mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-08 14:16:47 +00:00
* riscv: 完成UEFI初始化,能正确设置memblock的信息 * sbi增加reset功能 * 把虚拟CPU修改为sifive-u54,使qemu能更正确地模拟硬件行为 * 修复内存页面映射未设置“DIRTY”、”ACCESSED“、”GLOBAL“位,导致真机page fault的问题
722 lines
26 KiB
Rust
722 lines
26 KiB
Rust
pub mod barrier;
|
||
pub mod bump;
|
||
mod c_adapter;
|
||
|
||
use alloc::vec::Vec;
|
||
use hashbrown::HashSet;
|
||
use x86::time::rdtsc;
|
||
use x86_64::registers::model_specific::EferFlags;
|
||
|
||
use crate::driver::tty::serial::serial8250::send_to_default_serial8250_port;
|
||
use crate::filesystem::procfs::kmsg::kmsg_init;
|
||
use crate::include::bindings::bindings::{
|
||
multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
|
||
multiboot_tag_load_base_addr_t,
|
||
};
|
||
use crate::libs::align::page_align_up;
|
||
use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
|
||
use crate::libs::printk::PrintkWriter;
|
||
use crate::libs::spinlock::SpinLock;
|
||
|
||
use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
|
||
use crate::mm::memblock::mem_block_manager;
|
||
use crate::mm::mmio_buddy::mmio_init;
|
||
use crate::{
|
||
arch::MMArch,
|
||
mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
|
||
};
|
||
|
||
use crate::mm::kernel_mapper::KernelMapper;
|
||
use crate::mm::page::{PageEntry, PageFlags};
|
||
use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
|
||
use crate::{kdebug, kinfo, kwarn};
|
||
use system_error::SystemError;
|
||
|
||
use core::arch::asm;
|
||
use core::ffi::c_void;
|
||
use core::fmt::{Debug, Write};
|
||
use core::mem::{self};
|
||
|
||
use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
|
||
|
||
use super::kvm::vmx::vmcs::VmcsFields;
|
||
use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
|
||
|
||
pub type PageMapper =
|
||
crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
|
||
|
||
/// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
|
||
static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
|
||
|
||
/// 内核的第一个页表在pml4中的索引
|
||
/// 顶级页表的[256, 512)项是内核的页表
|
||
static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
|
||
|
||
static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
|
||
|
||
#[derive(Clone, Copy, Debug)]
|
||
pub struct X86_64MMBootstrapInfo {
|
||
kernel_load_base_paddr: usize,
|
||
kernel_code_start: usize,
|
||
kernel_code_end: usize,
|
||
kernel_data_end: usize,
|
||
kernel_rodata_end: usize,
|
||
start_brk: usize,
|
||
}
|
||
|
||
pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
|
||
|
||
/// @brief X86_64的内存管理架构结构体
|
||
#[derive(Debug, Clone, Copy, Hash)]
|
||
pub struct X86_64MMArch;
|
||
|
||
/// XD标志位是否被保留
|
||
static XD_RESERVED: AtomicBool = AtomicBool::new(false);
|
||
|
||
impl MemoryManagementArch for X86_64MMArch {
|
||
/// 4K页
|
||
const PAGE_SHIFT: usize = 12;
|
||
|
||
/// 每个页表项占8字节,总共有512个页表项
|
||
const PAGE_ENTRY_SHIFT: usize = 9;
|
||
|
||
/// 四级页表(PML4T、PDPT、PDT、PT)
|
||
const PAGE_LEVELS: usize = 4;
|
||
|
||
/// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
|
||
/// 第[48, 51]位表示保留。因此,有效位的index为52。
|
||
/// 请注意,第63位是XD位,表示是否允许执行。
|
||
const ENTRY_ADDRESS_SHIFT: usize = 52;
|
||
|
||
const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
|
||
|
||
const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
|
||
|
||
const ENTRY_FLAG_PRESENT: usize = 1 << 0;
|
||
|
||
const ENTRY_FLAG_READONLY: usize = 0;
|
||
|
||
const ENTRY_FLAG_READWRITE: usize = 1 << 1;
|
||
|
||
const ENTRY_FLAG_USER: usize = 1 << 2;
|
||
|
||
const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
