mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-09 02:46:47 +00:00
931 lines
28 KiB
C
931 lines
28 KiB
C
#include "process.h"
|
||
|
||
#include <DragonOS/signal.h>
|
||
#include <common/compiler.h>
|
||
#include <common/completion.h>
|
||
#include <common/elf.h>
|
||
#include <common/kprint.h>
|
||
#include <common/kthread.h>
|
||
#include <common/lz4.h>
|
||
#include <common/printk.h>
|
||
#include <common/spinlock.h>
|
||
#include <common/stdio.h>
|
||
#include <common/string.h>
|
||
#include <common/sys/wait.h>
|
||
#include <common/time.h>
|
||
#include <common/unistd.h>
|
||
#include <debug/bug.h>
|
||
#include <debug/traceback/traceback.h>
|
||
#include <driver/disk/ahci/ahci.h>
|
||
#include <driver/usb/usb.h>
|
||
#include <driver/video/video.h>
|
||
#include <driver/virtio/virtio.h>
|
||
#include <exception/gate.h>
|
||
#include <ktest/ktest.h>
|
||
#include <mm/mmio.h>
|
||
#include <mm/slab.h>
|
||
#include <sched/sched.h>
|
||
#include <syscall/syscall.h>
|
||
#include <syscall/syscall_num.h>
|
||
extern int __rust_demo_func();
|
||
// #pragma GCC push_options
|
||
// #pragma GCC optimize("O0")
|
||
|
||
spinlock_t process_global_pid_write_lock; // 增加pid的写锁
|
||
long process_global_pid = 1; // 系统中最大的pid
|
||
|
||
extern void system_call(void);
|
||
extern void kernel_thread_func(void);
|
||
extern void rs_procfs_unregister_pid(uint64_t);
|
||
|
||
ul _stack_start; // initial proc的栈基地址(虚拟地址)
|
||
extern struct mm_struct initial_mm;
|
||
extern struct signal_struct INITIAL_SIGNALS;
|
||
extern struct sighand_struct INITIAL_SIGHAND;
|
||
|
||
extern void process_exit_sighand(struct process_control_block *pcb);
|
||
extern void process_exit_signal(struct process_control_block *pcb);
|
||
extern void initial_proc_init_signal(struct process_control_block *pcb);
|
||
extern void rs_process_exit_fpstate(struct process_control_block *pcb);
|
||
extern int process_init_files();
|
||
extern int rs_init_stdio();
|
||
|
||
// 设置初始进程的PCB
|
||
#define INITIAL_PROC(proc) \
|
||
{ \
|
||
.state = PROC_UNINTERRUPTIBLE, .flags = PF_KTHREAD, .preempt_count = 0, .signal = 0, .cpu_id = 0, \
|
||
.mm = &initial_mm, .thread = &initial_thread, .addr_limit = 0xffffffffffffffff, .pid = 0, .priority = 2, \
|
||
.virtual_runtime = 0, .fds = {0}, .next_pcb = &proc, .prev_pcb = &proc, .parent_pcb = &proc, .exit_code = 0, \
|
||
.wait_child_proc_exit = 0, .worker_private = NULL, .policy = SCHED_NORMAL, .sig_blocked = 0, \
|
||
.signal = &INITIAL_SIGNALS, .sighand = &INITIAL_SIGHAND, \
|
||
}
|
||
|
||
struct thread_struct initial_thread = {
|
||
.rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
||
.rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
||
.fs = KERNEL_DS,
|
||
.gs = KERNEL_DS,
|
||
.cr2 = 0,
|
||
.trap_num = 0,
|
||
.err_code = 0,
|
||
};
|
||
|
||
// 初始化 初始进程的union ,并将其链接到.data.init_proc段内
|
||
union proc_union initial_proc_union
|
||
__attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
|
||
|
||
struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
|
||
|
||
// 为每个核心初始化初始进程的tss
|
||
struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
|
||
|
||
/**
|
||
* @brief 回收进程的所有文件描述符
|
||
*
|
||
* @param pcb 要被回收的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
extern int process_exit_files(struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 释放进程的页表
|
||
*
|
||
* @param pcb 要被释放页表的进程
