mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-12 18:26:50 +00:00
* 添加新版pcb的数据结构 (#273) * 将pcb中的内容分类,分别加锁 (#305) * 进程管理重构:完成fork的主体逻辑 (#309) 1.完成fork的主体逻辑 2.将文件系统接到新的pcb上 3.经过思考,暂时弃用signal机制,待进程管理重构完成后,重写signal机制.原因是原本的signal机制太烂了 * chdir getcwd pid pgid ppid (#310) --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * 删除旧的fork以及signal的代码,并调整fork/vfork/execve系统调用 (#325) 1.删除旧的fork 2.删除signal相关代码,等进程管理重构结束之后,再重新写. 3.调整了fork/vfork/execve系统调用 * 实现切换进程的代码 (#331) * 实现切换进程的代码 * Patch modify preempt (#332) * 修改设置preempt的代码 * 删除rust的list和refcount * 为每个核心初始化idle进程 (#333) * 为每个核心初始化idle进程 * 完成了新的内核线程机制 (#335) * 调度器的pcb替换为新的Arc<ProcessControlBlock>,把调度器队列锁从 RwSpinLock 替换为了 SpinLock (#336) * 把调度器的pcb替换为新的Arc<ProcessControlBlock> * 把调度器队列锁从 RwSpinLock 替换为了 SpinLock ,修改了签名以通过编译 * 修正一些双重加锁、细节问题 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * github workflow自动检查代码是否格式化 * cache toolchain yml * 调整rust版本的waitqueue中的pcb为新版的pcb (#343) * 解决设置rust workspace带来的“工具链不一致”的问题 (#344) * 解决设置rust workspace带来的“工具链不一致”的问题 更改workflow * 调整pcb的sched_info和rwlock,以避免调度器死锁问题 (#341) * 调整pcb的sched_info和rwlock,以避免调度器死锁问题 * 修改为在 WriterGuard 中维护 Irq_guard * 修正了 write_irqsave方法 * 优化了代码 * 把 set state 操作从 wakup 移动到 sched_enqueue 中 * 修正为在 wakeup 中设置 running ,以保留 set_state 的私有性 * 移除了 process_wakeup * 实现进程退出的逻辑 (#340) 实现进程退出的逻辑 * 标志进程sleep * 修复wakeup的问题 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * rust 重构 completion (#350) * 完成了completion的基本结构,待完善上级调用 * 用SpinLock保护结构体并发安全 * 修改原子变量为u32,修复符号错误 * irq guard * 修改为具有内部可变性的结构体 * temp fix * 修复了由于进程持有自旋锁导致的不被调度的问题 * 对 complete 系列方法上锁,保护 done 数据并发安全 * 移除了未使用的依赖 * 重写显示刷新驱动 (#363) * 重构显示刷新驱动 * Patch refactor process management (#366) * 维护进程树 * 维护进程树 * 更改代码结构 * 新建进程时,设置cwd * 调整adopt childern函数,降低开销 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * waitqueue兼容C部分 (#351) * PATH * safe init * waitqueue兼容C部分 * waitqueue兼容C部分 * 删除semaphore.c,在ps2_keyboard中使用waitqueue * 删除semaphore.c,在ps2_keyboard中使用waitqueue * current_pcb的C兼容 * current_pcb的C兼容 * current_pcb的C兼容 * fmt * current_pcb的兼容 * 针对修改 * 调整代码 * fmt * 删除pcb的set flags * 更改函数名 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * merge master * Patch debug process management refactor (#372) * 能够调通,执行完textui_init * 能跑到initial kernel thread * fmt * 能够正常初始化所有服务(尚未能切换到用户程序) * 删除部分无用的extern * 存在问题:ap处理器启动后,bsp的smp_init函数return之后就出错了,怀疑是栈损坏 * 解决smp启动由于未换栈导致的内存访问错误 * debug * 1 * 1 * lock no preempt * 调通 * 优化代码,删除一些调试日志 * fix * 使用rust重写wait4 (#377) * 维护进程树 * 维护进程树 * 更改代码结构 * 新建进程时,设置cwd * 调整adopt childern函数,降低开销 * wait4 * 删除c_sys_wait4 * 使用userbuffer保护裸指针 --------- Co-authored-by: longjin <longjin@RinGoTek.cn> * 消除warning * 1. 修正未设置cpu executing的问题 * 修正kthread机制可能存在的内存泄露问题 * 删除pcb文档 * 删除C的tss struct --------- Co-authored-by: Bullet <93781792+GP-Bullet@users.noreply.github.com> Co-authored-by: Chiichen <39649411+Chiichen@users.noreply.github.com> Co-authored-by: hanjiezhou <zhouhanjie@dragonos.org> Co-authored-by: GnoCiYeH <118462160+GnoCiYeH@users.noreply.github.com> Co-authored-by: houmkh <1119644616@qq.com>
