linfeng fae6e9ade4
feat(ebpf):[WIP] add eBPF support (#948)
* feat(kprobe): Add basic kprobe support for x86_64

* feat: add ebpf support (#912)

- 实现bpf()一部分命令,包括几种基本map,相关的helper函数
- 实现部分perf相关的数据结构
- 暂时为文件实现简单mmap
- 实现一个使用kprobe统计syscall 调用次数的ebpf程序

对eBPF支持程度(基本):

- 简单的eBPF程序(没有指定特殊的Map)
- 使用内核已经实现的Map的eBPF程序
- 可以和kprobe配合使用
- 内核Map相关的接口定义已经实现,添加新的Map较为简单

不支持的功能:
- 区分不同的eBPF程序类型(Network/Cgroup)并限定可调用的helper函数集
- 与内核其它跟踪机制配合(tracepoint)
- 其它helper和Map


todo

- [ ]  修改mmap,需要讨论,因为这个和块缓存层相关
- [x]  添加文档
- [x]  修复可能的错误
- [x] 增加rbpf版本信息

* feat: add /sys/devices/system/cpu/possible file

* feat: add /sys/devices/system/cpu/online
2024-10-25 15:59:57 +08:00

116 lines
4.5 KiB
Rust

// SPDX-License-Identifier: (Apache-2.0 OR MIT)
// Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
#![allow(clippy::unreadable_literal)]
extern crate elf;
use std::path::PathBuf;
extern crate rbpf;
use rbpf::helpers;
// The following example uses an ELF file that has been compiled from the C program available in
// `load_elf__block_a_port.c` in the same directory.
//
// It was compiled with the following command:
//
// ```bash
// clang -O2 -emit-llvm -c load_elf__block_a_port.c -o - | \
// llc -march=bpf -filetype=obj -o load_elf__block_a_port.o
// ```
//
// Once compiled, this program can be injected into Linux kernel, with tc for instance. Sadly, we
// need to bring some modifications to the generated bytecode in order to run it: the three
// instructions with opcode 0x61 load data from a packet area as 4-byte words, where we need to
// load it as 8-bytes double words (0x79). The kernel does the same kind of translation before
// running the program, but rbpf does not implement this.
//
// In addition, the offset at which the pointer to the packet data is stored must be changed: since
// we use 8 bytes instead of 4 for the start and end addresses of the data packet, we cannot use
// the offsets produced by clang (0x4c and 0x50), the addresses would overlap. Instead we can use,
// for example, 0x40 and 0x50.
//
// These change were applied with the following script:
//
// ```bash
// xxd load_elf__block_a_port.o | sed '
// s/6112 5000 0000 0000/7912 5000 0000 0000/ ;
// s/6111 4c00 0000 0000/7911 4000 0000 0000/ ;
// s/6111 2200 0000 0000/7911 2200 0000 0000/' | xxd -r > load_elf__block_a_port.tmp
// mv load_elf__block_a_port.tmp load_elf__block_a_port.o
// ```
//
// The eBPF program was placed into the `.classifier` ELF section (see C code above), which means
// that you can retrieve the raw bytecode with `readelf -x .classifier load_elf__block_a_port.o` or
// with `objdump -s -j .classifier load_elf__block_a_port.o`.
//
// Once the bytecode has been edited, we can load the bytecode directly from the ELF object file.
fn main() {
let filename = "examples/load_elf__block_a_port.elf";
let path = PathBuf::from(filename);
let file = match elf::File::open_path(path) {
Ok(f) => f,
Err(e) => panic!("Error: {:?}", e),
};
let text_scn = match file.get_section(".classifier") {
Some(s) => s,
None => panic!("Failed to look up .classifier section"),
};
let prog = &text_scn.data;
let packet1 = &mut [
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x08,
0x00, // ethertype
0x45, 0x00, 0x00, 0x3b, // start ip_hdr
0xa6, 0xab, 0x40, 0x00, 0x40, 0x06, 0x96, 0x0f, 0x7f, 0x00, 0x00, 0x01, 0x7f, 0x00, 0x00,
0x01,
// Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
0x99, 0x99, 0xc6, 0xcc, // start tcp_hdr
0xd1, 0xe5, 0xc4, 0x9d, 0xd4, 0x30, 0xb5, 0xd2, 0x80, 0x18, 0x01, 0x56, 0xfe, 0x2f, 0x00,
0x00, 0x01, 0x01, 0x08, 0x0a, // start data
0x00, 0x23, 0x75, 0x89, 0x00, 0x23, 0x63, 0x2d, 0x71, 0x64, 0x66, 0x73, 0x64, 0x66, 0x0au8,
];
let packet2 = &mut [
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x08,
0x00, // ethertype
0x45, 0x00, 0x00, 0x3b, // start ip_hdr
0xa6, 0xab, 0x40, 0x00, 0x40, 0x06, 0x96, 0x0f, 0x7f, 0x00, 0x00, 0x01, 0x7f, 0x00, 0x00,
0x01,
// Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
0x98, 0x76, 0xc6, 0xcc, // start tcp_hdr
0xd1, 0xe5, 0xc4, 0x9d, 0xd4, 0x30, 0xb5, 0xd2, 0x80, 0x18, 0x01, 0x56, 0xfe, 0x2f, 0x00,
0x00, 0x01, 0x01, 0x08, 0x0a, // start data
0x00, 0x23, 0x75, 0x89, 0x00, 0x23, 0x63, 0x2d, 0x71, 0x64, 0x66, 0x73, 0x64, 0x66, 0x0au8,
];
let mut vm = rbpf::EbpfVmFixedMbuff::new(Some(prog), 0x40, 0x50).unwrap();
vm.register_helper(helpers::BPF_TRACE_PRINTK_IDX, helpers::bpf_trace_printf)
.unwrap();
let res = vm.execute_program(packet1).unwrap();
println!("Packet #1, program returned: {res:?} ({res:#x})");
assert_eq!(res, 0xffffffff);
#[cfg(not(windows))]
{
vm.jit_compile().unwrap();
let res = unsafe { vm.execute_program_jit(packet2).unwrap() };
println!("Packet #2, program returned: {res:?} ({res:#x})");
assert_eq!(res, 0);
}
#[cfg(windows)]
{
let res = vm.execute_program(packet2).unwrap();
println!("Packet #2, program returned: {:?} ({:#x})", res, res);
assert_eq!(res, 0);
}
}