mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-09 15:26:47 +00:00
858 lines
30 KiB
C
858 lines
30 KiB
C
#include "mm.h"
|
||
#include "slab.h"
|
||
#include "../common/printk.h"
|
||
#include "../common/kprint.h"
|
||
#include "../driver/multiboot2/multiboot2.h"
|
||
#include <process/process.h>
|
||
|
||
ul Total_Memory = 0;
|
||
ul total_2M_pages = 0;
|
||
static ul root_page_table_phys_addr = 0; // 内核层根页表的物理地址
|
||
|
||
/**
|
||
* @brief 虚拟地址长度所需要的entry数量
|
||
*
|
||
*/
|
||
typedef struct
|
||
{
|
||
int64_t num_PML4E;
|
||
int64_t num_PDPTE;
|
||
int64_t num_PDE;
|
||
int64_t num_PTE;
|
||
} mm_pgt_entry_num_t;
|
||
|
||
/**
|
||
* @brief 计算虚拟地址长度对应的页表entry数量
|
||
*
|
||
* @param length 长度
|
||
* @param ent 返回的entry数量结构体
|
||
*/
|
||
static void mm_calculate_entry_num(uint64_t length, mm_pgt_entry_num_t *ent)
|
||
{
|
||
if (ent == NULL)
|
||
return;
|
||
ent->num_PML4E = (length + (1UL << PAGE_GDT_SHIFT) - 1) >> PAGE_GDT_SHIFT;
|
||
ent->num_PDPTE = (length + PAGE_1G_SIZE - 1) >> PAGE_1G_SHIFT;
|
||
ent->num_PDE = (length + PAGE_2M_SIZE - 1) >> PAGE_2M_SHIFT;
|
||
ent->num_PTE = (length + PAGE_4K_SIZE - 1) >> PAGE_4K_SHIFT;
|
||
}
|
||
|
||
/**
|
||
* @brief 从页表中获取pdt页表项的内容
|
||
*
|
||
* @param proc_page_table_addr 页表的地址
|
||
* @param is_phys 页表地址是否为物理地址
|
||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||
* @param length 要清除的区域的长度
|
||
* @param clear 是否清除标志位
|
||
*/
|
||
uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear);
|
||
|
||
void mm_init()
|
||
{
|
||
kinfo("Initializing memory management unit...");
|
||
// 设置内核程序不同部分的起止地址
|
||
memory_management_struct.kernel_code_start = (ul)&_text;
|
||
memory_management_struct.kernel_code_end = (ul)&_etext;
|
||
memory_management_struct.kernel_data_end = (ul)&_edata;
|
||
memory_management_struct.rodata_end = (ul)&_erodata;
|
||
memory_management_struct.start_brk = (ul)&_end;
|
||
|
||
struct multiboot_mmap_entry_t mb2_mem_info[512];
|
||
int count;
|
||
|
||
multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
|
||
|
||
for (int i = 0; i < count; ++i)
|
||
{
|
||
//可用的内存
|
||
if (mb2_mem_info->type == 1)
|
||
Total_Memory += mb2_mem_info->len;
|
||
|
||
kdebug("[i=%d] mb2_mem_info[i].type=%d, mb2_mem_info[i].addr=%#018lx", i, mb2_mem_info[i].type, mb2_mem_info[i].addr);
|
||
// 保存信息到mms
|
||
memory_management_struct.e820[i].BaseAddr = mb2_mem_info[i].addr;
|
||
memory_management_struct.e820[i].Length = mb2_mem_info[i].len;
|
||
memory_management_struct.e820[i].type = mb2_mem_info[i].type;
|
||
memory_management_struct.len_e820 = i;
|
||
|
||
// 脏数据
|
||
if (mb2_mem_info[i].type > 4 || mb2_mem_info[i].len == 0 || mb2_mem_info[i].type < 1)
|
||
break;
|
||
}
|
||
printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
|
||
|
||
// 计算有效内存页数
|
||
|
||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||
{
|
||
if (memory_management_struct.e820[i].type != 1)
|
||
continue;
|
||
|
||
// 将内存段的起始物理地址按照2M进行对齐
|
||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||
// 将内存段的终止物理地址的低2M区域清空,以实现对齐
|
||
ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
|
||
|
||
// 内存段不可用
|
||
if (addr_end <= addr_start)
|
||
continue;
|
||
|
||
total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
|
||
}
|
||
kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
|
||
|
||
// 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
|
||
ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
|
||
// 初始化mms的bitmap
|
||
// bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
|
||
memory_management_struct.bmp = (unsigned long *)((memory_management_struct.start_brk + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||
memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
|
||
memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
|
||
|
||
// 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
|
||
memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
|
||
|
||
// 初始化内存页结构
|
||
// 将页结构映射于bmp之后
|
||
|
||
memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||
|
||
memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
|
||
memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
|
||
// 将pages_struct全部清空,以备后续初始化
|
||
memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
|
||
|
||
// 初始化内存区域
|
||
memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
|
||
// 由于暂时无法计算zone结构体的数量,因此先将其设为0
|
