mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-09 19:36:47 +00:00
612 lines
22 KiB
C
612 lines
22 KiB
C
#include "mm.h"
|
||
#include "slab.h"
|
||
#include "../common/printk.h"
|
||
#include "../common/kprint.h"
|
||
#include "../driver/multiboot2/multiboot2.h"
|
||
|
||
ul Total_Memory = 0;
|
||
ul total_2M_pages = 0;
|
||
static ul root_page_table_phys_addr=0; // 内核层根页表的物理地址
|
||
void mm_init()
|
||
{
|
||
kinfo("Initializing memory management unit...");
|
||
// 设置内核程序不同部分的起止地址
|
||
memory_management_struct.kernel_code_start = (ul)&_text;
|
||
memory_management_struct.kernel_code_end = (ul)&_etext;
|
||
memory_management_struct.kernel_data_end = (ul)&_edata;
|
||
memory_management_struct.kernel_end = (ul)&_end;
|
||
|
||
struct multiboot_mmap_entry_t *mb2_mem_info;
|
||
int count;
|
||
multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
|
||
|
||
for (int i = 0; i < count; ++i)
|
||
{
|
||
//可用的内存
|
||
if (mb2_mem_info->type == 1)
|
||
Total_Memory += mb2_mem_info->len;
|
||
|
||
// 保存信息到mms
|
||
memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr;
|
||
memory_management_struct.e820[i].Length = mb2_mem_info->len;
|
||
memory_management_struct.e820[i].type = mb2_mem_info->type;
|
||
memory_management_struct.len_e820 = i;
|
||
|
||
++mb2_mem_info;
|
||
|
||
// 脏数据
|
||
if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1)
|
||
break;
|
||
}
|
||
printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
|
||
|
||
// 计算有效内存页数
|
||
|
||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||
{
|
||
if (memory_management_struct.e820[i].type != 1)
|
||
continue;
|
||
|
||
// 将内存段的起始物理地址按照2M进行对齐
|
||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||
// 将内存段的终止物理地址的低2M区域清空,以实现对齐
|
||
ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
|
||
|
||
// 内存段不可用
|
||
if (addr_end <= addr_start)
|
||
continue;
|
||
|
||
total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
|
||
}
|
||
kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
|
||
|
||
// 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
|
||
ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
|
||
// 初始化mms的bitmap
|
||
// bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
|
||
memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||
memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
|
||
memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
|
||
|
||
// 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
|
||
memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
|
||
|
||
// 初始化内存页结构
|
||
// 将页结构映射于bmp之后
|
||
|
||
memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||
|
||
memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
|
||
memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
|
||
// 将pages_struct全部清空,以备后续初始化
|
||
memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
|
||
|
||
// 初始化内存区域
|
||
memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||
// 由于暂时无法计算zone结构体的数量,因此先将其设为0
|
||
memory_management_struct.count_zones = 0;
|
||
// zones-struct 成员变量暂时按照5个来计算
|
||
memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||
memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
|
||
|
||
// ==== 遍历e820数组,完成成员变量初始化工作 ===
|
||
|
||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||
{
|
||
if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
|
||
continue;
|
||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||
ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
|
||
|
||
if (addr_end <= addr_start)
|
||
continue;
|
||
|
||
// zone init
|
||
struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
|
||
++memory_management_struct.count_zones;
|
||
|
||
z->zone_addr_start = addr_start;
|
||
z->zone_addr_end = addr_end;
|
||
z->zone_length = addr_end - addr_start;
|
||
|
||
z->count_pages_using = 0;
|
||
z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||
z->total_pages_link = 0;
|
||
|
||
z->attr = 0;
|
||
z->gmd_struct = &memory_management_struct;
|
||
|
||
z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||
z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
|
||
|
||
// 初始化页
|
||
struct Page *p = z->pages_group;
|
||
|
||
for (int j = 0; j < z->count_pages; ++j, ++p)
|
||
{
|
||
