mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-12 10:06:47 +00:00
* remove `ret_from_syscall` *修复ps2键盘驱动程序inode在进程fork的时候导致死锁的问题. *更新: VFS每次拷贝文件描述符的时候,都会去调用inode的open函数 --------- Co-authored-by: longjin <longjin@RinGoTek.cn>
234 lines
8.3 KiB
Rust
234 lines
8.3 KiB
Rust
use core::{ptr::null_mut, sync::atomic::compiler_fence};
|
||
|
||
use alloc::{boxed::Box, collections::LinkedList, vec::Vec};
|
||
|
||
use crate::{
|
||
arch::asm::current::current_pcb,
|
||
include::bindings::bindings::{
|
||
process_control_block, MAX_CPU_NUM, PF_NEED_SCHED, SCHED_FIFO, SCHED_RR,
|
||
},
|
||
kBUG, kdebug,
|
||
libs::spinlock::RawSpinlock,
|
||
};
|
||
|
||
use super::core::{sched_enqueue, Scheduler};
|
||
|
||
/// 声明全局的rt调度器实例
|
||
|
||
pub static mut RT_SCHEDULER_PTR: *mut SchedulerRT = null_mut();
|
||
|
||
/// @brief 获取rt调度器实例的可变引用
|
||
#[inline]
|
||
pub fn __get_rt_scheduler() -> &'static mut SchedulerRT {
|
||
return unsafe { RT_SCHEDULER_PTR.as_mut().unwrap() };
|
||
}
|
||
|
||
/// @brief 初始化rt调度器
|
||
pub unsafe fn sched_rt_init() {
|
||
kdebug!("rt scheduler init");
|
||
if RT_SCHEDULER_PTR.is_null() {
|
||
RT_SCHEDULER_PTR = Box::leak(Box::new(SchedulerRT::new()));
|
||
} else {
|
||
kBUG!("Try to init RT Scheduler twice.");
|
||
panic!("Try to init RT Scheduler twice.");
|
||
}
|
||
}
|
||
|
||
/// @brief RT队列(per-cpu的)
|
||
#[derive(Debug)]
|
||
struct RTQueue {
|
||
/// 队列的锁
|
||
lock: RawSpinlock,
|
||
/// 存储进程的双向队列
|
||
queue: LinkedList<&'static mut process_control_block>,
|
||
}
|
||
|
||
impl RTQueue {
|
||
pub fn new() -> RTQueue {
|
||
RTQueue {
|
||
queue: LinkedList::new(),
|
||
lock: RawSpinlock::INIT,
|
||
}
|
||
}
|
||
/// @brief 将pcb加入队列
|
||
pub fn enqueue(&mut self, pcb: &'static mut process_control_block) {
|
||
let mut rflags = 0u64;
|
||
self.lock.lock_irqsave(&mut rflags);
|
||
|
||
// 如果进程是IDLE进程,那么就不加入队列
|
||
if pcb.pid == 0 {
|
||
self.lock.unlock_irqrestore(&rflags);
|
||
return;
|
||
}
|
||
self.queue.push_back(pcb);
|
||
self.lock.unlock_irqrestore(&rflags);
|
||
}
|
||
|
||
/// @brief 将pcb从调度队列头部取出,若队列为空,则返回None
|
||
pub fn dequeue(&mut self) -> Option<&'static mut process_control_block> {
|
||
let res: Option<&'static mut process_control_block>;
|
||
let mut rflags = 0u64;
|
||
self.lock.lock_irqsave(&mut rflags);
|
||
if self.queue.len() > 0 {
|
||
// 队列不为空,返回下一个要执行的pcb
|
||
res = Some(self.queue.pop_front().unwrap());
|
||
} else {
|
||
// 如果队列为空,则返回None
|
||
res = None;
|
||
}
|
||
self.lock.unlock_irqrestore(&rflags);
|
||
return res;
|
||
}
|
||
pub fn enqueue_front(&mut self, pcb: &'static mut process_control_block) {
|
||
let mut rflags = 0u64;
|
||
self.lock.lock_irqsave(&mut rflags);
|
||
|
||
// 如果进程是IDLE进程,那么就不加入队列
|
||
if pcb.pid == 0 {
|
||
self.lock.unlock_irqrestore(&rflags);
|
||
return;
|
||
}
|
||
self.queue.push_front(pcb);
|
||
self.lock.unlock_irqrestore(&rflags);
|
||
}
|
||
pub fn get_rt_queue_size(&mut self) -> usize {
|
||
return self.queue.len();
|
||
}
|
||
}
|
||
|
||
/// @brief RT调度器类
|
||
pub struct SchedulerRT {
|
||
cpu_queue: Vec<Vec<&'static mut RTQueue>>,
|
||
load_list: Vec<&'static mut LinkedList<u64>>,
|
||
}
|
||
|
||
impl SchedulerRT {
|
||
const RR_TIMESLICE: i64 = 100;
|
||
const MAX_RT_PRIO: i64 = 100;
|
||
|
||
pub fn new() -> SchedulerRT {
|
||
// 暂时手动指定核心数目
|
||
// todo: 从cpu模块来获取核心的数目
|
||
let mut result = SchedulerRT {
|
||
cpu_queue: Default::default(),
|
||
load_list: Default::default(),
|
||
};
|
||
|
||
// 为每个cpu核心创建队列
|
||
for cpu_id in 0..MAX_CPU_NUM {
|
||
result.cpu_queue.push(Vec::new());
|
||
// 每个CPU有MAX_RT_PRIO个优先级队列
|
||
for _ in 0..SchedulerRT::MAX_RT_PRIO {
|
||