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_exit_mm(struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 切换进程
|
||
*
|
||
* @param prev 上一个进程的pcb
|
||
* @param next 将要切换到的进程的pcb
|
||
* 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
|
||
* 这里切换fs和gs寄存器
|
||
*/
|
||
#pragma GCC push_options
|
||
#pragma GCC optimize("O0")
|
||
void __switch_to(struct process_control_block *prev, struct process_control_block *next)
|
||
{
|
||
initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
|
||
// kdebug("next_rsp = %#018lx ", next->thread->rsp);
|
||
// set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2,
|
||
// initial_tss[0].ist1,
|
||
// initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5,
|
||
// initial_tss[0].ist6, initial_tss[0].ist7);
|
||
|
||
__asm__ __volatile__("movq %%fs, %0 \n\t" : "=a"(prev->thread->fs));
|
||
__asm__ __volatile__("movq %%gs, %0 \n\t" : "=a"(prev->thread->gs));
|
||
|
||
__asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
|
||
__asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
|
||
}
|
||
#pragma GCC pop_options
|
||
|
||
/**
|
||
* @brief 切换进程的fs、gs寄存器
|
||
* 注意,fs、gs的值在return的时候才会生效,因此本函数不能简化为一个单独的宏
|
||
* @param fs 目标fs值
|
||
* @param gs 目标gs值
|
||
*/
|
||
void process_switch_fsgs(uint64_t fs, uint64_t gs)
|
||
{
|
||
asm volatile("movq %0, %%fs \n\t" ::"a"(fs));
|
||
asm volatile("movq %0, %%gs \n\t" ::"a"(gs));
|
||
}
|
||
|
||
/**
|
||
* @brief 打开要执行的程序文件
|
||
*
|
||
* @param path
|
||
* @return int 文件描述符编号
|
||
*/
|
||
int process_open_exec_file(char *path)
|
||
{
|
||
struct pt_regs tmp = {0};
|
||
tmp.r8 = (uint64_t)path;
|
||
tmp.r9 = O_RDONLY;
|
||
int fd = sys_open(&tmp);
|
||
return fd;
|
||
}
|
||
|
||
/**
|
||
* @brief 加载elf格式的程序文件到内存中,并设置regs
|
||
*
|
||
* @param regs 寄存器
|
||
* @param path 文件路径
|
||
* @return int
|
||
*/
|
||
static int process_load_elf_file(struct pt_regs *regs, char *path)
|
||
{
|
||
int retval = 0;
|
||
int fd = process_open_exec_file(path);
|
||
|
||
if ((long)fd < 0)
|
||
{
|
||
kdebug("(long)fd=%ld", (long)fd);
|
||
return (unsigned long)fd;
|
||
}
|
||
|
||
void *buf = kzalloc(PAGE_4K_SIZE, 0);
|
||
uint64_t pos = 0;
|
||
|
||
struct pt_regs tmp_use_fs = {0};
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = 0;
|
||
tmp_use_fs.r10 = SEEK_SET;
|
||
retval = sys_lseek(&tmp_use_fs);
|
||
|
||
// 读取 Elf64_Ehdr
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = (uint64_t)buf;
|
||
tmp_use_fs.r10 = sizeof(Elf64_Ehdr);
|
||
retval = sys_read(&tmp_use_fs);
|
||
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = 0;
|
||
tmp_use_fs.r10 = SEEK_CUR;
|
||
pos = sys_lseek(&tmp_use_fs);
|
||
|
||
if (retval != sizeof(Elf64_Ehdr))
|
||
{
|
||
kerror("retval=%d, not equal to sizeof(Elf64_Ehdr):%d", retval, sizeof(Elf64_Ehdr));
|
||
}
|
||
retval = 0;
|
||
if (!elf_check(buf))
|
||
{
|
||
kerror("Not an ELF file: %s", path);
|
||
retval = -ENOTSUP;
|
||
goto load_elf_failed;
|
||
}
|
||
|
||
#if ARCH(X86_64)
|
||
// 暂时只支持64位的文件
|
||
if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
|
||
{
|
||
kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
|
||
retval = -EUNSUPPORTED;
|
||
goto load_elf_failed;
|
||
}
|
||
Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
|
||
// 暂时只支持AMD64架构
|
||
if (ehdr.e_machine != EM_AMD64)
|
||
{
|
||
kerror("e_machine=%d", ehdr.e_machine);
|
||
retval = -EUNSUPPORTED;
|
||
goto load_elf_failed;
|
||
}
|
||
#else
|
||
#error Unsupported architecture!
