DragonOS/kernel/src/libs/printk.rs
LoGin 40fe15e095
新的内存管理模块 (#303)
  实现了具有优秀架构设计的新的内存管理模块,对内核空间和用户空间的内存映射、分配、释放、管理等操作进行了封装,使得内核开发者可以更加方便地进行内存管理。

  内存管理模块主要由以下类型的组件组成:

- **硬件抽象层(MemoryManagementArch)** - 提供对具体处理器架构的抽象,使得内存管理模块可以在不同的处理器架构上运行
- **页面映射器(PageMapper)**- 提供对虚拟地址和物理地址的映射,以及页表的创建、填写、销毁、权限管理等操作。分为两种类型:内核页表映射器(KernelMapper)和用户页表映射器(位于具体的用户地址空间结构中)
- **页面刷新器(PageFlusher)** - 提供对页表的刷新操作(整表刷新、单页刷新、跨核心刷新)
- **页帧分配器(FrameAllocator)** - 提供对页帧的分配、释放、管理等操作。具体来说,包括BumpAllocator、BuddyAllocator
- **小对象分配器** - 提供对小内存对象的分配、释放、管理等操作。指的是内核里面的SlabAllocator (SlabAllocator的实现目前还没有完成)
- **MMIO空间管理器** - 提供对MMIO地址空间的分配、管理操作。(目前这个模块待进一步重构)
- **用户地址空间管理机制** - 提供对用户地址空间的管理。
    - VMA机制 - 提供对用户地址空间的管理,包括VMA的创建、销毁、权限管理等操作
    - 用户映射管理 - 与VMA机制共同作用,管理用户地址空间的映射
- **系统调用层** - 提供对用户空间的内存管理系统调用,包括mmap、munmap、mprotect、mremap等
- **C接口兼容层** - 提供对原有的C代码的接口,是的C代码能够正常运行。


除上面的新增内容以外,其它的更改内容:
- 新增二进制加载器,以及elf的解析器
- 解决由于local_irq_save、local_irq_restore函数的汇编不规范导致影响栈行为的bug。
- 解决local_irq_save未关中断的错误。
- 修复sys_gettimeofday对timezone参数的处理的bug