|
||
|
||
const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
|
||
|
||
const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
|
||
/// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
|
||
const ENTRY_FLAG_EXEC: usize = 0;
|
||
|
||
const ENTRY_FLAG_ACCESSED: usize = 0;
|
||
const ENTRY_FLAG_DIRTY: usize = 0;
|
||
|
||
/// 物理地址与虚拟地址的偏移量
|
||
/// 0xffff_8000_0000_0000
|
||
const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
|
||
|
||
const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff);
|
||
const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
|
||
const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
|
||
|
||
const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
|
||
/// 设置FIXMAP区域大小为1M
|
||
const FIXMAP_SIZE: usize = 256 * 4096;
|
||
|
||
/// @brief 获取物理内存区域
|
||
unsafe fn init() {
|
||
extern "C" {
|
||
fn _text();
|
||
fn _etext();
|
||
fn _edata();
|
||
fn _erodata();
|
||
fn _end();
|
||
}
|
||
|
||
Self::init_xd_rsvd();
|
||
let load_base_paddr = Self::get_load_base_paddr();
|
||
|
||
let bootstrap_info = X86_64MMBootstrapInfo {
|
||
kernel_load_base_paddr: load_base_paddr.data(),
|
||
kernel_code_start: _text as usize,
|
||
kernel_code_end: _etext as usize,
|
||
kernel_data_end: _edata as usize,
|
||
kernel_rodata_end: _erodata as usize,
|
||
start_brk: _end as usize,
|
||
};
|
||
|
||
unsafe {
|
||
BOOTSTRAP_MM_INFO = Some(bootstrap_info);
|
||
}
|
||
|
||
// 初始化物理内存区域(从multiboot2中获取)
|
||
Self::init_memory_area_from_multiboot2().expect("init memory area failed");
|
||
|
||
send_to_default_serial8250_port("x86 64 init end\n\0".as_bytes());
|
||
}
|
||
|
||
/// @brief 刷新TLB中,关于指定虚拟地址的条目
|
||
unsafe fn invalidate_page(address: VirtAddr) {
|
||
compiler_fence(Ordering::SeqCst);
|
||
asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
|
||
compiler_fence(Ordering::SeqCst);
|
||
}
|
||
|
||
/// @brief 刷新TLB中,所有的条目
|
||
unsafe fn invalidate_all() {
|
||
compiler_fence(Ordering::SeqCst);
|
||
// 通过设置cr3寄存器,来刷新整个TLB
|
||
Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
|
||
compiler_fence(Ordering::SeqCst);
|
||
}
|
||
|
||
/// @brief 获取顶级页表的物理地址
|
||
unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
|
||
match table_kind {
|
||
PageTableKind::Kernel | PageTableKind::User => {
|
||
let paddr: usize;
|
||
compiler_fence(Ordering::SeqCst);
|
||
asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
|
||
compiler_fence(Ordering::SeqCst);
|
||
return PhysAddr::new(paddr);
|
||
}
|
||
PageTableKind::EPT => {
|
||
let eptp =
|
||
vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
|
||
return PhysAddr::new(eptp as usize);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// @brief 设置顶级页表的物理地址到处理器中
|
||
unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
|
||
compiler_fence(Ordering::SeqCst);
|
||
asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
|
||
compiler_fence(Ordering::SeqCst);
|
||
}
|
||
|
||
/// @brief 判断虚拟地址是否合法
|
||
fn virt_is_valid(virt: VirtAddr) -> bool {
|
||
return virt.is_canonical();
|
||
}
|
||
|
||
/// 获取内存管理初始化时,创建的第一个内核页表的地址
|
||
fn initial_page_table() -> PhysAddr {
|
||
unsafe {
|
||
return INITIAL_CR3_VALUE;
|
||
}
|
||
}
|
||
|
||
/// @brief 创建新的顶层页表
|
||
///
|
||
/// 该函数会创建页表并复制内核的映射到新的页表中
|
||
///
|
||
/// @return 新的页表
|
||
fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
|
||
let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
|
||
PageMapper::create(PageTableKind::User, LockedFrameAllocator)
|
||
.ok_or(SystemError::ENOMEM)?