|
||
#endif
|
||
if (ehdr.e_type != ET_EXEC)
|
||
{
|
||
kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
|
||
retval = -EUNSUPPORTED;
|
||
goto load_elf_failed;
|
||
}
|
||
// kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
|
||
regs->rip = ehdr.e_entry;
|
||
current_pcb->mm->code_addr_start = ehdr.e_entry;
|
||
|
||
// kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize,
|
||
// ehdr.e_phnum); 将指针移动到program header处
|
||
|
||
// 读取所有的phdr
|
||
pos = ehdr.e_phoff;
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = pos;
|
||
tmp_use_fs.r10 = SEEK_SET;
|
||
pos = sys_lseek(&tmp_use_fs);
|
||
|
||
memset(buf, 0, PAGE_4K_SIZE);
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = (uint64_t)buf;
|
||
tmp_use_fs.r10 = (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum;
|
||
sys_read(&tmp_use_fs);
|
||
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = 0;
|
||
tmp_use_fs.r10 = SEEK_CUR;
|
||
pos = sys_lseek(&tmp_use_fs);
|
||
|
||
if ((long)retval < 0)
|
||
{
|
||
kdebug("(unsigned long)filp=%d", (long)retval);
|
||
retval = -ENOEXEC;
|
||
goto load_elf_failed;
|
||
}
|
||
|
||
Elf64_Phdr *phdr = buf;
|
||
// 将程序加载到内存中
|
||
for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
|
||
{
|
||
// kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld
|
||
// phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
|
||
|
||
// 不是可加载的段
|
||
if (phdr->p_type != PT_LOAD)
|
||
continue;
|
||
|
||
int64_t remain_mem_size = phdr->p_memsz;
|
||
int64_t remain_file_size = phdr->p_filesz;
|
||
pos = phdr->p_offset;
|
||
|
||
uint64_t virt_base = 0;
|
||
uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
|
||
|
||
if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
|
||
virt_base = phdr->p_vaddr & PAGE_2M_MASK;
|
||
else // 接下来只有4K页的映射
|
||
virt_base = phdr->p_vaddr & PAGE_4K_MASK;
|
||
|
||
beginning_offset = phdr->p_vaddr - virt_base;
|
||
remain_mem_size += beginning_offset;
|
||
|
||
while (remain_mem_size > 0)
|
||
{
|
||
// kdebug("loading...");
|
||
int64_t map_size = 0;
|
||
if (remain_mem_size >= PAGE_2M_SIZE)
|
||
{
|
||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||
struct vm_area_struct *vma = NULL;
|
||
int ret =
|
||
mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||
|
||
// 防止内存泄露
|
||
if (ret == -EEXIST)
|
||
free_pages(Phy_to_2M_Page(pa), 1);
|
||
else
|
||
mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
|
||
// mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
|
||
io_mfence();
|
||
memset((void *)virt_base, 0, PAGE_2M_SIZE);
|
||
map_size = PAGE_2M_SIZE;
|
||
}
|
||
else
|
||
{
|
||
// todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
|
||
map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
|
||
// 循环分配4K大小内存块
|
||
for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
|
||
{
|
||
uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
|
||
|
||
struct vm_area_struct *vma = NULL;
|
||
int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS,
|
||
NULL, &vma);
|
||