395 lines
11 KiB
C
395 lines
11 KiB
C
#include <stdlib.h>
|
||
#include <libsystem/syscall.h>
|
||
#include <stddef.h>
|
||
#include <unistd.h>
|
||
#include <errno.h>
|
||
#include <stdio.h>
|
||
|
||
#define PAGE_4K_SHIFT 12
|
||
#define PAGE_2M_SHIFT 21
|
||
#define PAGE_1G_SHIFT 30
|
||
#define PAGE_GDT_SHIFT 39
|
||
|
||
// 不同大小的页的容量
|
||
#define PAGE_4K_SIZE (1UL << PAGE_4K_SHIFT)
|
||
#define PAGE_2M_SIZE (1UL << PAGE_2M_SHIFT)
|
||
#define PAGE_1G_SIZE (1UL << PAGE_1G_SHIFT)
|
||
|
||
// 屏蔽低于x的数值
|
||
#define PAGE_4K_MASK (~(PAGE_4K_SIZE - 1))
|
||
#define PAGE_2M_MASK (~(PAGE_2M_SIZE - 1))
|
||
|
||
// 将addr按照x的上边界对齐
|
||
#define PAGE_4K_ALIGN(addr) (((unsigned long)(addr) + PAGE_4K_SIZE - 1) & PAGE_4K_MASK)
|
||
#define PAGE_2M_ALIGN(addr) (((unsigned long)(addr) + PAGE_2M_SIZE - 1) & PAGE_2M_MASK)
|
||
|
||
#define ALIGN_UP16(x) (((x) + 15) & ~15)
|
||
#define PAGE_ALIGN_UP(x) (((x) + PAGE_4K_SIZE - 1) & PAGE_4K_MASK)
|
||
|
||
/**
|
||
* @brief 显式链表的结点
|
||
*
|
||
*/
|
||
typedef struct malloc_mem_chunk_t
|
||
{
|
||
uint64_t length; // 整个块所占用的内存区域的大小
|
||
struct malloc_mem_chunk_t *prev; // 上一个结点的指针
|
||
struct malloc_mem_chunk_t *next; // 下一个结点的指针
|
||
} malloc_mem_chunk_t;
|
||
|
||
static uint64_t brk_base_addr = 0; // 堆区域的内存基地址
|
||
static uint64_t brk_max_addr = 0; // 堆区域的内存最大地址
|
||
static uint64_t brk_managed_addr = 0; // 堆区域已经被管理的地址
|
||
|
||
// 空闲链表
|
||
// 按start_addr升序排序
|
||
static malloc_mem_chunk_t *malloc_free_list = NULL;
|
||
static malloc_mem_chunk_t *malloc_free_list_end = NULL; // 空闲链表的末尾结点
|
||
|
||
static uint64_t count_last_free_size = 0; // 统计距离上一次回收内存,已经free了多少内存
|
||
|
||
/**
|
||
* @brief 将块插入空闲链表
|
||
*
|
||
* @param ck 待插入的块
|
||
*/
|
||
static void malloc_insert_free_list(malloc_mem_chunk_t *ck);
|
||
|
||
/**
|
||
* @brief 当堆顶空闲空间大于2个页的空间的时候,释放1个页
|
||
*
|
||
*/
|
||
static void release_brk();
|
||
|
||
/**
|
||
* @brief 在链表中检索符合要求的空闲块(best fit)
|
||
*
|
||
* @param size 块的大小
|
||
* @return malloc_mem_chunk_t*
|
||
*/
|
||
static malloc_mem_chunk_t *malloc_query_free_chunk_bf(uint64_t size)
|
||
{
|
||
// 在满足best fit的前提下,尽可能的使分配的内存在低地址
|
||
// 使得总的堆内存可以更快被释放
|
||
|
||
if (malloc_free_list == NULL)
|
||
{
|
||
return NULL;
|
||
}
|
||
malloc_mem_chunk_t *ptr = malloc_free_list;
