mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-08 18:26:48 +00:00
392 lines
12 KiB
Rust
392 lines
12 KiB
Rust
use crate::{
|
||
arch::{io::PortIOArch, CurrentIrqArch, CurrentPortIOArch, CurrentTimeArch},
|
||
driver::acpi::pmtmr::{acpi_pm_read_early, ACPI_PM_OVERRUN, PMTMR_TICKS_PER_SEC},
|
||
exception::InterruptArch,
|
||
time::{TimeArch, PIT_TICK_RATE},
|
||
};
|
||
use core::{
|
||
cmp::{max, min},
|
||
intrinsics::unlikely,
|
||
};
|
||
use log::{debug, error, info, warn};
|
||
use system_error::SystemError;
|
||
|
||
use super::hpet::{hpet_instance, is_hpet_enabled};
|
||
|
||
#[derive(Debug)]
|
||
pub struct TSCManager;
|
||
|
||
static mut TSC_KHZ: u64 = 0;
|
||
static mut CPU_KHZ: u64 = 0;
|
||
|
||
impl TSCManager {
|
||
const DEFAULT_THRESHOLD: u64 = 0x20000;
|
||
|
||
/// 初始化TSC
|
||
///
|
||
/// 目前由于未支持acpi pm timer, 因此调用该函数时,HPET应当完成初始化,否则将无法校准TSC
|
||
///
|
||
/// 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#1511
|
||
pub fn init() -> Result<(), SystemError> {
|
||
let cpuid = x86::cpuid::CpuId::new();
|
||
let feat = cpuid.get_feature_info().ok_or(SystemError::ENODEV)?;
|
||
if !feat.has_tsc() {
|
||
error!("TSC is not available");
|
||
return Err(SystemError::ENODEV);
|
||
}
|
||
|
||
if unsafe { TSC_KHZ == 0 } {
|
||
if let Err(e) = Self::determine_cpu_tsc_frequency(false) {
|
||
error!("Failed to determine CPU TSC frequency: {:?}", e);
|
||
// todo: mark TSC as unstable clock source
|
||
return Err(e);
|
||
}
|
||
}
|
||
|
||
// todo: register TSC as clock source and deal with unstable clock source
|
||
|
||
return Ok(());
|
||
}
|
||
|
||
/// 获取TSC和CPU总线的频率
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `early`:是否在早期初始化
|
||
///
|
||
/// 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#1438
|
||
fn determine_cpu_tsc_frequency(early: bool) -> Result<(), SystemError> {
|
||
if unlikely(Self::cpu_khz() != 0 || Self::tsc_khz() != 0) {
|
||
warn!("TSC and CPU frequency already determined");
|
||
}
|
||
|
||
if early {
|
||
// todo: 先根据cpuid或者读取msr或者pit来测量TSC和CPU总线的频率
|
||
todo!("detect TSC and CPU frequency by cpuid or msr or pit");
|
||
} else {
|
||
// 使用pit来测量TSC和CPU总线的频率
|
||
Self::set_cpu_khz(Self::calibrate_cpu_by_pit_hpet_ptimer()?);
|
||
}
|
||
|
||
// 认为非0的TSC频率是可靠的,并且使用它来检查CPU总线的频率
|
||
if Self::tsc_khz() == 0 {
|
||
Self::set_tsc_khz(Self::cpu_khz());
|
||
} else if (Self::cpu_khz() as i64 - Self::tsc_khz() as i64).abs() * 10
|
||
> Self::cpu_khz() as i64
|
||
{
|
||
// 如果TSC和CPU总线的频率相差太大,那么认为CPU总线的频率是不可靠的,使用TSC的频率
|
||
Self::set_cpu_khz(Self::tsc_khz());
|
||
}
|
||
|
||
if Self::cpu_khz() == 0 {
|
||
error!("Failed to determine CPU frequency");
|
||
return Err(SystemError::ENODEV);
|
||
}
|
||
|
||
info!(
|
||
"Detected {}.{} MHz processor",
|