// kdebug("virt_base=%#018lx", virt_base + off);
|
||
if (val == -EEXIST)
|
||
kfree(phys_2_virt(paddr));
|
||
else
|
||
mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
|
||
// mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
|
||
io_mfence();
|
||
memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
|
||
}
|
||
}
|
||
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = pos;
|
||
tmp_use_fs.r10 = SEEK_SET;
|
||
pos = sys_lseek(&tmp_use_fs);
|
||
|
||
int64_t val = 0;
|
||
if (remain_file_size > 0)
|
||
{
|
||
int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
|
||
|
||
void *buf3 = kzalloc(PAGE_4K_SIZE, 0);
|
||
while (to_trans > 0)
|
||
{
|
||
int64_t x = 0;
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = (uint64_t)buf3;
|
||
tmp_use_fs.r10 = to_trans;
|
||
x = sys_read(&tmp_use_fs);
|
||
memcpy(virt_base + beginning_offset + val, buf3, x);
|
||
val += x;
|
||
to_trans -= x;
|
||
tmp_use_fs.r8 = fd;
|
||
tmp_use_fs.r9 = 0;
|
||
tmp_use_fs.r10 = SEEK_CUR;
|
||
pos = sys_lseek(&tmp_use_fs);
|
||
}
|
||
kfree(buf3);
|
||
|
||
// kdebug("virt_base + beginning_offset=%#018lx, val=%d, to_trans=%d", virt_base + beginning_offset,
|
||
// val,
|
||
// to_trans);
|
||
// kdebug("to_trans=%d", to_trans);
|
||
}
|
||
|
||
if (val < 0)
|
||
goto load_elf_failed;
|
||
|
||
remain_mem_size -= map_size;
|
||
remain_file_size -= val;
|
||
virt_base += map_size;
|
||
}
|
||
}
|
||
|
||
// 分配2MB的栈内存空间
|
||
regs->rsp = current_pcb->mm->stack_start;
|
||
regs->rbp = current_pcb->mm->stack_start;
|
||
|
||
{
|
||
struct vm_area_struct *vma = NULL;
|
||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||
int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE,
|
||
VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||
if (val == -EEXIST)
|
||
free_pages(Phy_to_2M_Page(pa), 1);
|
||
else
|
||
mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
|
||
}
|
||
|
||
// 清空栈空间
|
||
memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
|
||
|
||
load_elf_failed:;
|
||
{
|
||
struct pt_regs tmp = {0};
|
||
tmp.r8 = fd;
|
||
sys_close(&tmp);
|
||
}
|
||
|
||
if (buf != NULL)
|
||
kfree(buf);
|
||
return retval;
|
||
}
|
||
/**
|
||
* @brief 使当前进程去执行新的代码
|
||
*
|
||
* @param regs 当前进程的寄存器
|
||
* @param path 可执行程序的路径
|
||
* @param argv 参数列表
|
||
* @param envp 环境变量
|
||
* @return ul 错误码
|
||
*/
|
||
#pragma GCC push_options
|
||
#pragma GCC optimize("O0")
|
||
ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
|
||
{
|
||
|
||
// 当前进程正在与父进程共享地址空间,需要创建
|
||
// 独立的地址空间才能使新程序正常运行
|
||
if (current_pcb->flags & PF_VFORK)
|
||
{
|
||
// kdebug("proc:%d creating new mem space", current_pcb->pid);
|
||
// 分配新的内存空间分布结构体
|
||
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
||
memset(new_mms, 0, sizeof(struct mm_struct));
|
||
current_pcb->mm = new_mms;
|
||
|
||
// 分配顶层页表, 并设置顶层页表的物理地址
|
||
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
||
|
||
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
||
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
||
|
||
// 拷贝内核空间的页表指针
|