p->zone = z;
|
||
p->addr_phys = addr_start + PAGE_2M_SIZE * j;
|
||
p->attr = 0;
|
||
|
||
p->ref_counts = 0;
|
||
p->age = 0;
|
||
|
||
// 将bmp中对应的位 复位
|
||
*(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
|
||
}
|
||
}
|
||
|
||
// 初始化0~2MB的物理页
|
||
// 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
|
||
|
||
memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
|
||
memory_management_struct.pages_struct->addr_phys = 0UL;
|
||
set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
|
||
memory_management_struct.pages_struct->ref_counts = 1;
|
||
memory_management_struct.pages_struct->age = 0;
|
||
// 将第0页的标志位给置上
|
||
//*(memory_management_struct.bmp) |= 1UL;
|
||
|
||
// 计算zone结构体的总长度(按照64位对齐)
|
||
memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||
|
||
ZONE_DMA_INDEX = 0;
|
||
ZONE_NORMAL_INDEX = 0;
|
||
ZONE_UNMAPPED_INDEX = 0;
|
||
|
||
for (int i = 0; i < memory_management_struct.count_zones; ++i)
|
||
{
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
// printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
|
||
// z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
|
||
|
||
// 1GB以上的内存空间不做映射
|
||
if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
|
||
ZONE_UNMAPPED_INDEX = i;
|
||
}
|
||
kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
|
||
// 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
|
||
memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
|
||
|
||
// printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
|
||
// memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
|
||
|
||
// 初始化内存管理单元结构所占的物理页的结构体
|
||
|
||
ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
|
||
kdebug("mms_max_page=%ld", mms_max_page);
|
||
|
||
struct Page *tmp_page = NULL;
|
||
ul page_num;
|
||
// 第0个page已经在上方配置
|
||
for (ul j = 1; j <= mms_max_page; ++j)
|
||
{
|
||
tmp_page = memory_management_struct.pages_struct + j;
|
||
page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
|
||
page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
|
||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||
++tmp_page->zone->count_pages_using;
|
||
--tmp_page->zone->count_pages_free;
|
||
}
|
||
|
||
global_CR3 = get_CR3();
|
||
//root_page_table_phys_addr = global_CR3;
|
||
kdebug("global_CR3\t:%#018lx", global_CR3);
|
||
kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff));
|
||
kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff));
|
||
|
||
kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
|
||
|
||
kinfo("Memory management unit initialize complete!");
|
||
|
||
/*
|
||
kinfo("Cleaning page table remapping at 0x0000");
|
||
for (int i = 0; i < 10; ++i)
|
||
*(phys_2_virt(global_CR3) + i) = 0UL;
|
||
kinfo("Successfully cleaned page table remapping!\n");
|
||
*/
|
||
|
||
flush_tlb();
|
||
// 初始化slab内存池
|
||
slab_init();
|
||
init_frame_buffer();
|
||
page_table_init();
|
||
}
|
||
|
||
/**
|
||
* @brief 初始化内存页
|
||
*
|
||
* @param page 内存页结构体
|
||
* @param flags 标志位
|
||
* 本函数只负责初始化内存页,允许对同一页面进行多次初始化
|
||
* 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
|
||
* @return unsigned long
|
||
*/
|
||
unsigned long page_init(struct Page *page, ul flags)
|
||
{
|
||
page->attr |= flags;
|
||
// 若页面的引用计数为0或是共享页,增加引用计数
|
||
if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
|
||
{
|
||
++page->ref_counts;
|
||
++page->zone->total_pages_link;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
|
||
*
|
||
* @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
|
||
* @param num 需要申请的连续内存页的数量 num<64
|
||
* @param flags 将页面属性设置成flag
|
||
* @return struct Page*
|
||
*/
|
||
struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
|
||
{
|
||
ul zone_start = 0, zone_end = 0;
|
||
if (num >= 64 && num <= 0)
|
||
{
|
||
kerror("alloc_pages(): num is invalid.");
|
||
return NULL;
|
||
}
|
||
|
||
ul attr = flags;
|
||
switch (zone_select)
|
||
{
|
||
case ZONE_DMA:
|
||
// DMA区域
|
||
zone_start = 0;
|
||
zone_end = ZONE_DMA_INDEX;
|
||
attr |= PAGE_PGT_MAPPED;
|
||
break;
|
||
case ZONE_NORMAL:
|
||
zone_start = ZONE_DMA_INDEX;
|
||
zone_end = ZONE_NORMAL_INDEX;
|
||
attr |= PAGE_PGT_MAPPED;
|
||
break;
|
||
case ZONE_UNMAPPED_IN_PGT:
|
||
zone_start = ZONE_NORMAL_INDEX;
