khz() >> 5
};
let mut ref_ret = 0;
for _ in 0..5 {
let t1 = CurrentTimeArch::get_cycles() as u64;
if hpet_enabled {
ref_ret = hpet_instance().main_counter_value();
} else {
todo!("read pmtimer")
}
let t2 = CurrentTimeArch::get_cycles() as u64;
if (t2 - t1) < thresh {
return (t2, ref_ret);
}
}
kwarn!("TSCManager: Failed to read reference value, tsc delta too high");
return (u64::MAX, ref_ret);
}
/// 根据HPET的参考值计算tsc的频率
///
/// https://opengrok.ringotek.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#339
fn calc_hpet_ref(mut deltatsc: u64, ref1: u64, mut ref2: u64) -> u64 {
if ref2 <= ref1 {
ref2 += 0x100000000;
}
ref2 -= ref1;
let mut tmp = ref2 * hpet_instance().period();
tmp /= 1000000;
deltatsc /= tmp;
return deltatsc;
}
/// 根据PMtimer的参考值计算tsc的频率
fn calc_pmtimer_ref(mut deltatsc: u64, ref1: u64, mut ref2: u64) -> u64 {
if unlikely(ref1 == 0 && ref2 == 0) {
return u64::MAX;
}
if ref2 < ref1 {
ref2 += ACPI_PM_OVERRUN;
}
ref2 -= ref1;
let mut tmp = ref2 * 1000000000;
tmp /= PMTMR_TICKS_PER_SEC;
deltatsc /= tmp;
return deltatsc;
}
pub fn tsc_khz() -> u64 {
unsafe { TSC_KHZ }
}
pub fn cpu_khz() -> u64 {
unsafe { CPU_KHZ }
}
fn set_cpu_khz(khz: u64) {
unsafe {
CPU_KHZ = khz;
}
}
fn set_tsc_khz(khz: u64) {
unsafe {
TSC_KHZ = khz;
}
}
}

View File

@ -3,6 +3,7 @@ pub mod asm;
mod acpi;
mod c_adapter;
pub mod cpu;
pub mod driver;
pub mod fpu;
pub mod interrupt;
pub mod ipc;
@ -17,6 +18,7 @@ pub mod sched;
pub mod setup;
pub mod smp;
pub mod syscall;
pub mod time;
pub use self::pci::pci::X86_64PciArch as PciArch;
@ -29,3 +31,4 @@ pub use crate::arch::asm::pio::X86_64PortIOArch as CurrentPortIOArch;
pub use kvm::X86_64KVMArch as KVMArch;
pub use crate::arch::ipc::signal::X86_64SignalArch as CurrentSignalArch;
pub use crate::arch::time::X86_64TimeArch as CurrentTimeArch;

View File

@ -0,0 +1,9 @@
use crate::time::TimeArch;
pub struct X86_64TimeArch;
impl TimeArch for X86_64TimeArch {
fn get_cycles() -> usize {
unsafe { x86::time::rdtsc() as usize }
}
}

View File

@ -59,17 +59,3 @@ struct cpu_core_info_t
};
extern struct cpu_core_info_t cpu_core_info[MAX_CPU_NUM];
/**
* @brief cpu核心晶振频率
*
* @return uint32_t cpu核心晶振频率
*/
uint32_t cpu_get_core_crysral_freq();
/**
* @brief tsc频率hz
*
* @return uint64_t
*/
uint64_t cpu_get_tsc_freq();