||
Self::cpu_khz() / 1000,
|
||
Self::cpu_khz() % 1000
|
||
);
|
||
info!(
|
||
"Detected {}.{} MHz TSC",
|
||
Self::tsc_khz() / 1000,
|
||
Self::tsc_khz() % 1000
|
||
);
|
||
|
||
return Ok(());
|
||
}
|
||
|
||
/// 测量CPU总线的频率
|
||
///
|
||
/// 使用pit、hpet、ptimer来测量CPU总线的频率
|
||
fn calibrate_cpu_by_pit_hpet_ptimer() -> Result<u64, SystemError> {
|
||
let hpet = is_hpet_enabled();
|
||
debug!(
|
||
"Calibrating TSC with {}",
|
||
if hpet { "HPET" } else { "PMTIMER" }
|
||
);
|
||
|
||
let mut tsc_pit_min = u64::MAX;
|
||
let mut tsc_ref_min = u64::MAX;
|
||
|
||
// 默认的校准参数
|
||
let cal_ms = 10;
|
||
let cal_latch = PIT_TICK_RATE / (1000 / cal_ms);
|
||
let cal_pit_loops = 1000;
|
||
|
||
// 如果第一轮校准失败,那么使用这些参数(因为虚拟化平台的问题,第一轮校准可能失败)
|
||
let cal2_ms = 50;
|
||
let cal2_latch = PIT_TICK_RATE / (1000 / cal2_ms);
|
||
let cal2_pit_loops = 5000;
|
||
|
||
let mut latch = cal_latch;
|
||
let mut loopmin = cal_pit_loops;
|
||
let mut ms = cal_ms;
|
||
|
||
let mut global_ref1 = 0;
|
||
let mut global_ref2 = 0;
|
||
|
||
for i in 0..3 {
|
||
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||
|
||
let (tsc1, ref1) = Self::read_refs(hpet);
|
||
let tsc_pit_khz = Self::pit_calibrate_tsc(latch, ms, loopmin).unwrap_or(u64::MAX);
|
||
let (tsc2, ref2) = Self::read_refs(hpet);
|
||
drop(irq_guard);
|
||
|
||
global_ref1 = ref1;
|
||
global_ref2 = ref2;
|
||
|
||
// 选用最小的tsc_pit_khz
|
||
tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
|
||
|
||
// HPET或者PTIMER可能是不可用的
|
||
if ref1 == ref2 {
|
||
debug!("HPET/PMTIMER not available");
|
||
continue;
|
||
}
|
||
|
||
// 检查采样是否被打断
|
||
if tsc1 == u64::MAX || tsc2 == u64::MAX {
|
||
continue;
|
||
}
|
||
|
||
let mut tsc2 = (tsc2 - tsc1) * 1000000;
|
||
|
||
if hpet {
|
||
tsc2 = Self::calc_hpet_ref(tsc2, ref1, ref2);
|
||
} else {
|
||
tsc2 = Self::calc_pmtimer_ref(tsc2, ref1, ref2);
|
||
}
|
||
|
||
tsc_ref_min = min(tsc_ref_min, tsc2);
|
||
|
||
// 检查与参考值的误差
|
||
let mut delta = tsc_pit_min * 100;
|
||
delta /= tsc_ref_min;
|
||
|
||
// 如果误差在10%以内,那么认为测量成功
|
||
// 返回参考值,因为它是更精确的
|
||
if (90..=110).contains(&delta) {
|
||
info!(
|
||
"PIT calibration matches {}. {} loops",
|
||
if hpet { "HPET" } else { "PMTIMER" },
|
||
i + 1
|
||
);
|
||
return Ok(tsc_ref_min);
|
||
}
|
||
|
||
if i == 1 && tsc_pit_min == u64::MAX {
|
||
latch = cal2_latch;
|
||
ms = cal2_ms;
|
||
loopmin = cal2_pit_loops;
|
||
}
|
||
}
|
||
|
||
if tsc_pit_min == u64::MAX {
|
||
warn!("Unable to calibrate against PIT");
|
||
|
||
// 如果没有参考值,那么禁用tsc
|
||
if (!hpet) && (global_ref1 == 0) && (global_ref2 == 0) {
|
||
warn!("No reference (HPET/PMTIMER) available");
|
||
return Err(SystemError::ENODEV);
|
||
}
|
||
|
||
if tsc_ref_min == u64::MAX {
|
||
warn!("Unable to calibrate against HPET/PMTIMER");