result.cpu_queue[cpu_id as usize].push(Box::leak(Box::new(RTQueue::new())));
|
||
}
|
||
}
|
||
// 为每个cpu核心创建负载统计队列
|
||
for _ in 0..MAX_CPU_NUM {
|
||
result
|
||
.load_list
|
||
.push(Box::leak(Box::new(LinkedList::new())));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/// @brief 挑选下一个可执行的rt进程
|
||
pub fn pick_next_task_rt(&mut self, cpu_id: u32) -> Option<&'static mut process_control_block> {
|
||
// 循环查找,直到找到
|
||
// 这里应该是优先级数量,而不是CPU数量,需要修改
|
||
for i in 0..SchedulerRT::MAX_RT_PRIO {
|
||
let cpu_queue_i: &mut RTQueue = self.cpu_queue[cpu_id as usize][i as usize];
|
||
let proc: Option<&'static mut process_control_block> = cpu_queue_i.dequeue();
|
||
if proc.is_some() {
|
||
return proc;
|
||
}
|
||
}
|
||
// return 一个空值
|
||
None
|
||
}
|
||
|
||
pub fn rt_queue_len(&mut self, cpu_id: u32) -> usize {
|
||
let mut sum = 0;
|
||
for prio in 0..SchedulerRT::MAX_RT_PRIO {
|
||
sum += self.cpu_queue[cpu_id as usize][prio as usize].get_rt_queue_size();
|
||
}
|
||
return sum as usize;
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
#[inline]
|
||
pub fn load_list_len(&mut self, cpu_id: u32) -> usize {
|
||
return self.load_list[cpu_id as usize].len();
|
||
}
|
||
|
||
pub fn enqueue_front(&mut self, pcb: &'static mut process_control_block) {
|
||
self.cpu_queue[pcb.cpu_id as usize][pcb.priority as usize].enqueue_front(pcb);
|
||
}
|
||
}
|
||
|
||
impl Scheduler for SchedulerRT {
|
||
/// @brief 在当前cpu上进行调度。
|
||
/// 请注意,进入该函数之前,需要关中断
|
||
fn sched(&mut self) -> Option<&'static mut process_control_block> {
|
||
current_pcb().flags &= !(PF_NEED_SCHED as u64);
|
||
// 正常流程下,这里一定是会pick到next的pcb的,如果是None的话,要抛出错误
|
||
let cpu_id = current_pcb().cpu_id;
|
||
let proc: &'static mut process_control_block =
|
||
self.pick_next_task_rt(cpu_id).expect("No RT process found");
|
||
|
||
// 如果是fifo策略,则可以一直占有cpu直到有优先级更高的任务就绪(即使优先级相同也不行)或者主动放弃(等待资源)
|
||
if proc.policy == SCHED_FIFO {
|
||
// 如果挑选的进程优先级小于当前进程,则不进行切换
|
||
if proc.priority <= current_pcb().priority {
|
||
sched_enqueue(proc, false);
|
||
} else {
|
||
// 将当前的进程加进队列
|
||
sched_enqueue(current_pcb(), false);
|
||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||
return Some(proc);
|
||
}
|
||
}
|
||
// RR调度策略需要考虑时间片
|
||
else if proc.policy == SCHED_RR {
|
||
// 同等优先级的,考虑切换
|
||
if proc.priority >= current_pcb().priority {
|
||
// 判断这个进程时间片是否耗尽,若耗尽则将其时间片赋初值然后入队
|
||
if proc.rt_time_slice <= 0 {
|
||
proc.rt_time_slice = SchedulerRT::RR_TIMESLICE;
|
||
proc.flags |= !(PF_NEED_SCHED as u64);
|
||
sched_enqueue(proc, false);
|
||
}
|
||
// 目标进程时间片未耗尽,切换到目标进程
|
||
else {
|
||
// 将当前进程加进队列
|
||
sched_enqueue(current_pcb(), false);
|
||
compiler_fence(core::sync::atomic::Ordering::SeqCst);
|
||
return Some(proc);
|
||
}
|
||
}
|
||
// curr优先级更大,说明一定是实时进程,将所选进程入队列,此时需要入队首
|
||
else {
|
||
self.cpu_queue[cpu_id as usize][proc.cpu_id as usize].enqueue_front(proc);
|
||
}
|
||
}
|
||
return None;
|
||
}
|
||
|
||
fn enqueue(&mut self, pcb: &'static mut process_control_block) {
|
||
let cpu_id = pcb.cpu_id;
|
||
let cpu_queue = &mut self.cpu_queue[pcb.cpu_id as usize];
|
||
cpu_queue[cpu_id as usize].enqueue(pcb);
|
||
// // 获取当前时间
|
||
// let time = unsafe { _rdtsc() };
|
||
// let freq = unsafe { Cpu_tsc_freq };
|
||
// // kdebug!("this is timeeeeeeer {},freq is {}, {}", time, freq, cpu_id);
|
||
// // 将当前时间加入负载记录队列
|
||
// self.load_list[cpu_id as usize].push_back(time);
|
||
// // 如果队首元素与当前时间差超过设定值,则移除队首元素
|
||
// while self.load_list[cpu_id as usize].len() > 1
|
||
// && (time - *self.load_list[cpu_id as usize].front().unwrap() > 10000000000)
|
||
// {
|
||
// self.load_list[cpu_id as usize].pop_front();
|
||
// }
|
||
}
|
||
}
|