View File

@ -5,7 +5,7 @@
#pragma once
//引入对bool类型的支持
// 引入对bool类型的支持
#include <stdbool.h>
#include <DragonOS/stdint.h>
#include <common/stddef.h>
@ -13,7 +13,6 @@
#include <common/compiler.h>
#include <common/list.h>
#include <asm/asm.h>
/**
@ -64,7 +63,6 @@ static __always_inline ul ALIGN(const ul addr, const ul _align)
return (ul)((addr + _align - 1) & (~(_align - 1)));
}
void *memset(void *dst, unsigned char C, ul size)
{
@ -189,7 +187,6 @@ void io_out32(unsigned short port, unsigned int value)
__asm__ __volatile__("cld;rep;outsw;mfence;" ::"d"(port), "S"(buffer), "c"(nr) \
: "memory")
/**
* @brief
*
@ -245,7 +242,6 @@ static inline uint64_t copy_from_user(void *dst, void *src, uint64_t size)
*/
static inline uint64_t copy_to_user(void *dst, void *src, uint64_t size)
{
uint64_t tmp0, tmp1;
if (verify_area((uint64_t)src, size))
return 0;
@ -262,8 +258,8 @@ static inline uint64_t copy_to_user(void *dst, void *src, uint64_t size)
// : "=&c"(size), "=&D"(tmp0), "=&S"(tmp1)
// : "r"(size & 7), "0"(size >> 3), "1"(dst), "2"(src)
// : "memory");
memcpy(dst,src,size);
memcpy(dst, src, size);
return size;
}
@ -285,7 +281,6 @@ static __always_inline void __write8b(uint64_t vaddr, uint64_t value)
{
asm volatile("movq %%rdx, 0(%%rax)" ::"a"(vaddr), "d"(value)
: "memory");
}
/**
@ -299,7 +294,6 @@ static __always_inline void __write4b(uint64_t vaddr, uint32_t value)
{
asm volatile("movl %%edx, 0(%%rax)" ::"a"(vaddr), "d"(value)
: "memory");
}
/**
@ -338,7 +332,7 @@ static __always_inline uint32_t __read4b(uint64_t vaddr)
/**
* @brief src搬运到dst
*
*
* @param dst
* @param src
* @param size

View File

@ -22,6 +22,7 @@ pub mod bus;
mod c_adapter;
pub mod glue;
pub mod old;
pub mod pmtmr;
mod sysfs;
static mut __ACPI_TABLE: Option<acpi::AcpiTables<AcpiHandlerImpl>> = None;

View File

@ -0,0 +1,4 @@
pub const ACPI_PM_OVERRUN: u64 = 1 << 24;
/// Number of PMTMR ticks expected during calibration run
pub const PMTMR_TICKS_PER_SEC: u64 = 3579545;

View File

@ -11,6 +11,9 @@ static spinlock_t apic_timer_init_lock = {1};
// bsp 是否已经完成apic时钟初始化
static bool bsp_initialized = false;
extern uint64_t rs_get_cycles();
extern uint64_t rs_tsc_get_cpu_khz();
/**
* @brief AP核的apic时钟
*
@ -59,7 +62,15 @@ uint64_t apic_timer_install(ul irq_num, void *arg)
io_mfence();
// 设置初始计数
apic_timer_set_init_cnt(*(uint64_t *)arg);
uint64_t cpu_khz = rs_tsc_get_cpu_khz();
// 疑惑这里使用khz吗
// 我觉得应该是hz但是由于旧的代码是测量出initcnt的而不是计算的
// 然后我发现使用hz会导致计算出来的initcnt太大导致系统卡顿而khz的却能跑
// TODO 这里需要进一步研究
uint64_t init_cnt = cpu_khz * APIC_TIMER_INTERVAL / (1000 * APIC_TIMER_DIVISOR);
kdebug("cpu_khz: %ld, init_cnt: %ld", cpu_khz, init_cnt);
apic_timer_set_init_cnt(init_cnt);
io_mfence();
// 填写LVT
apic_timer_set_LVT(APIC_TIMER_IRQ_NUM, 1, APIC_LVT_Timer_Periodic);
@ -101,17 +112,11 @@ void apic_timer_handler(uint64_t number, uint64_t param, struct pt_regs *regs)
void apic_timer_init()
{
if (apic_timer_ticks_result == 0)
{
kBUG("APIC timer ticks in 5ms is equal to ZERO!");
while (1)
hlt();
}
uint64_t flags = 0;
spin_lock_irqsave(&apic_timer_init_lock, flags);
kinfo("Initializing apic timer for cpu %d", rs_current_pcb_cpuid());
io_mfence();
irq_register(APIC_TIMER_IRQ_NUM, &apic_timer_ticks_result, &apic_timer_handler, 0, &apic_timer_intr_controller,
irq_register(APIC_TIMER_IRQ_NUM, NULL, &apic_timer_handler, 0, &apic_timer_intr_controller,
"apic timer");
io_mfence();
if (rs_current_pcb_cpuid() == 0)