||
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
|
||
}
|
||
|
||
// 设置用户栈和用户堆的基地址
|
||
unsigned long stack_start_addr = 0x6ffff0a00000UL;
|
||
const uint64_t brk_start_addr = 0x700000000000UL;
|
||
|
||
process_switch_mm(current_pcb);
|
||
|
||
// 为用户态程序设置地址边界
|
||
if (!(current_pcb->flags & PF_KTHREAD))
|
||
current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
|
||
|
||
current_pcb->mm->code_addr_end = 0;
|
||
current_pcb->mm->data_addr_start = 0;
|
||
current_pcb->mm->data_addr_end = 0;
|
||
current_pcb->mm->rodata_addr_start = 0;
|
||
current_pcb->mm->rodata_addr_end = 0;
|
||
current_pcb->mm->bss_start = 0;
|
||
current_pcb->mm->bss_end = 0;
|
||
current_pcb->mm->brk_start = brk_start_addr;
|
||
current_pcb->mm->brk_end = brk_start_addr;
|
||
current_pcb->mm->stack_start = stack_start_addr;
|
||
|
||
// 清除进程的vfork标志位
|
||
current_pcb->flags &= ~PF_VFORK;
|
||
|
||
// 加载elf格式的可执行文件
|
||
int tmp = process_load_elf_file(regs, path);
|
||
if (tmp < 0)
|
||
goto exec_failed;
|
||
|
||
int argc = 0;
|
||
char **dst_argv = NULL;
|
||
// kdebug("stack_start_addr=%#018lx", stack_start_addr);
|
||
// 拷贝参数列表
|
||
if (argv != NULL)
|
||
{
|
||
|
||
// 目标程序的argv基地址指针,最大8个参数
|
||
dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
|
||
uint64_t str_addr = (uint64_t)dst_argv;
|
||
|
||
for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
|
||
{
|
||
|
||
if (*argv[argc] == NULL)
|
||
break;
|
||
|
||
// 测量参数的长度(最大1023)
|
||
int argv_len = strnlen_user(argv[argc], 1023) + 1;
|
||
strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
|
||
str_addr -= argv_len;
|
||
dst_argv[argc] = (char *)str_addr;
|
||
// 字符串加上结尾字符
|
||
((char *)str_addr)[argv_len] = '\0';
|
||
}
|
||
|
||
// 重新设定栈基址,并预留空间防止越界
|
||
|
||
stack_start_addr = str_addr - 8;
|
||
}
|
||
|
||
// kdebug("stack_start_addr=%#018lx", stack_start_addr);
|
||
// ==== 生成relibc所需的Stack结构体
|
||
{
|
||
uint64_t *ptr_stack = (uint64_t *)(stack_start_addr - 8);
|
||
if (argc == 0)
|
||
*ptr_stack = 0;
|
||
else
|
||
*ptr_stack = (uint64_t)dst_argv;
|
||
ptr_stack--;
|
||
*ptr_stack = argc;
|
||
stack_start_addr -= 16;
|
||
}
|
||
|
||
// 传递参数(旧版libc)
|
||
regs->rdi = argc;
|
||
regs->rsi = (uint64_t)dst_argv;
|
||
// 设置用户栈基地址
|
||
current_pcb->mm->stack_start = stack_start_addr;
|
||
regs->rsp = regs->rbp = stack_start_addr;
|
||
// kdebug("execve ok");
|
||
// 设置进程的段选择子为用户态可访问
|
||
regs->cs = USER_CS | 3;
|
||
regs->ds = USER_DS | 3;
|
||
regs->ss = USER_DS | 0x3;
|
||
regs->rflags = 0x200246;
|
||
regs->rax = 1;
|
||
regs->es = 0;
|
||
|
||
return 0;
|
||
|
||
exec_failed:;
|
||
process_do_exit(tmp);
|
||
}
|
||
#pragma GCC pop_options
|
||
|
||
/**
|
||
* @brief 初始化实时进程rt_pcb
|
||
*
|
||
* @return 初始化后的进程
|
||
*
|
||
*/
|
||
struct process_control_block *process_init_rt_pcb(struct process_control_block *rt_pcb)
|
||
{
|
||
// 暂时将实时进程的优先级设置为10
|
||
rt_pcb->priority = 10;
|
||
rt_pcb->policy = SCHED_RR;
|
||
rt_pcb->rt_time_slice = 80;
|
||
rt_pcb->virtual_runtime = 0x7fffffffffffffff;
|
||
return rt_pcb;
|