|
||
return Err(SystemError::ENODEV);
|
||
}
|
||
|
||
info!(
|
||
"Using {} reference calibration",
|
||
if hpet { "HPET" } else { "PMTIMER" }
|
||
);
|
||
return Ok(tsc_ref_min);
|
||
}
|
||
|
||
// We don't have an alternative source, use the PIT calibration value
|
||
if (!hpet) && (global_ref1 == 0) && (global_ref2 == 0) {
|
||
info!("Using PIT calibration value");
|
||
return Ok(tsc_pit_min);
|
||
}
|
||
|
||
// The alternative source failed, use the PIT calibration value
|
||
if tsc_ref_min == u64::MAX {
|
||
warn!("Unable to calibrate against HPET/PMTIMER, using PIT calibration value");
|
||
return Ok(tsc_pit_min);
|
||
}
|
||
|
||
// The calibration values differ too much. In doubt, we use
|
||
// the PIT value as we know that there are PMTIMERs around
|
||
// running at double speed. At least we let the user know:
|
||
warn!(
|
||
"PIT calibration deviates from {}: tsc_pit_min={}, tsc_ref_min={}",
|
||
if hpet { "HPET" } else { "PMTIMER" },
|
||
tsc_pit_min,
|
||
tsc_ref_min
|
||
);
|
||
|
||
info!("Using PIT calibration value");
|
||
return Ok(tsc_pit_min);
|
||
}
|
||
|
||
/// 尝试使用PIT来校准tsc时间,并且返回tsc的频率(khz)。
|
||
/// 如果失败,那么返回None
|
||
///
|
||
/// 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#389
|
||
fn pit_calibrate_tsc(latch: u64, ms: u64, loopmin: u64) -> Option<u64> {
|
||
// 当前暂时没写legacy pic的驱动,因此这里直接返回
|
||
let has_legacy_pic = false;
|
||
if !has_legacy_pic {
|
||
let mut cnt = 10000;
|
||
while cnt > 0 {
|
||
cnt -= 1;
|
||
}
|
||
|
||
return None;
|
||
}
|
||
|
||
unsafe {
|
||
// Set the Gate high, disable speaker
|
||
let d = (CurrentPortIOArch::in8(0x61) & (!0x02)) | 0x01;
|
||
CurrentPortIOArch::out8(0x61, d);
|
||
|
||
// Setup CTC channel 2* for mode 0, (interrupt on terminal
|
||
// count mode), binary count. Set the latch register to 50ms
|
||
// (LSB then MSB) to begin countdown.
|
||
CurrentPortIOArch::out8(0x43, 0xb0);
|
||
CurrentPortIOArch::out8(0x42, (latch & 0xff) as u8);
|
||
CurrentPortIOArch::out8(0x42, ((latch >> 8) & 0xff) as u8);
|
||
}
|
||
|
||
let mut tsc = CurrentTimeArch::get_cycles() as u64;
|
||
let t1 = tsc;
|
||
let mut t2 = tsc;
|
||
let mut pitcnt = 0u64;
|
||
let mut tscmax = 0u64;
|
||
let mut tscmin = u64::MAX;
|
||
while unsafe { (CurrentPortIOArch::in8(0x61) & 0x20) == 0 } {
|
||
t2 = CurrentTimeArch::get_cycles() as u64;
|
||
let delta = t2 - tsc;
|
||
tsc = t2;
|
||
|
||
tscmin = min(tscmin, delta);
|
||
tscmax = max(tscmax, delta);
|
||
|
||
pitcnt += 1;
|
||
}
|
||
|
||
// Sanity checks:
|
||
//
|
||
// If we were not able to read the PIT more than loopmin
|
||
// times, then we have been hit by a massive SMI
|
||
//
|
||
// If the maximum is 10 times larger than the minimum,
|
||
// then we got hit by an SMI as well.