View File

@ -13,7 +13,7 @@ use crate::include::bindings::bindings::{
c_irq_install, c_irq_uninstall, pt_regs, ul, EAGAIN, EINVAL,
};
use crate::libs::volatile::{volread, volwrite, Volatile, VolatileReadable, VolatileWritable};
use crate::libs::volatile::{volread, volwrite, Volatile};
/// MSIX表的一项
#[repr(C)]

View File

@ -1,283 +0,0 @@
#include "HPET.h"
#include <common/kprint.h>
#include <common/compiler.h>
#include <mm/mm.h>
#include <driver/interrupt/apic/apic.h>
#include <exception/softirq.h>
#include <time/timer.h>
#include <process/process.h>
#include <sched/sched.h>
#include <smp/ipi.h>
#include <driver/interrupt/apic/apic_timer.h>
#include <common/spinlock.h>
#include <process/preempt.h>
#pragma GCC push_options
#pragma GCC optimize("O0")
static struct acpi_HPET_description_table_t *hpet_table;
static uint64_t HPET_REG_BASE = 0;
static uint32_t HPET_COUNTER_CLK_PERIOD = 0; // 主计数器时间精度(单位:飞秒)
static uint64_t HPET_freq = 0; // 主计时器频率
static uint8_t HPET_NUM_TIM_CAP = 0; // 定时器数量
static char measure_apic_timer_flag; // 初始化apic时钟时所用到的标志变量
// 测定tsc频率的临时变量
static uint64_t test_tsc_start = 0;
static uint64_t test_tsc_end = 0;
extern uint64_t Cpu_tsc_freq; // 导出自cpu.c
extern struct rtc_time_t rtc_now; // 导出全局墙上时钟
extern uint64_t rs_update_timer_jiffies(uint64_t);
extern uint32_t rs_current_pcb_pid();
enum
{
GCAP_ID = 0x00,
GEN_CONF = 0x10,
GINTR_STA = 0x20,
MAIN_CNT = 0xf0,
TIM0_CONF = 0x100,
TIM0_COMP = 0x108,
TIM1_CONF = 0x120,
TIM1_COMP = 0x128,
TIM2_CONF = 0x140,
TIM2_COMP = 0x148,
TIM3_CONF = 0x160,
TIM3_COMP = 0x168,
TIM4_CONF = 0x180,
TIM4_COMP = 0x188,
TIM5_CONF = 0x1a0,
TIM5_COMP = 0x1a8,
TIM6_CONF = 0x1c0,
TIM6_COMP = 0x1c8,
TIM7_CONF = 0x1e0,
TIM7_COMP = 0x1e8,
};
hardware_intr_controller HPET_intr_controller =
{
.enable = apic_ioapic_enable,
.disable = apic_ioapic_disable,
.install = apic_ioapic_install,
.uninstall = apic_ioapic_uninstall,
.ack = apic_ioapic_edge_ack,
};
void HPET_handler(uint64_t number, uint64_t param, struct pt_regs *regs)
{
// printk("(HPET)");
switch (param)
{
case 0: // 定时器0中断
rs_update_timer_jiffies(HPET0_INTERVAL);
/*
// 将HEPT中断消息转发到ap:1处理器
ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0xc8,
ICR_APIC_FIXED, ICR_ALL_EXCLUDE_Self, true, 0);
*/
// 若当前时间比定时任务的时间间隔大,则进入中断下半部
if (rs_timer_get_first_expire() <= rs_clock())
rs_raise_softirq(TIMER_SIRQ);
break;
default:
kwarn("Unsupported HPET irq: %d.", number);
break;
}
}
/**
* @brief apic定时器以及tsc的频率的中断回调函数
*
*/
void HPET_measure_handler(uint64_t number, uint64_t param, struct pt_regs *regs)
{
test_tsc_end = rdtsc();