|
||
malloc_mem_chunk_t *best = NULL;
|
||
// printf("query size=%d", size);
|
||
while (ptr != NULL)
|
||
{
|
||
// printf("ptr->length=%#010lx\n", ptr->length);
|
||
if (ptr->length == size)
|
||
{
|
||
best = ptr;
|
||
break;
|
||
}
|
||
|
||
if (ptr->length > size)
|
||
{
|
||
if (best == NULL)
|
||
best = ptr;
|
||
else if (best->length > ptr->length)
|
||
best = ptr;
|
||
}
|
||
ptr = ptr->next;
|
||
}
|
||
|
||
return best;
|
||
}
|
||
|
||
/**
|
||
* @brief 在链表中检索符合要求的空闲块(first fit)
|
||
*
|
||
* @param size
|
||
* @return malloc_mem_chunk_t*
|
||
*/
|
||
static malloc_mem_chunk_t *malloc_query_free_chunk_ff(uint64_t size)
|
||
{
|
||
if (malloc_free_list == NULL)
|
||
return NULL;
|
||
malloc_mem_chunk_t *ptr = malloc_free_list;
|
||
|
||
while (ptr)
|
||
{
|
||
if (ptr->length >= size)
|
||
{
|
||
return ptr;
|
||
}
|
||
ptr = ptr->next;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* @brief 扩容malloc管理的内存区域
|
||
*
|
||
* @param size 扩大的内存大小
|
||
*/
|
||
static int malloc_enlarge(int64_t size)
|
||
{
|
||
if (brk_base_addr == 0) // 第一次调用,需要初始化
|
||
{
|
||
brk_base_addr = sbrk(0);
|
||
// printf("brk_base_addr=%#018lx\n", brk_base_addr);
|
||
brk_managed_addr = brk_base_addr;
|
||
brk_max_addr = sbrk(0);
|
||
}
|
||
|
||
int64_t free_space = brk_max_addr - brk_managed_addr;
|
||
// printf("size=%ld\tfree_space=%ld\n", size, free_space);
|
||
if (free_space < size) // 现有堆空间不足
|
||
{
|
||
if (sbrk(PAGE_ALIGN_UP(size - free_space)) != (void *)(-1))
|
||
brk_max_addr = sbrk((0));
|
||
else
|
||
{
|
||
put_string("malloc_enlarge(): no_mem\n", COLOR_YELLOW, COLOR_BLACK);
|
||
return -ENOMEM;
|
||
}
|
||
|
||
// printf("brk max addr = %#018lx\n", brk_max_addr);
|
||
}
|
||
|
||
// 扩展管理的堆空间
|
||
// 在新分配的内存的底部放置header
|
||
malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)brk_managed_addr;
|
||
memset(new_ck, 0, sizeof(malloc_mem_chunk_t));
|
||
new_ck->length = brk_max_addr - brk_managed_addr;
|
||
// printf("new_ck->start_addr=%#018lx\tbrk_max_addr=%#018lx\tbrk_managed_addr=%#018lx\n", (uint64_t)new_ck, brk_max_addr, brk_managed_addr);
|
||
new_ck->prev = NULL;
|
||
new_ck->next = NULL;
|
||
brk_managed_addr = brk_max_addr;
|
||
|
||
malloc_insert_free_list(new_ck);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 合并空闲块
|
||
*
|
||
*/
|
||
static void malloc_merge_free_chunk()
|
||
{
|
||
if (malloc_free_list == NULL)
|
||
return;
|
||
malloc_mem_chunk_t *ptr = malloc_free_list->next;
|
||
while (ptr != NULL)
|
||
{
|
||
// 内存块连续
|
||
if (((uint64_t)(ptr->prev) + ptr->prev->length == (uint64_t)ptr))
|
||
{
|
||
// printf("merged %#018lx and %#018lx\n", (uint64_t)ptr, (uint64_t)(ptr->prev));