|
||
zone_end = ZONE_UNMAPPED_INDEX;
|
||
attr = 0;
|
||
break;
|
||
|
||
default:
|
||
kerror("In alloc_pages: param: zone_select incorrect.");
|
||
// 返回空
|
||
return NULL;
|
||
break;
|
||
}
|
||
|
||
for (int i = zone_start; i <= zone_end; ++i)
|
||
{
|
||
if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
|
||
continue;
|
||
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
|
||
// 区域对应的起止页号
|
||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||
|
||
ul tmp = 64 - page_start % 64;
|
||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||
{
|
||
// 按照bmp中的每一个元素进行查找
|
||
// 先将p定位到bmp的起始元素
|
||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||
|
||
ul shift = j % 64;
|
||
ul tmp_num = ((1UL << num) - 1);
|
||
for (ul k = shift; k < 64; ++k)
|
||
{
|
||
// 寻找连续num个空页
|
||
if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
|
||
|
||
{
|
||
ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
|
||
for (ul l = 0; l < num; ++l)
|
||
{
|
||
struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
|
||
|
||
// 分配页面,手动配置属性及计数器
|
||
// 置位bmp
|
||
*(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
|
||
++z->count_pages_using;
|
||
--z->count_pages_free;
|
||
x->attr = attr;
|
||
}
|
||
// 成功分配了页面,返回第一个页面的指针
|
||
// printk("start page num=%d\n",start_page_num);
|
||
return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
|
||
*
|
||
* @param p 物理页结构体
|
||
* @return unsigned long
|
||
*/
|
||
unsigned long page_clean(struct Page *p)
|
||
{
|
||
--p->ref_counts;
|
||
--p->zone->total_pages_link;
|
||
|
||
// 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
|
||
if (!p->ref_counts)
|
||
{
|
||
p->attr &= PAGE_PGT_MAPPED;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief Get the page's attr
|
||
*
|
||
* @param page 内存页结构体
|
||
* @return ul 属性
|
||
*/
|
||
ul get_page_attr(struct Page *page)
|
||
{
|
||
if (page == NULL)
|
||
{
|
||
kBUG("get_page_attr(): page == NULL");
|
||
return EPAGE_NULL;
|
||
}
|
||
else
|
||
return page->attr;
|
||
}
|
||
|
||
/**
|
||
* @brief Set the page's attr
|
||
*
|
||
* @param page 内存页结构体
|
||
* @param flags 属性
|
||
* @return ul 错误码
|
||
*/
|
||
ul set_page_attr(struct Page *page, ul flags)
|
||
{
|
||
if (page == NULL)
|
||
{
|
||
kBUG("get_page_attr(): page == NULL");
|
||
return EPAGE_NULL;
|
||
}
|
||
else
|
||
{
|
||
page->attr = flags;
|
||
return 0;
|
||
}
|
||
}
|
||
/**
|
||
* @brief 释放连续number个内存页
|
||
*
|
||
* @param page 第一个要被释放的页面的结构体
|
||
* @param number 要释放的内存页数量 number<64
|
||
*/
|
||
|
||
void free_pages(struct Page *page, int number)
|
||
{
|
||
if (page == NULL)
|
||
{
|
||
kerror("free_pages() page is invalid.");
|
||
return;
|
||
}
|
||
|
||
if (number >= 64 || number <= 0)
|
||
{
|
||
kerror("free_pages(): number %d is invalid.", number);
|
||
return;
|
||
}
|
||
|
||
ul page_num;
|
||
for (int i = 0; i < number; ++i, ++page)
|
||
{
|
||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||
// 复位bmp
|
||
*(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
|
||
// 更新计数器
|
||
--page->zone->count_pages_using;
|
||
++page->zone->count_pages_free;
|
||
page->attr = 0;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/**
|
||
* @brief 重新初始化页表的函数
|
||
* 将0~4GB的物理页映射到线性地址空间
|
||
*/
|
||
void page_table_init()
|
||
{
|
||
kinfo("Initializing page table...");
|
||
global_CR3 = get_CR3();
|
||
// 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
|
||
ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
|
||
kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
|
||
|
||
ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
|
||
kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
|
||
|
||
ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
|
||
kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
|
||
|
||
ul *tmp_addr;
|
||
for (int i = 0; i < memory_management_struct.count_zones; ++i)
|
||
{
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
struct Page *p = z->pages_group;
|
||
|
||
if (i == ZONE_UNMAPPED_INDEX)
|
||
break;
|
||
|
||
for (int j = 0; j < z->count_pages; ++j)
|
||
{
|
||
// 计算出PML4页表中的页表项的地址
|
||
tmp_addr = (ul *)((ul)pml4_addr + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_GDT_SHIFT) & 0x1ff) * 8);
|
||
|
||