// 停止apic定时器
// 写入每1ms的ticks
apic_timer_stop();
apic_timer_ticks_result = 0xFFFFFFFF - apic_timer_get_current();
measure_apic_timer_flag = true;
}
/**
* @brief apic定时器以及tsc的频率
*
*/
void HPET_measure_freq()
{
rs_preempt_disable();
kinfo("Measuring local APIC timer's frequency...");
const uint64_t interval = APIC_TIMER_INTERVAL; // 测量给定时间内的计数
struct apic_IO_APIC_RTE_entry entry;
// 使用I/O APIC 的IRQ2接收hpet定时器0的中断
apic_make_rte_entry(&entry, 34, IO_APIC_FIXED, DEST_PHYSICAL, IDLE, POLARITY_HIGH, IRR_RESET, EDGE_TRIGGER, MASKED, 0);
// 计算HPET0间隔多少个时钟周期触发一次中断
uint64_t clks_to_intr = 0.001 * interval * HPET_freq;
// kdebug("clks_to_intr=%#ld", clks_to_intr);
if (clks_to_intr <= 0 || clks_to_intr > (HPET_freq * 8))
{
kBUG("HPET0: Numof clocks to generate interrupt is INVALID! value=%lld", clks_to_intr);
while (1)
hlt();
}
__write8b(HPET_REG_BASE + MAIN_CNT, 0);
io_mfence();
__write8b((HPET_REG_BASE + TIM0_CONF), 0x0044); // 设置定时器0为非周期边沿触发默认投递到IO APIC的2号引脚
io_mfence();
__write8b(HPET_REG_BASE + TIM0_COMP, clks_to_intr);
io_mfence();
measure_apic_timer_flag = false;
// 注册中断
irq_register(34, &entry, &HPET_measure_handler, 0, &HPET_intr_controller, "HPET0 measure");
sti();
// 设置div16
apic_timer_stop();
apic_timer_set_div(APIC_TIMER_DIVISOR);
// 设置初始计数
apic_timer_set_init_cnt(0xFFFFFFFF);
// 启动apic定时器
apic_timer_set_LVT(151, 0, APIC_LVT_Timer_One_Shot);
__write8b(HPET_REG_BASE + GEN_CONF, 3); // 置位旧设备中断路由兼容标志位、定时器组使能标志位,开始计时
// 顺便测定tsc频率
test_tsc_start = rdtsc();
io_mfence();
while (measure_apic_timer_flag == false)
;
irq_unregister(34);
*(uint64_t *)(HPET_REG_BASE + GEN_CONF) = 0; // 停用HPET定时器
io_mfence();
kinfo("Local APIC timer's freq: %d ticks/ms.", apic_timer_ticks_result);
// 计算tsc频率
Cpu_tsc_freq = (test_tsc_end - test_tsc_start) * (1000UL / interval);
kinfo("TSC frequency: %ldMHz", Cpu_tsc_freq / 1000000);
rs_preempt_enable();
}
/**
* @brief HPET周期中断5ms
*
*/
void HPET_enable()
{
struct apic_IO_APIC_RTE_entry entry;
// 使用I/O APIC 的IRQ2接收hpet定时器0的中断
apic_make_rte_entry(&entry, 34, IO_APIC_FIXED, DEST_PHYSICAL, IDLE, POLARITY_HIGH, IRR_RESET, EDGE_TRIGGER, MASKED, 0);
// 计算HPET0间隔多少个时钟周期触发一次中断
uint64_t clks_to_intr = 0.000001 * HPET0_INTERVAL * HPET_freq;
// kdebug("clks_to_intr=%#ld", clks_to_intr);
if (clks_to_intr <= 0 || clks_to_intr > (HPET_freq * 8))
{
kBUG("HPET0: Numof clocks to generate interrupt is INVALID! value=%lld", clks_to_intr);
while (1)
hlt();
}
// kdebug("[HPET0] conf register=%#018lx conf register[63:32]=%#06lx", (*(uint64_t *)(HPET_REG_BASE + TIM0_CONF)), ((*(uint64_t *)(HPET_REG_BASE + TIM0_CONF))>>32)&0xffffffff);