|
||
};
|
||
|
||
let current_ktable: KernelMapper = KernelMapper::lock();
|
||
let copy_mapping = |pml4_entry_no| unsafe {
|
||
let entry: PageEntry<X86_64MMArch> = current_ktable
|
||
.table()
|
||
.entry(pml4_entry_no)
|
||
.unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
|
||
new_umapper.table().set_entry(pml4_entry_no, entry)
|
||
};
|
||
|
||
// 复制内核的映射
|
||
for pml4_entry_no in KERNEL_PML4E_NO..512 {
|
||
copy_mapping(pml4_entry_no);
|
||
}
|
||
|
||
return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
|
||
}
|
||
|
||
const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
|
||
|
||
const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
|
||
|
||
const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
|
||
|
||
const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
|
||
|
||
const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
|
||
|
||
const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
|
||
|
||
const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
|
||
|
||
const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
|
||
|
||
const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
|
||
|
||
const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
|
||
|
||
const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
|
||
|
||
const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
|
||
|
||
const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
|
||
|
||
unsafe fn read<T>(address: VirtAddr) -> T {
|
||
return core::ptr::read(address.data() as *const T);
|
||
}
|
||
|
||
unsafe fn write<T>(address: VirtAddr, value: T) {
|
||
core::ptr::write(address.data() as *mut T, value);
|
||
}
|
||
|
||
unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
|
||
core::ptr::write_bytes(address.data() as *mut u8, value, count);
|
||
}
|
||
|
||
unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
|
||
if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
|
||
return Some(VirtAddr::new(vaddr));
|
||
} else {
|
||
return None;
|
||
}
|
||
}
|
||
|
||
unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
|
||
if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
|
||
return Some(PhysAddr::new(paddr));
|
||
} else {
|
||
return None;
|
||
}
|
||
}
|
||
|
||
#[inline(always)]
|
||
fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
|
||
return paddr.data() | page_flags;
|
||
}
|
||
}
|
||
|
||
impl X86_64MMArch {
|
||
unsafe fn get_load_base_paddr() -> PhysAddr {
|
||
let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
|
||
send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
|
||
|
||
let mut mb2_count: u32 = 0;
|
||
multiboot2_iter(
|
||
Some(multiboot2_get_load_base),
|
||
&mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
|
||
&mut mb2_count,
|
||
);
|
||
|
||
if mb2_count == 0 {
|
||
send_to_default_serial8250_port(
|
||
"get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
|
||
);
|
||
return PhysAddr::new(0x100000);
|
||
}
|
||
|
||
let phys = mb2_lb_info[0].load_base_addr as usize;
|
||
|
||
return PhysAddr::new(phys);
|
||
}
|
||
unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
|
||
// 这个数组用来存放内存区域的信息(从C获取)
|
||
let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
|
||
send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
|
||
|
||
let mut mb2_count: u32 = 0;
|
||
multiboot2_iter(
|
||
Some(multiboot2_get_memory),
|
||
&mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
|
||
&mut mb2_count,
|
||
);
|
||
send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
|
||
|
||
let mb2_count = mb2_count as usize;
|
||
let mut areas_count = 0usize;
|
||
let mut total_mem_size = 0usize;
|
||
for i in 0..mb2_count {
|
||
// Only use the memory area if its type is 1 (RAM)
|
||
if mb2_mem_info[i].type_ == 1 {
|
||
// Skip the memory area if its len is 0
|
||
if mb2_mem_info[i].len == 0 {
|
||
continue;
|
||
}
|
||
|
||