|
||
if pitcnt < loopmin || tscmax > 10 * tscmin {
|
||
return None;
|
||
}
|
||
|
||
let mut delta = t2 - t1;
|
||
delta /= ms;
|
||
|
||
return Some(delta);
|
||
}
|
||
|
||
/// 读取tsc和参考值
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `hpet_enabled`:是否启用hpet
|
||
///
|
||
/// ## 返回
|
||
///
|
||
/// - `Ok((tsc, ref))`:tsc和参考值
|
||
///
|
||
/// 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#317
|
||
fn read_refs(hpet_enabled: bool) -> (u64, u64) {
|
||
let thresh = if Self::tsc_khz() == 0 {
|
||
Self::DEFAULT_THRESHOLD
|
||
} else {
|
||
Self::tsc_khz() >> 5
|
||
};
|
||
|
||
let mut ref_ret = 0;
|
||
for _ in 0..5 {
|
||
let t1 = CurrentTimeArch::get_cycles() as u64;
|
||
if hpet_enabled {
|
||
ref_ret = hpet_instance().main_counter_value();
|
||
} else {
|
||
ref_ret = acpi_pm_read_early() as u64;
|
||
}
|
||
let t2 = CurrentTimeArch::get_cycles() as u64;
|
||
if (t2 - t1) < thresh {
|
||
return (t2, ref_ret);
|
||
}
|
||
}
|
||
|
||
warn!("TSCManager: Failed to read reference value, tsc delta too high");
|
||
return (u64::MAX, ref_ret);
|
||
}
|
||
|
||
/// 根据HPET的参考值计算tsc的频率
|
||
///
|
||
/// https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/kernel/tsc.c#339
|
||
fn calc_hpet_ref(mut deltatsc: u64, ref1: u64, mut ref2: u64) -> u64 {
|
||
if ref2 <= ref1 {
|
||
ref2 += 0x100000000;
|
||
}
|
||
|
||
ref2 -= ref1;
|
||
let mut tmp = ref2 * hpet_instance().period();
|
||
|
||
tmp /= 1000000;
|
||
|
||
deltatsc /= tmp;
|
||
|
||
return deltatsc;
|
||
}
|
||
|
||
/// 根据PMtimer的参考值计算tsc的频率
|
||
fn calc_pmtimer_ref(mut deltatsc: u64, ref1: u64, mut ref2: u64) -> u64 {
|
||
if unlikely(ref1 == 0 && ref2 == 0) {
|
||
return u64::MAX;
|
||
}
|
||
|
||
if ref2 < ref1 {
|
||
ref2 += ACPI_PM_OVERRUN;
|
||
}
|
||
|
||
ref2 -= ref1;
|
||
|
||
let mut tmp = ref2 * 1000000000;
|
||
|
||
tmp /= PMTMR_TICKS_PER_SEC;
|
||
|
||
deltatsc /= tmp;
|
||
|
||
return deltatsc;
|
||
}
|
||
|
||
pub fn tsc_khz() -> u64 {
|
||
unsafe { TSC_KHZ }
|
||
}
|
||
|
||
pub fn cpu_khz() -> u64 {
|
||
unsafe { CPU_KHZ }
|
||
}
|
||
|
||
fn set_cpu_khz(khz: u64) {
|
||
unsafe {
|
||
CPU_KHZ = khz;
|
||
}
|
||
}
|
||
|
||
fn set_tsc_khz(khz: u64) {
|
||
unsafe {
|
||
TSC_KHZ = khz;
|
||
}
|
||
}
|
||
}
|