|
||
// 将ptr与前面的空闲块合并
|
||
ptr->prev->length += ptr->length;
|
||
ptr->prev->next = ptr->next;
|
||
if (ptr->next == NULL)
|
||
malloc_free_list_end = ptr->prev;
|
||
else
|
||
ptr->next->prev = ptr->prev;
|
||
// 由于内存组成结构的原因,不需要free掉header
|
||
ptr = ptr->prev;
|
||
}
|
||
ptr = ptr->next;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief 将块插入空闲链表
|
||
*
|
||
* @param ck 待插入的块
|
||
*/
|
||
static void malloc_insert_free_list(malloc_mem_chunk_t *ck)
|
||
{
|
||
if (malloc_free_list == NULL) // 空闲链表为空
|
||
{
|
||
malloc_free_list = ck;
|
||
malloc_free_list_end = ck;
|
||
ck->prev = ck->next = NULL;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
|
||
malloc_mem_chunk_t *ptr = malloc_free_list;
|
||
while (ptr != NULL)
|
||
{
|
||
if ((uint64_t)ptr < (uint64_t)ck)
|
||
{
|
||
if (ptr->next == NULL) // 当前是最后一个项
|
||
{
|
||
ptr->next = ck;
|
||
ck->next = NULL;
|
||
ck->prev = ptr;
|
||
malloc_free_list_end = ck;
|
||
break;
|
||
}
|
||
else if ((uint64_t)(ptr->next) > (uint64_t)ck)
|
||
{
|
||
ck->prev = ptr;
|
||
ck->next = ptr->next;
|
||
ptr->next = ck;
|
||
ck->next->prev = ck;
|
||
break;
|
||
}
|
||
}
|
||
else // 在ptr之前插入
|
||
{
|
||
|
||
if (ptr->prev == NULL) // 是第一个项
|
||
{
|
||
malloc_free_list = ck;
|
||
ck->prev = NULL;
|
||
ck->next = ptr;
|
||
ptr->prev = ck;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
ck->prev = ptr->prev;
|
||
ck->next = ptr;
|
||
ck->prev->next = ck;
|
||
ptr->prev = ck;
|
||
break;
|
||
}
|
||
}
|
||
ptr = ptr->next;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief 获取一块堆内存
|
||
*
|
||
* @param size 内存大小
|
||
* @return void* 内存空间的指针
|
||
*
|
||
* 分配内存的时候,结点的prev next指针所占用的空间被当做空闲空间分配出去
|
||
*/
|
||
void *malloc(ssize_t size)
|
||
{
|
||
// printf("malloc\n");
|
||
// 计算需要分配的块的大小
|
||
if (size + sizeof(uint64_t) <= sizeof(malloc_mem_chunk_t))
|
||
size = sizeof(malloc_mem_chunk_t);
|
||
else
|
||
size += sizeof(uint64_t);
|
||
|
||
// 采用best fit
|
||
malloc_mem_chunk_t *ck = malloc_query_free_chunk_bf(size);
|
||
|
||
if (ck == NULL) // 没有空闲块
|
||
{
|
||
|
||
// printf("no free blocks\n");
|
||
// 尝试合并空闲块
|
||
malloc_merge_free_chunk();
|
||
ck = malloc_query_free_chunk_bf(size);
|
||
|
||
// 找到了合适的块
|
||
if (ck)
|
||
goto found;
|
||
|
||
// printf("before enlarge\n");
|
||
// 找不到合适的块,扩容堆区域
|
||
if (malloc_enlarge(size) == -ENOMEM)
|
||
return (void *)-ENOMEM; // 内存不足
|
||
|
||
malloc_merge_free_chunk(); // 扩容后运行合并,否则会导致碎片
|
||
|
||
// 扩容后再次尝试获取
|
||
|
||
ck = malloc_query_free_chunk_bf(size);
|
||
}
|
||
found:;
|
||
|
||
// printf("ck = %#018lx\n", (uint64_t)ck);
|
||
if (ck == NULL)
|
||
return (void *)-ENOMEM;