total_mem_size += mb2_mem_info[i].len as usize;
|
||
|
||
mem_block_manager()
|
||
.add_block(
|
||
PhysAddr::new(mb2_mem_info[i].addr as usize),
|
||
mb2_mem_info[i].len as usize,
|
||
)
|
||
.unwrap_or_else(|e| {
|
||
kwarn!(
|
||
"Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
|
||
mb2_mem_info[i].addr,
|
||
mb2_mem_info[i].len,
|
||
e
|
||
);
|
||
});
|
||
areas_count += 1;
|
||
}
|
||
}
|
||
send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
|
||
kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
|
||
return Ok(areas_count);
|
||
}
|
||
|
||
fn init_xd_rsvd() {
|
||
// 读取ia32-EFER寄存器的值
|
||
let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
|
||
if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
|
||
// NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
|
||
kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
|
||
XD_RESERVED.store(true, Ordering::Relaxed);
|
||
}
|
||
compiler_fence(Ordering::SeqCst);
|
||
}
|
||
|
||
/// 判断XD标志位是否被保留
|
||
pub fn is_xd_reserved() -> bool {
|
||
// return XD_RESERVED.load(Ordering::Relaxed);
|
||
|
||
// 由于暂时不支持execute disable,因此直接返回true
|
||
// 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
|
||
return true;
|
||
}
|
||
}
|
||
|
||
impl VirtAddr {
|
||
/// @brief 判断虚拟地址是否合法
|
||
#[inline(always)]
|
||
pub fn is_canonical(self) -> bool {
|
||
let x = self.data() & X86_64MMArch::PHYS_OFFSET;
|
||
// 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
|
||
// 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
|
||
return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
|
||
}
|
||
}
|
||
|
||
/// @brief 初始化内存管理模块
|
||
pub fn mm_init() {
|
||
send_to_default_serial8250_port("mm_init\n\0".as_bytes());
|
||
PrintkWriter
|
||
.write_fmt(format_args!("mm_init() called\n"))
|
||
.unwrap();
|
||
// printk_color!(GREEN, BLACK, "mm_init() called\n");
|
||
static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
|
||
if _CALL_ONCE
|
||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
|
||
.is_err()
|
||
{
|
||
send_to_default_serial8250_port("mm_init err\n\0".as_bytes());
|
||
panic!("mm_init() can only be called once");
|
||
}
|
||
|
||
unsafe { X86_64MMArch::init() };
|
||
kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
|
||
kdebug!("phys[0]=virt[0x{:x}]", unsafe {
|
||
MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
|
||
});
|
||
|
||
// 初始化内存管理器
|
||
unsafe { allocator_init() };
|
||
// enable mmio
|
||
mmio_init();
|
||
// enable KMSG
|
||
kmsg_init();
|
||
}
|
||
|
||
unsafe fn allocator_init() {
|
||
let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
|
||
let phy_offset =
|
||
unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
|
||
|
||
let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
|
||
kdebug!(
|
||
"BumpAllocator created, offset={:?}",
|
||
bump_allocator.offset()
|
||
);
|
||
|
||
// 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
|
||
// 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
|
||
// 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
|
||
let _old_page_table = MMArch::table(PageTableKind::Kernel);
|
||
|
||
let new_page_table: PhysAddr;
|
||
// 使用bump分配器,把所有的内存页都映射到页表
|
||
{
|
||
// 用bump allocator创建新的页表
|
||
let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
|
||
crate::mm::page::PageMapper::<MMArch, _>::create(
|
||
PageTableKind::Kernel,
|
||
&mut bump_allocator,
|
||
)
|
||
.expect("Failed to create page mapper");
|
||
new_page_table = mapper.table().phys();
|
||
kdebug!("PageMapper created");
|
||
|
||
// 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
|
||
{
|
||
let table = mapper.table();
|
||
let empty_entry = PageEntry::<MMArch>::from_usize(0);
|
||
for i in 0..MMArch::PAGE_ENTRY_NUM {
|
||
table
|
||
.set_entry(i, empty_entry)
|
||
.expect("Failed to empty page table entry");
|
||
}
|
||
}
|
||
kdebug!("Successfully emptied page table");
|
||