__write8b(HPET_REG_BASE + MAIN_CNT, 0);
io_mfence();
__write8b(HPET_REG_BASE + TIM0_CONF, 0x004c); // 设置定时器0为周期定时边沿触发默认投递到IO APIC的2号引脚(看conf寄存器的高32bit哪一位被置1则可以投递到哪一个I/O apic引脚)
io_mfence();
__write8b(HPET_REG_BASE + TIM0_COMP, clks_to_intr);
io_mfence();
// kdebug("[HPET0] conf register after modify=%#018lx", ((*(uint64_t *)(HPET_REG_BASE + TIM0_CONF))));
// kdebug("[HPET1] conf register =%#018lx", ((*(uint64_t *)(HPET_REG_BASE + TIM1_CONF))));
// 注册中断
irq_register(34, &entry, &HPET_handler, 0, &HPET_intr_controller, "HPET0");
io_mfence();
__write8b(HPET_REG_BASE + GEN_CONF, 3); // 置位旧设备中断路由兼容标志位、定时器组使能标志位
kinfo("HPET0 enabled.");
io_mfence();
}
int HPET_init()
{
kinfo("Initializing HPET...");
// 从acpi获取hpet结构体
ul hpet_table_addr = 0;
acpi_iter_SDT(acpi_get_HPET, &hpet_table_addr);
// ACPI表没有HPET尝试读HPTC
if (hpet_table_addr == 0)
{
kwarn("ACPI: HPET Table Not Found On This Computer!");
if (RCBA_vaddr != 0)
{
kerror("NO HPET found on this computer!");
uint64_t hptc_vaddr = (RCBA_vaddr + 0x3404UL);
// enable HPET
io_mfence();
// 读取HPET配置寄存器地址
switch (__read4b(hptc_vaddr) & 0x3)
{
case 0:
HPET_REG_BASE = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + 0xfed00000;
break;
case 1:
HPET_REG_BASE = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + 0xfed01000;
break;
case 2:
HPET_REG_BASE = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + 0xfed02000;
break;
case 3:
HPET_REG_BASE = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + 0xfed03000;
break;
default:
break;
}
// enable HPET
__write4b(hptc_vaddr, 0x80);
io_mfence();
}
else
{
// 没有RCBA寄存器采用默认值
HPET_REG_BASE = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + 0xfed00000;
kwarn("There is no RCBA register on this computer, and HPET regs base use default value.");
}
}
else // ACPI表中有HPET表
{
hpet_table = (struct acpi_HPET_description_table_t *)hpet_table_addr;
// kdebug("hpet_table_addr=%#018lx", hpet_table_addr);
// 由于这段内存与io/apic的映射在同一物理页内因此不需要重复映射
HPET_REG_BASE = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + hpet_table->address;
kdebug("hpet_table->address=%#018lx", hpet_table->address);
}
kdebug("HPET_REG_BASE=%#018lx", HPET_REG_BASE);
// 读取计时精度并计算频率
uint64_t tmp;
tmp = __read8b(HPET_REG_BASE + GCAP_ID);
HPET_COUNTER_CLK_PERIOD = (tmp >> 32) & 0xffffffff;
HPET_freq = 1e15 / HPET_COUNTER_CLK_PERIOD;
HPET_NUM_TIM_CAP = (tmp >> 8) & 0x1f; // 读取计时器数量
kdebug("HPET_COUNTER_CLK_PERIOD=%#018lx", HPET_COUNTER_CLK_PERIOD);
kinfo("Total HPET timers: %d", HPET_NUM_TIM_CAP);
kinfo("HPET driver Initialized.");
}
#pragma GCC pop_options