|
||
// printf("ck->prev=%#018lx ck->next=%#018lx\n", ck->prev, ck->next);
|
||
// 分配空闲块
|
||
// 从空闲链表取出
|
||
if (ck->prev == NULL) // 当前是链表的第一个块
|
||
{
|
||
malloc_free_list = ck->next;
|
||
}
|
||
else
|
||
ck->prev->next = ck->next;
|
||
|
||
if (ck->next != NULL) // 当前不是最后一个块
|
||
ck->next->prev = ck->prev;
|
||
else
|
||
malloc_free_list_end = ck->prev;
|
||
|
||
// 当前块剩余的空间还能容纳多一个结点的空间,则分裂当前块
|
||
if ((int64_t)(ck->length) - size > sizeof(malloc_mem_chunk_t))
|
||
{
|
||
// printf("seperate\n");
|
||
malloc_mem_chunk_t *new_ck = (malloc_mem_chunk_t *)(((uint64_t)ck) + size);
|
||
new_ck->length = ck->length - size;
|
||
new_ck->prev = new_ck->next = NULL;
|
||
// printf("new_ck=%#018lx, new_ck->length=%#010lx\n", (uint64_t)new_ck, new_ck->length);
|
||
ck->length = size;
|
||
malloc_insert_free_list(new_ck);
|
||
}
|
||
// printf("malloc done: %#018lx, length=%#018lx\n", ((uint64_t)ck + sizeof(uint64_t)), ck->length);
|
||
// 此时链表结点的指针的空间被分配出去
|
||
return (void *)((uint64_t)ck + sizeof(uint64_t));
|
||
}
|
||
|
||
/**
|
||
* @brief 当堆顶空闲空间大于2个页的空间的时候,释放1个页
|
||
*
|
||
*/
|
||
static void release_brk()
|
||
{
|
||
// 先检测最顶上的块
|
||
// 由于块按照开始地址排列,因此找最后一个块
|
||
if (malloc_free_list_end == NULL)
|
||
{
|
||
printf("release(): free list end is null. \n");
|
||
return;
|
||
}
|
||
if ((uint64_t)malloc_free_list_end + malloc_free_list_end->length == brk_max_addr && (uint64_t)malloc_free_list_end <= brk_max_addr - (PAGE_2M_SIZE << 1))
|
||
{
|
||
int64_t delta = ((brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK) - PAGE_2M_SIZE;
|
||
// printf("(brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK);
|
||
// printf("PAGE_2M_SIZE=%#018lx\n", PAGE_2M_SIZE);
|
||
// printf("tdfghgbdfggkmfn=%#018lx\n ", (brk_max_addr - (uint64_t)malloc_free_list_end) & PAGE_2M_MASK - PAGE_2M_SIZE);
|
||
// printf("delta=%#018lx\n ", delta);
|
||
if (delta <= 0) // 不用释放内存
|
||
return;
|
||
sbrk(-delta);
|
||
brk_max_addr = sbrk(0);
|
||
brk_managed_addr = brk_max_addr;
|
||
|
||
malloc_free_list_end->length = brk_max_addr - (uint64_t)malloc_free_list_end;
|
||
}
|
||
}
|
||
/**
|
||
* @brief 释放一块堆内存
|
||
*
|
||
* @param ptr 堆内存的指针
|
||
*/
|
||
void free(void *ptr)
|
||
{
|
||
// 找到结点(此时prev和next都处于未初始化的状态)
|
||
malloc_mem_chunk_t *ck = (malloc_mem_chunk_t *)((uint64_t)ptr - sizeof(uint64_t));
|
||
// printf("free(): addr = %#018lx\t len=%#018lx\n", (uint64_t)ck, ck->length);
|
||
count_last_free_size += ck->length;
|
||
|
||
malloc_insert_free_list(ck);
|
||
|
||
if (count_last_free_size > PAGE_2M_SIZE)
|
||
{
|
||
count_last_free_size = 0;
|
||
malloc_merge_free_chunk();
|
||
release_brk();
|
||
}
|
||
}
|