|
||
let total_num = mem_block_manager().total_initial_memory_regions();
|
||
for i in 0..total_num {
|
||
let area = mem_block_manager().get_initial_memory_region(i).unwrap();
|
||
// kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
|
||
for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
|
||
let paddr = area.base.add(i * MMArch::PAGE_SIZE);
|
||
let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
|
||
let flags = kernel_page_flags::<MMArch>(vaddr);
|
||
|
||
let flusher = mapper
|
||
.map_phys(vaddr, paddr, flags)
|
||
.expect("Failed to map frame");
|
||
// 暂时不刷新TLB
|
||
flusher.ignore();
|
||
}
|
||
}
|
||
|
||
// 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
|
||
LowAddressRemapping::remap_at_low_address(&mut mapper);
|
||
}
|
||
|
||
unsafe {
|
||
INITIAL_CR3_VALUE = new_page_table;
|
||
}
|
||
kdebug!(
|
||
"After mapping all physical memory, DragonOS used: {} KB",
|
||
bump_allocator.offset() / 1024
|
||
);
|
||
|
||
// 初始化buddy_allocator
|
||
let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
|
||
// 设置全局的页帧分配器
|
||
unsafe { set_inner_allocator(buddy_allocator) };
|
||
kinfo!("Successfully initialized buddy allocator");
|
||
// 关闭显示输出
|
||
scm_disable_put_to_window();
|
||
|
||
// make the new page table current
|
||
{
|
||
let mut binding = INNER_ALLOCATOR.lock();
|
||
let mut allocator_guard = binding.as_mut().unwrap();
|
||
kdebug!("To enable new page table.");
|
||
compiler_fence(Ordering::SeqCst);
|
||
let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
|
||
PageTableKind::Kernel,
|
||
new_page_table,
|
||
&mut allocator_guard,
|
||
);
|
||
compiler_fence(Ordering::SeqCst);
|
||
mapper.make_current();
|
||
compiler_fence(Ordering::SeqCst);
|
||
kdebug!("New page table enabled");
|
||
}
|
||
kdebug!("Successfully enabled new page table");
|
||
}
|
||
|
||
#[no_mangle]
|
||
pub extern "C" fn rs_test_buddy() {
|
||
test_buddy();
|
||
}
|
||
pub fn test_buddy() {
|
||
// 申请内存然后写入数据然后free掉
|
||
// 总共申请200MB内存
|
||
const TOTAL_SIZE: usize = 200 * 1024 * 1024;
|
||
|
||
for i in 0..10 {
|
||
kdebug!("Test buddy, round: {i}");
|
||
// 存放申请的内存块
|
||
let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
|
||
// 存放已经申请的内存块的地址(用于检查重复)
|
||
let mut addr_set: HashSet<PhysAddr> = HashSet::new();
|
||
|
||
let mut allocated = 0usize;
|
||
|
||
let mut free_count = 0usize;
|
||
|
||
while allocated < TOTAL_SIZE {
|
||
let mut random_size = 0u64;
|
||
unsafe { x86::random::rdrand64(&mut random_size) };
|
||
// 一次最多申请4M
|
||
random_size = random_size % (1024 * 4096);
|
||
if random_size == 0 {
|
||
continue;
|
||
}
|
||
let random_size =
|
||
core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
|
||
let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
|
||
// 获取帧
|
||
let (paddr, allocated_frame_count) =
|
||
unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
|
||
assert!(allocated_frame_count.data().is_power_of_two());
|
||
assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
|
||
unsafe {
|
||
assert!(MMArch::phys_2_virt(paddr)
|
||
.as_ref()
|
||
.unwrap()
|
||
.check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
|
||
}
|
||
allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
|
||
v.push((paddr, allocated_frame_count));
|
||
assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
|
||
|
||
// 写入数据
|
||
let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
|
||
let slice = unsafe {
|
||
core::slice::from_raw_parts_mut(
|
||
vaddr.data() as *mut u8,
|
||
allocated_frame_count.data() * MMArch::PAGE_SIZE,
|
||
)
|
||
};
|
||
for i in 0..slice.len() {
|
||
slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
|
||
}
|
||
|
||
// 随机释放一个内存块
|
||
if v.len() > 0 {
|
||
let mut random_index = 0u64;
|
||
unsafe { x86::random::rdrand64(&mut random_index) };
|
||
// 70%概率释放
|
||
if random_index % 10 > 7 {
|
||
continue;
|
||
}
|
||
random_index = random_index % v.len() as u64;