// 说明该页还没有分配pdpt页表,使用kmalloc分配一个
|
||
if (*tmp_addr = 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pml4t(tmp_addr, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
|
||
}
|
||
|
||
// 计算出pdpt页表的页表项的地址
|
||
tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_1G_SHIFT) & 0x1ff) * 8);
|
||
|
||
// 说明该页还没有分配pd页表,使用kmalloc分配一个
|
||
if (*tmp_addr = 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pdpt(tmp_addr, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
|
||
}
|
||
|
||
// 计算出pd页表的页表项的地址
|
||
tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_2M_SHIFT) & 0x1ff) * 8);
|
||
|
||
// 填入pd页表的页表项,映射2MB物理页
|
||
set_pdt(tmp_addr, mk_pdt(virt_2_phys(p->addr_phys), PAGE_KERNEL_PAGE));
|
||
|
||
// 测试
|
||
if (j % 50 == 0)
|
||
kdebug("pd_addr=%#018lx, *pd_addr=%#018lx", tmp_addr, *tmp_addr);
|
||
}
|
||
}
|
||
|
||
flush_tlb();
|
||
|
||
kinfo("Page table Initialized.");
|
||
}
|
||
|
||
/**
|
||
* @brief VBE帧缓存区的地址重新映射
|
||
* 将帧缓存区映射到地址0xffff800003000000处
|
||
*/
|
||
void init_frame_buffer()
|
||
{
|
||
kinfo("Re-mapping VBE frame buffer...");
|
||
global_CR3 = get_CR3();
|
||
ul fb_virt_addr = SPECIAL_MEMOEY_MAPPING_VIRT_ADDR_BASE + FRAME_BUFFER_MAPPING_OFFSET;
|
||
ul fb_phys_addr = get_VBE_FB_phys_addr();
|
||
|
||
// 计算帧缓冲区的线性地址对应的pml4页表项的地址
|
||
ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||
if (*tmp == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
|
||
}
|
||
|
||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||
|
||
if (*tmp == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
|
||
}
|
||
|
||
ul vbe_fb_length = get_VBE_FB_length();
|
||
ul *tmp1;
|
||
// 初始化2M物理页
|
||
for (ul i = 0; i < (vbe_fb_length << 2); i += PAGE_2M_SIZE)
|
||
{
|
||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||
tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff));
|
||
|
||
// 页面写穿,禁止缓存
|
||
set_pdt(tmp1, mk_pdt((ul)fb_phys_addr + i, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD));
|
||
}
|
||
|
||
set_pos_VBE_FB_addr((uint *)fb_virt_addr);
|
||
flush_tlb();
|
||
kinfo("VBE frame buffer successfully Re-mapped!");
|
||
}
|
||
|
||
/**
|
||
* @brief 将物理地址映射到页表的函数
|
||
*
|
||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||
* @param phys_addr_start 物理地址的起始位置
|
||
* @param length 要映射的区域的长度(字节)
|
||
*/
|
||
void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
|
||
{
|
||
global_CR3 = get_CR3();
|
||
|
||
// 计算线性地址对应的pml4页表项的地址
|
||
ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff));
|
||
if (*tmp == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
|
||
}
|
||
|
||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff));
|
||
|
||
if (*tmp == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
|
||
}
|
||
|
||
ul *tmp1;
|
||
// 初始化2M物理页
|
||
for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
|
||
{
|
||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||
tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
|
||
|
||
// 页面写穿,禁止缓存
|
||
set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags));
|
||
}
|
||
|
||
flush_tlb();
|
||
}
|
||
|
||
/**
|
||
* @brief 将将物理地址填写到进程的页表的函数
|
||
*
|
||
* @param proc_page_table_addr 进程的页表的虚拟基地址
|
||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||
* @param phys_addr_start 物理地址的起始位置
|
||
* @param length 要映射的区域的长度(字节)
|
||
* @param user 用户态是否可访问
|
||
*/
|
||
void mm_map_proc_page_table(ul *proc_page_table_addr, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user)
|
||
{
|
||
|
||
// 计算线性地址对应的pml4页表项的地址
|
||
ul *tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||
if (*tmp == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
|
||
}
|
||
|
||
tmp = (ul *)(*tmp & (~0xfffUL)) + ((virt_addr_start >> PAGE_1G_SHIFT) & 0x1ff);
|
||
|
||
if (*tmp == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
|
||
}
|
||
|
||
ul *tmp1;
|
||
// 初始化2M物理页
|
||
for (ul i = 0; i < (length); i += PAGE_2M_SIZE)
|
||
{
|
||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||
tmp1 = ((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr_start + i) >> PAGE_2M_SHIFT) & 0x1ff));
|
||
|
||
// 页面写穿,禁止缓存
|
||
set_pdt(tmp1, mk_pdt((ul)phys_addr_start + i, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
|
||
}
|
||
|
||
flush_tlb();
|
||
} |