||
}
|
||
|
||
/**
|
||
* @brief 内核init进程
|
||
*
|
||
* @param arg
|
||
* @return ul 参数
|
||
*/
|
||
#pragma GCC push_options
|
||
#pragma GCC optimize("O0")
|
||
ul initial_kernel_thread(ul arg)
|
||
{
|
||
kinfo("initial proc running...\targ:%#018lx, vruntime=%d", arg, current_pcb->virtual_runtime);
|
||
int val = 0;
|
||
val = scm_enable_double_buffer();
|
||
|
||
rs_init_stdio();
|
||
// block_io_scheduler_init();
|
||
ahci_init();
|
||
mount_root_fs();
|
||
rs_virtio_probe();
|
||
// 使用单独的内核线程来初始化usb驱动程序
|
||
// 注释:由于目前usb驱动程序不完善,因此先将其注释掉
|
||
// int usb_pid = kernel_thread(usb_init, 0, 0);
|
||
|
||
kinfo("LZ4 lib Version=%s", LZ4_versionString());
|
||
__rust_demo_func();
|
||
// while (1)
|
||
// {
|
||
// /* code */
|
||
// }
|
||
|
||
// 对completion完成量进行测试
|
||
// __test_completion();
|
||
|
||
// // 对一些组件进行单元测试
|
||
uint64_t tpid[] = {
|
||
// ktest_start(ktest_test_bitree, 0), ktest_start(ktest_test_kfifo, 0), ktest_start(ktest_test_mutex, 0),
|
||
// ktest_start(ktest_test_idr, 0),
|
||
// usb_pid,
|
||
};
|
||
|
||
// kinfo("Waiting test thread exit...");
|
||
// // 等待测试进程退出
|
||
// for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
|
||
// waitpid(tpid[i], NULL, NULL);
|
||
// kinfo("All test done.");
|
||
|
||
// 测试实时进程
|
||
|
||
// struct process_control_block *test_rt1 = kthread_run_rt(&test, NULL, "test rt");
|
||
// kdebug("process:rt test kthread is created!!!!");
|
||
|
||
// 准备切换到用户态
|
||
struct pt_regs *regs;
|
||
|
||
// 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
|
||
cli();
|
||
current_pcb->thread->rip = (ul)ret_from_intr;
|
||
current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
|
||
current_pcb->thread->fs = USER_DS | 0x3;
|
||
barrier();
|
||
current_pcb->thread->gs = USER_DS | 0x3;
|
||
process_switch_fsgs(current_pcb->thread->fs, current_pcb->thread->gs);
|
||
|
||
// 主动放弃内核线程身份
|
||
current_pcb->flags &= (~PF_KTHREAD);
|
||
kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
|
||
|
||
regs = (struct pt_regs *)current_pcb->thread->rsp;
|
||
// kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
|
||
current_pcb->flags = 0;
|
||
// 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数
|
||
// 这里的设计思路和switch_to类似 加载用户态程序:shell.elf
|
||
__asm__ __volatile__("movq %1, %%rsp \n\t"
|
||
"pushq %2 \n\t"
|
||
"jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
|
||
"m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/bin/shell.elf"), "c"(NULL),
|
||
"d"(NULL)
|
||
: "memory");
|
||
|
||
return 1;
|
||
}
|
||
#pragma GCC pop_options
|
||
/**
|
||
* @brief 当子进程退出后向父进程发送通知
|
||
*
|
||
*/
|
||
void process_exit_notify()
|
||
{
|
||
wait_queue_wakeup(¤t_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
|
||
}
|
||
|
||
/**
|
||
* @brief 进程退出时执行的函数
|
||
*
|
||
* @param code 返回码
|
||
* @return ul
|
||
*/
|
||
ul process_do_exit(ul code)
|
||
{
|
||
// kinfo("process exiting..., code is %ld.", (long)code);
|
||
cli();
|
||
struct process_control_block *pcb = current_pcb;
|
||
|
||
// 进程退出时释放资源
|
||
process_exit_files(pcb);