|
||
let random_index = random_index as usize;
|
||
let (paddr, allocated_frame_count) = v.remove(random_index);
|
||
assert!(addr_set.remove(&paddr));
|
||
unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
|
||
free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
|
||
}
|
||
}
|
||
|
||
kdebug!(
|
||
"Allocated {} MB memory, release: {} MB, no release: {} bytes",
|
||
allocated / 1024 / 1024,
|
||
free_count / 1024 / 1024,
|
||
(allocated - free_count)
|
||
);
|
||
|
||
kdebug!("Now, to release buddy memory");
|
||
// 释放所有的内存
|
||
for (paddr, allocated_frame_count) in v {
|
||
unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
|
||
assert!(addr_set.remove(&paddr));
|
||
free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
|
||
}
|
||
|
||
kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
|
||
}
|
||
}
|
||
|
||
/// 全局的页帧分配器
|
||
#[derive(Debug, Clone, Copy, Hash)]
|
||
pub struct LockedFrameAllocator;
|
||
|
||
impl FrameAllocator for LockedFrameAllocator {
|
||
unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
|
||
if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
|
||
return allocator.allocate(count);
|
||
} else {
|
||
return None;
|
||
}
|
||
}
|
||
|
||
unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
|
||
assert!(count.data().is_power_of_two());
|
||
if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
|
||
return allocator.free(address, count);
|
||
}
|
||
}
|
||
|
||
unsafe fn usage(&self) -> PageFrameUsage {
|
||
if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
|
||
return allocator.usage();
|
||
} else {
|
||
panic!("usage error");
|
||
}
|
||
}
|
||
}
|
||
|
||
/// 获取内核地址默认的页面标志
|
||
pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
|
||
let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
|
||
|
||
if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
|
||
// Remap kernel code execute
|
||
return PageFlags::new().set_execute(true).set_write(true);
|
||
} else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
|
||
// Remap kernel rodata read only
|
||
return PageFlags::new().set_execute(true);
|
||
} else {
|
||
return PageFlags::new().set_write(true).set_execute(true);
|
||
}
|
||
}
|
||
|
||
unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
|
||
static FLAG: AtomicBool = AtomicBool::new(false);
|
||
if FLAG
|
||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
|
||
.is_err()
|
||
{
|
||
panic!("Cannot set inner allocator twice!");
|
||
}
|
||
*INNER_ALLOCATOR.lock() = Some(allocator);
|
||
}
|
||
|
||
/// 低地址重映射的管理器
|
||
///
|
||
/// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
|
||
pub struct LowAddressRemapping;
|
||
|
||
impl LowAddressRemapping {
|
||
// 映射32M
|
||
const REMAP_SIZE: usize = 32 * 1024 * 1024;
|
||
|
||
pub unsafe fn remap_at_low_address(
|
||
mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
|
||
) {
|
||
for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
|
||
let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
|
||
let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
|
||
let flags = kernel_page_flags::<MMArch>(vaddr);
|
||
|
||
let flusher = mapper
|
||
.map_phys(vaddr, paddr, flags)
|
||
.expect("Failed to map frame");
|
||
// 暂时不刷新TLB
|
||
flusher.ignore();
|
||
}
|
||
}
|
||
|
||
/// 取消低地址的映射
|
||
pub unsafe fn unmap_at_low_address(flush: bool) {
|
||
let mut mapper = KernelMapper::lock();
|
||
assert!(mapper.as_mut().is_some());
|
||
for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
|
||
let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
|
||
let (_, _, flusher) = mapper
|
||
.as_mut()
|
||
.unwrap()
|
||
.unmap_phys(vaddr, true)
|
||
.expect("Failed to unmap frame");
|
||
if flush == false {
|
||
flusher.ignore();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#[no_mangle]
|
||
pub extern "C" fn rs_mm_init() {
|
||
mm_init();
|
||
}
|