View File

@ -1,21 +0,0 @@
#pragma once
#include <common/glib.h>
#include <driver/acpi/acpi.h>
#define E_HPET_INIT_FAILED 1
#define HPET0_INTERVAL 500 // HPET0定时器的中断间隔为500us
int HPET_init();
/**
* @brief apic定时器以及tsc的频率
*
*/
void HPET_measure_freq();
/**
* @brief HPET周期中断5ms
*
*/
void HPET_enable();

View File

@ -1,6 +1,6 @@
all: HPET.o
all:
CFLAGS += -I .
HPET.o: HPET/HPET.c
$(CC) $(CFLAGS) -c HPET/HPET.c -o HPET/HPET.o
#HPET.o: HPET/HPET.c
# $(CC) $(CFLAGS) -c HPET/HPET.c -o HPET/HPET.o

View File

@ -0,0 +1,73 @@
use core::ptr::NonNull;
use crate::libs::volatile::Volatile;
#[repr(C, packed)]
pub struct HpetRegisters {
capabilties: Volatile<u32>,
period: Volatile<u32>,
_reserved0: Volatile<u64>,
general_config: Volatile<u64>,
_reserved1: Volatile<u64>,
general_intr_status: Volatile<u64>,
_reserved2: [Volatile<u64>; 25],
main_counter_value: Volatile<u64>,
_reserved3: Volatile<u64>,
// 这里后面跟着各个定时器的寄存器数量由capabilties决定
}
impl HpetRegisters {
/// 获取 HPET Timer 的数量
pub fn timers_num(&self) -> usize {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
let cap = unsafe { volread!(p, capabilties) };
(cap >> 8) as usize & 0x1f
}
/// 获取 HPET 计数器的周期
pub fn counter_clock_period(&self) -> u64 {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
let period = unsafe { volread!(p, period) };
period as u64
}
/// 获取 HPET 计数器的频率
pub fn frequency(&self) -> u64 {
10000_0000_0000_000 / self.counter_clock_period()
}
pub fn main_counter_value(&self) -> u64 {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
let main_counter_value = unsafe { volread!(p, main_counter_value) };
main_counter_value
}
pub unsafe fn write_main_counter_value(&mut self, value: u64) {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
volwrite!(p, main_counter_value, value);
}
#[allow(dead_code)]
pub fn general_config(&self) -> u64 {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
unsafe { volread!(p, general_config) }
}
pub unsafe fn write_general_config(&mut self, value: u64) {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
volwrite!(p, general_config, value);
}
#[allow(dead_code)]
pub fn general_intr_status(&self) -> u64 {
let p = NonNull::new(self as *const HpetRegisters as *mut HpetRegisters).unwrap();
unsafe { volread!(p, general_intr_status) }
}
}
#[repr(C, packed)]
pub struct HpetTimerRegisters {
pub config: Volatile<u64>,
pub comparator_value: Volatile<u64>,
pub fsb_interrupt_route: [Volatile<u64>; 2],
}

View File

@ -1 +1,2 @@
pub mod hpet;
pub mod rtc;

View File

@ -100,32 +100,3 @@ void cpu_cpuid(uint32_t mop, uint32_t sop, uint32_t *eax, uint32_t *ebx, uint32_
: "0"(mop), "2"(sop)
: "memory");
}
/**
* @brief cpu核心晶振频率Write-on-box的值
*
* hint: cpu无法提供该数据0
* @return uint32_t cpu核心晶振频率
*/
uint32_t cpu_get_core_crysral_freq()
{
uint32_t a = 0, b = 0, c = 0, d = 0;
// cpu_cpuid(0x15, 0, &a, &b, &c, &d);
__asm__ __volatile__("cpuid \n\t"
: "=a"(a), "=b"(b), "=c"(c), "=d"(d)
: "0"(0x15), "2"(0)
: "memory");
// kdebug("Cpu_cpuid_max_Basic_mop = %#03x, a=%ld, b=%ld, c=%ld, d=%ld", Cpu_cpuid_max_Basic_mop, a, b, c, d);
return c;
}
/**
* @brief tsc频率hz
*
* @return uint64_t
*/
uint64_t cpu_get_tsc_freq()
{
return Cpu_tsc_freq;
}