|
||
process_exit_thread(pcb);
|
||
// todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
|
||
|
||
pcb->state = PROC_ZOMBIE;
|
||
pcb->exit_code = code;
|
||
sti();
|
||
|
||
process_exit_notify();
|
||
sched();
|
||
|
||
while (1)
|
||
pause();
|
||
}
|
||
|
||
/**
|
||
* @brief 初始化内核进程
|
||
*
|
||
* @param fn 目标程序的地址
|
||
* @param arg 向目标程序传入的参数
|
||
* @param flags
|
||
* @return int
|
||
*/
|
||
|
||
pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
|
||
{
|
||
struct pt_regs regs;
|
||
barrier();
|
||
memset(®s, 0, sizeof(regs));
|
||
barrier();
|
||
// 在rbx寄存器中保存进程的入口地址
|
||
regs.rbx = (ul)fn;
|
||
// 在rdx寄存器中保存传入的参数
|
||
regs.rdx = (ul)arg;
|
||
barrier();
|
||
regs.ds = KERNEL_DS;
|
||
barrier();
|
||
regs.es = KERNEL_DS;
|
||
barrier();
|
||
regs.cs = KERNEL_CS;
|
||
barrier();
|
||
regs.ss = KERNEL_DS;
|
||
barrier();
|
||
|
||
// 置位中断使能标志位
|
||
regs.rflags = (1 << 9);
|
||
barrier();
|
||
// rip寄存器指向内核线程的引导程序
|
||
regs.rip = (ul)kernel_thread_func;
|
||
barrier();
|
||
// kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
|
||
// kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
|
||
// kdebug("1111\tregs.rip = %#018lx", regs.rip);
|
||
return do_fork(®s, flags | CLONE_VM, 0, 0);
|
||
}
|
||
|
||
/**
|
||
* @brief 初始化进程模块
|
||
* ☆前置条件:已完成系统调用模块的初始化
|
||
*/
|
||
void process_init()
|
||
{
|
||
kinfo("Initializing process...");
|
||
|
||
initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
|
||
|
||
// 初始化pid的写锁
|
||
|
||
spin_init(&process_global_pid_write_lock);
|
||
|
||
// 初始化进程的循环链表
|
||
list_init(&initial_proc_union.pcb.list);
|
||
wait_queue_init(&initial_proc_union.pcb.wait_child_proc_exit, NULL);
|
||
|
||
// 初始化init进程的signal相关的信息
|
||
initial_proc_init_signal(current_pcb);
|
||
kdebug("Initial process to init files");
|
||
process_init_files();
|
||
kdebug("Initial process init files ok");
|
||
|
||
// 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
|
||
current_pcb->virtual_runtime = 0;
|
||
barrier();
|
||
kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
|
||
barrier();
|
||
kthread_mechanism_init(); // 初始化kthread机制
|
||
|
||
initial_proc_union.pcb.state = PROC_RUNNING;
|
||
initial_proc_union.pcb.preempt_count = 0;
|
||
initial_proc_union.pcb.cpu_id = 0;
|
||
initial_proc_union.pcb.virtual_runtime = (1UL << 60);
|
||
// 将IDLE进程的虚拟运行时间设置为一个很大的数值
|
||
current_pcb->virtual_runtime = (1UL << 60);
|
||
}
|
||
|
||
/**
|
||
* @brief 根据pid获取进程的pcb。存在对应的pcb时,返回对应的pcb的指针,否则返回NULL
|
||
* 当进程管理模块拥有pcblist_lock之后,调用本函数之前,应当对其加锁
|
||
* @param pid
|
||
* @return struct process_control_block*
|
||
*/
|
||
struct process_control_block *process_find_pcb_by_pid(pid_t pid)
|
||
{
|
||
// todo: 当进程管理模块拥有pcblist_lock之后,对其加锁
|
||
struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
|
||
// 使用蛮力法搜索指定pid的pcb
|
||
// todo: 使用哈希表来管理pcb
|
||
for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
|
||
{
|
||
if (pcb->pid == pid)
|
||
return pcb;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* @brief 将进程加入到调度器的就绪队列中.