---------

Co-authored-by: kong <kongweichao@dragonos.org>
2023-07-22 16:27:02 +08:00

225 lines
6.7 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![allow(unused)]
use crate::{
driver::uart::uart::c_uart_send_str,
include::bindings::bindings::{printk_color, BLACK, WHITE},
};
use ::core::ffi::c_char;
use alloc::vec::Vec;
use core::{
fmt::{self, Write},
intrinsics::{likely, unlikely},
sync::atomic::{AtomicBool, Ordering},
};
// ====== 定义颜色 ======
/// 白色
pub const COLOR_WHITE: u32 = 0x00ffffff;
/// 黑色
pub const COLOR_BLACK: u32 = 0x00000000;
/// 红色
pub const COLOR_RED: u32 = 0x00ff0000;
/// 橙色
pub const COLOR_ORANGE: u32 = 0x00ff8000;
/// 黄色
pub const COLOR_YELLOW: u32 = 0x00ffff00;
/// 绿色
pub const COLOR_GREEN: u32 = 0x0000ff00;
/// 蓝色
pub const COLOR_BLUE: u32 = 0x000000ff;
/// 靛色
pub const COLOR_INDIGO: u32 = 0x0000ffff;
/// 紫色
pub const COLOR_PURPLE: u32 = 0x008000ff;
#[macro_export]
macro_rules! print {
($($arg:tt)*) => ($crate::libs::printk::__printk(format_args!($($arg)*)));
}
#[macro_export]
macro_rules! println {
() => {
$crate::print!("\n");
};
($($arg:tt)*) => ($crate::print!("{}\n", format_args!($($arg)*)));
}
/// 指定颜色,彩色输出
/// @param FRcolor 前景色
/// @param BKcolor 背景色
#[macro_export]
macro_rules! printk_color {
($FRcolor:expr, $BKcolor:expr, $($arg:tt)*) => {
use alloc;
$crate::libs::printk::PrintkWriter.__write_string_color($FRcolor, $BKcolor, alloc::fmt::format(format_args!($($arg)*)).as_str())
};
}
#[macro_export]
macro_rules! kdebug {
($($arg:tt)*) => {
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("[ DEBUG ] ({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)))
}
}
#[macro_export]
macro_rules! kinfo {
($($arg:tt)*) => {
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("[ INFO ] ({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)))
}
}
#[macro_export]
macro_rules! kwarn {
($($arg:tt)*) => {
$crate::libs::printk::PrintkWriter.__write_string_color($crate::libs::printk::COLOR_YELLOW, $crate::libs::printk::COLOR_BLACK, "[ WARN ] ");
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)));
}
}
#[macro_export]
macro_rules! kerror {
($($arg:tt)*) => {
$crate::libs::printk::PrintkWriter.__write_string_color($crate::libs::printk::COLOR_RED, $crate::libs::printk::COLOR_BLACK, "[ ERROR ] ");
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)));
}
}
#[macro_export]
macro_rules! kBUG {
($($arg:tt)*) => {
$crate::libs::printk::PrintkWriter.__write_string_color($crate::libs::printk::COLOR_RED, $crate::libs::printk::COLOR_BLACK, "[ BUG ] ");
$crate::libs::printk::PrintkWriter.__write_fmt(format_args!("({}:{})\t{}\n", file!(), line!(),format_args!($($arg)*)));
}
}
pub struct PrintkWriter;
/// 由于内存管理初始化完成之前,无法使用动态内存分配,所以需要在内存管理初始化完成之后才能使用动态内存分配
static ALLOW_ALLOC_ATOMIC: AtomicBool = AtomicBool::new(false);
static mut ALLOW_ALLOC_BOOL: bool = false;
impl PrintkWriter {
#[inline]
pub fn __write_fmt(&mut self, args: fmt::Arguments) {
self.write_fmt(args);
}
/// 调用C语言编写的printk_color,并输出白底黑字暂时只支持ascii字符
/// @param str: 要写入的字符
pub fn __write_string(&mut self, s: &str) {
if unlikely(!self.allow_alloc()) {
self.__write_string_on_stack(s);
return;
}
let str_to_print = self.__utf8_to_ascii(s);
unsafe {
printk_color(WHITE, BLACK, str_to_print.as_ptr() as *const c_char);
}
}
pub fn __write_string_color(&self, fr_color: u32, bk_color: u32, s: &str) {
if unlikely(!self.allow_alloc()) {
self.__write_string_on_stack(s);
return;
}
let str_to_print = self.__utf8_to_ascii(s);
unsafe {
printk_color(fr_color, bk_color, str_to_print.as_ptr() as *const c_char);
}
}
#[inline]
fn allow_alloc(&self) -> bool {
// 由于allow_alloc只可能由false变为true
// 因此采用两种方式读取它一种是原子操作一种是普通的bool以优化性能。
if likely(unsafe { ALLOW_ALLOC_BOOL }) {
return true;
} else {
return ALLOW_ALLOC_ATOMIC.load(Ordering::SeqCst);
}
}
/// 允许动态内存分配
pub fn enable_alloc(&self) {
ALLOW_ALLOC_ATOMIC.store(true, Ordering::SeqCst);
unsafe {
ALLOW_ALLOC_BOOL = true;
}
}
/// 将s这个utf8字符串转换为ascii字符串
/// @param s 待转换的utf8字符串
/// @return Vec<u8> 转换结束后的Ascii字符串
pub fn __utf8_to_ascii(&self, s: &str) -> Vec<u8> {
let mut ascii_str: Vec<u8> = Vec::with_capacity(s.len() + 1);
for byte in s.bytes() {
match byte {
0..=127 => {
ascii_str.push(byte);
}
_ => {}
}
}
ascii_str.push(b'\0');
return ascii_str;
}
fn __write_string_on_stack(&self, s: &str) {
let s_len = s.len();
assert!(s_len < 1024, "s_len is too long");
let mut str_to_print: [u8; 1024] = [0; 1024];
let mut i = 0;
for byte in s.bytes() {
match byte {
0..=127 => {
str_to_print[i] = byte;
i += 1;
}
_ => {}
}
}
str_to_print[i] = b'\0';
unsafe {
printk_color(WHITE, BLACK, str_to_print.as_ptr() as *const c_char);
}
}
fn __write_string_color_on_stack(&self, fr_color: u32, bk_color: u32, s: &str) {
let s_len = s.len();
assert!(s_len < 1024, "s_len is too long");
let mut str_to_print: [u8; 1024] = [0; 1024];
let mut i = 0;
for byte in s.bytes() {
match byte {
0..=127 => {
str_to_print[i] = byte;
i += 1;
}
_ => {}
}
}
str_to_print[i] = b'\0';
unsafe {
printk_color(fr_color, bk_color, str_to_print.as_ptr() as *const c_char);
}
}
}
/// 为Printk Writer实现core::fmt::Write, 使得能够借助Rust自带的格式化组件格式化字符并输出
impl fmt::Write for PrintkWriter {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.__write_string(s);
Ok(())
}
}
#[doc(hidden)]
pub fn __printk(args: fmt::Arguments) {
use fmt::Write;
PrintkWriter.write_fmt(args).unwrap();
}