View File

@ -1002,6 +1002,43 @@ pub fn textui_putchar(
}
}
/// 向默认窗口输出一个字符串
pub fn textui_putstr(
string: &str,
fr_color: FontColor,
bk_color: FontColor,
) -> Result<(), SystemError> {
let window = if unsafe { TEXTUI_IS_INIT } {
let fw = textui_framework();
let w = fw.current_window.clone();
Some(w)
} else {
None
};
let mut guard = window.as_ref().map(|w| w.lock());
for character in string.chars() {
if unsafe { TEXTUI_IS_INIT } {
guard.as_mut().unwrap().textui_putchar_window(
character,
fr_color,
bk_color,
ENABLE_PUT_TO_WINDOW.load(Ordering::SeqCst),
)?;
} else {
no_init_textui_putchar_window(
character,
fr_color,
bk_color,
ENABLE_PUT_TO_WINDOW.load(Ordering::SeqCst),
)?;
}
}
return Ok(());
}
/// 初始化text ui框架
#[no_mangle]

View File

@ -1,6 +1,6 @@
use core::fmt::{self, Write};
use super::lib_ui::textui::{textui_putchar, FontColor};
use super::lib_ui::textui::{textui_putstr, FontColor};
#[macro_export]
macro_rules! print {
@ -77,15 +77,11 @@ impl PrintkWriter {
/// 并输出白底黑字
/// @param str: 要写入的字符
pub fn __write_string(&mut self, s: &str) {
for c in s.chars() {
textui_putchar(c, FontColor::WHITE, FontColor::BLACK).ok();
}
textui_putstr(s, FontColor::WHITE, FontColor::BLACK).ok();
}
pub fn __write_string_color(&self, fr_color: FontColor, bk_color: FontColor, s: &str) {
for c in s.chars() {
textui_putchar(c, fr_color, bk_color).ok();
}
textui_putstr(s, fr_color, bk_color).ok();
}
}

View File

@ -147,7 +147,9 @@ impl<T: Copy> VolatileWritable<T> for *mut Volatile<T> {
/// ```
macro_rules! volread {
($nonnull:expr, $field:ident) => {
VolatileReadable::vread(core::ptr::addr_of!((*$nonnull.as_ptr()).$field))
crate::libs::volatile::VolatileReadable::vread(core::ptr::addr_of!(
(*$nonnull.as_ptr()).$field
))
};
}
@ -166,7 +168,10 @@ macro_rules! volread {
/// ```
macro_rules! volwrite {
($nonnull:expr, $field:ident, $value:expr) => {
VolatileWritable::vwrite(core::ptr::addr_of_mut!((*$nonnull.as_ptr()).$field), $value)
crate::libs::volatile::VolatileWritable::vwrite(
core::ptr::addr_of_mut!((*$nonnull.as_ptr()).$field),
$value,
)
};
}

View File

@ -26,7 +26,6 @@
#include "driver/keyboard/ps2_keyboard.h"
#include "driver/mouse/ps2_mouse.h"
#include "driver/multiboot2/multiboot2.h"
#include <driver/timers/HPET/HPET.h>
#include <time/timer.h>
#include <driver/interrupt/apic/apic_timer.h>
@ -39,6 +38,9 @@ extern void rs_kthread_init();
extern void rs_init_intertrait();
extern void rs_init_before_mem_init();
extern int rs_setup_arch();
extern int rs_hpet_init();
extern int rs_hpet_enable();
extern int rs_tsc_init();
ul bsp_idt_size, bsp_gdt_size;
@ -149,18 +151,14 @@ void system_initialize()
io_mfence();
smp_init();
io_mfence();
HPET_init();
io_mfence();
HPET_measure_freq();
io_mfence();
cli();
HPET_enable();
rs_hpet_init();
rs_hpet_enable();
rs_tsc_init();
io_mfence();
kvm_init();
io_mfence();

View File

@ -370,3 +370,8 @@ impl Into<smoltcp::time::Duration> for Duration {
smoltcp::time::Duration::from_millis(self.millis())
}
}
pub trait TimeArch {
/// Get CPU cycles (Read from register)
fn get_cycles() -> usize;
}

View File

@ -1,7 +1,6 @@
#pragma once
#include <common/glib.h>
#include <driver/timers/HPET/HPET.h>
// 定义LONG_MAX为最大超时时间 - 允许负数