|
||
*
|
||
* @param pcb 进程的pcb
|
||
*
|
||
* @return true 成功加入调度队列
|
||
* @return false 进程已经在运行
|
||
*/
|
||
int process_wakeup(struct process_control_block *pcb)
|
||
{
|
||
|
||
BUG_ON(pcb == NULL);
|
||
if (pcb == NULL)
|
||
return -EINVAL;
|
||
// 如果pcb正在调度队列中,则不重复加入调度队列
|
||
if (pcb->state & PROC_RUNNING)
|
||
return 0;
|
||
|
||
pcb->state |= PROC_RUNNING;
|
||
sched_enqueue(pcb, true);
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
|
||
*
|
||
* @param pcb 进程的pcb
|
||
*/
|
||
int process_wakeup_immediately(struct process_control_block *pcb)
|
||
{
|
||
if (pcb->state & PROC_RUNNING)
|
||
return 0;
|
||
int retval = process_wakeup(pcb);
|
||
if (retval != 0)
|
||
return retval;
|
||
// 将当前进程标志为需要调度,缩短新进程被wakeup的时间
|
||
current_pcb->flags |= PF_NEED_SCHED;
|
||
|
||
if (pcb->cpu_id == current_pcb->cpu_id)
|
||
sched();
|
||
else
|
||
kick_cpu(pcb->cpu_id);
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 释放进程的页表
|
||
*
|
||
* @param pcb 要被释放页表的进程
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_exit_mm(struct process_control_block *pcb)
|
||
{
|
||
if (pcb->flags & CLONE_VM)
|
||
return 0;
|
||
if (pcb->mm == NULL)
|
||
{
|
||
kdebug("pcb->mm==NULL");
|
||
return 0;
|
||
}
|
||
if (pcb->mm->pgd == NULL)
|
||
{
|
||
kdebug("pcb->mm->pgd==NULL");
|
||
return 0;
|
||
}
|
||
|
||
// // 获取顶层页表
|
||
pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
|
||
|
||
// 循环释放VMA中的内存
|
||
struct vm_area_struct *vma = pcb->mm->vmas;
|
||
while (vma != NULL)
|
||
{
|
||
|
||
struct vm_area_struct *cur_vma = vma;
|
||
vma = cur_vma->vm_next;
|
||
|
||
uint64_t pa;
|
||
mm_unmap_vma(pcb->mm, cur_vma, &pa);
|
||
|
||
uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
|
||
|
||
// 释放内存
|
||
switch (size)
|
||
{
|
||
case PAGE_4K_SIZE:
|
||
kfree(phys_2_virt(pa));
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
vm_area_del(cur_vma);
|
||
vm_area_free(cur_vma);
|
||
}
|
||
|
||
// 释放顶层页表
|
||
kfree(current_pgd);
|
||
if (unlikely(pcb->mm->vmas != NULL))
|
||
{
|
||
kwarn("pcb.mm.vmas!=NULL");
|
||
}
|
||
// 释放内存空间分布结构体
|
||
kfree(pcb->mm);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief todo: 回收线程结构体
|
||
*
|
||
* @param pcb
|
||
*/
|
||
void process_exit_thread(struct process_control_block *pcb)
|
||
{
|
||
}
|
||
|
||
/**
|
||
* @brief 释放pcb
|
||
*
|
||
* @param pcb 要被释放的pcb
|
||
* @return int
|
||
*/
|
||
int process_release_pcb(struct process_control_block *pcb)
|
||
{
|
||
// 释放子进程的页表
|
||
process_exit_mm(pcb);
|
||
if ((pcb->flags & PF_KTHREAD)) // 释放内核线程的worker private结构体
|
||
free_kthread_struct(pcb);
|
||
|
||
// 将pcb从pcb链表中移除
|
||
// todo: 对相关的pcb加锁
|
||
pcb->prev_pcb->next_pcb = pcb->next_pcb;
|
||
pcb->next_pcb->prev_pcb = pcb->prev_pcb;
|
||
process_exit_sighand(pcb);
|
||
process_exit_signal(pcb);
|
||
rs_process_exit_fpstate(pcb);
|
||
rs_procfs_unregister_pid(pcb->pid);
|
||
// 释放当前pcb
|
||
kfree(pcb);
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 给pcb设置名字
|
||
*
|
||
* @param pcb 需要设置名字的pcb
|
||
* @param pcb_name 保存名字的char数组
|
||
*/
|
||
static void __set_pcb_name(struct process_control_block *pcb, const char *pcb_name)
|
||
{
|
||
// todo:给pcb加锁
|
||
// spin_lock(&pcb->alloc_lock);
|
||
strncpy(pcb->name, pcb_name, PCB_NAME_LEN);
|
||
// spin_unlock(&pcb->alloc_lock);
|
||
}
|
||
|
||
/**
|
||
* @brief 给pcb设置名字
|
||
*
|
||
* @param pcb 需要设置名字的pcb
|
||
* @param pcb_name 保存名字的char数组
|
||
*/
|
||
void process_set_pcb_name(struct process_control_block *pcb, const char *pcb_name)
|
||
{
|
||
__set_pcb_name(pcb, pcb_name);
|
||
}
|