||
memory_management_struct.count_zones = 0;
|
||
// zones-struct 成员变量暂时按照5个来计算
|
||
memory_management_struct.zones_struct_len = (10 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||
memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
|
||
|
||
// ==== 遍历e820数组,完成成员变量初始化工作 ===
|
||
|
||
for (int i = 0; i < memory_management_struct.len_e820; ++i)
|
||
{
|
||
if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
|
||
continue;
|
||
ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
|
||
ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
|
||
|
||
if (addr_end <= addr_start)
|
||
continue;
|
||
|
||
// zone init
|
||
struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
|
||
++memory_management_struct.count_zones;
|
||
|
||
z->zone_addr_start = addr_start;
|
||
z->zone_addr_end = addr_end;
|
||
z->zone_length = addr_end - addr_start;
|
||
|
||
z->count_pages_using = 0;
|
||
z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||
z->total_pages_link = 0;
|
||
|
||
z->attr = 0;
|
||
z->gmd_struct = &memory_management_struct;
|
||
|
||
z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
|
||
z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
|
||
|
||
// 初始化页
|
||
struct Page *p = z->pages_group;
|
||
|
||
for (int j = 0; j < z->count_pages; ++j, ++p)
|
||
{
|
||
p->zone = z;
|
||
p->addr_phys = addr_start + PAGE_2M_SIZE * j;
|
||
p->attr = 0;
|
||
|
||
p->ref_counts = 0;
|
||
p->age = 0;
|
||
|
||
// 将bmp中对应的位 复位
|
||
*(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
|
||
}
|
||
}
|
||
|
||
// 初始化0~2MB的物理页
|
||
// 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
|
||
|
||
memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
|
||
memory_management_struct.pages_struct->addr_phys = 0UL;
|
||
set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
|
||
memory_management_struct.pages_struct->ref_counts = 1;
|
||
memory_management_struct.pages_struct->age = 0;
|
||
// 将第0页的标志位给置上
|
||
//*(memory_management_struct.bmp) |= 1UL;
|
||
|
||
// 计算zone结构体的总长度(按照64位对齐)
|
||
memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
|
||
|
||
ZONE_DMA_INDEX = 0;
|
||
ZONE_NORMAL_INDEX = 0;
|
||
ZONE_UNMAPPED_INDEX = 0;
|
||
|
||
/*
|
||
for (int i = 0; i < memory_management_struct.count_zones; ++i)
|
||
{
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
// printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
|
||
// z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
|
||
|
||
// 1GB以上的内存空间不做映射
|
||
// if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
|
||
// ZONE_UNMAPPED_INDEX = i;
|
||
}
|
||
*/
|
||
// kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
|
||
// 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
|
||
memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
|
||
|
||
// printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
|
||
// memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
|
||
|
||
// 初始化内存管理单元结构所占的物理页的结构体
|
||
|
||
ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
|
||
// kdebug("mms_max_page=%ld", mms_max_page);
|
||
|
||
struct Page *tmp_page = NULL;
|
||
ul page_num;
|
||
// 第0个page已经在上方配置
|
||
for (ul j = 1; j <= mms_max_page; ++j)
|
||
{
|
||
tmp_page = memory_management_struct.pages_struct + j;
|
||
page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
|
||
page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
|
||
*(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
|
||
++tmp_page->zone->count_pages_using;
|
||
--tmp_page->zone->count_pages_free;
|
||
}
|
||
|
||
kinfo("Memory management unit initialize complete!");
|
||
|
||
flush_tlb();
|
||
// 初始化slab内存池
|
||
slab_init();
|
||
page_table_init();
|
||
// init_frame_buffer();
|
||
}
|
||
|
||
/**
|
||
* @brief 初始化内存页
|
||
*
|
||
* @param page 内存页结构体
|
||
* @param flags 标志位
|
||
* 本函数只负责初始化内存页,允许对同一页面进行多次初始化
|
||
* 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
|
||
* @return unsigned long
|
||
*/
|
||
unsigned long page_init(struct Page *page, ul flags)
|
||
{
|
||
page->attr |= flags;
|
||
// 若页面的引用计数为0或是共享页,增加引用计数
|
||
if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
|
||
{
|
||
++page->ref_counts;
|
||
++page->zone->total_pages_link;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
|
||
*
|
||
* @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
|
||
* @param num 需要申请的连续内存页的数量 num<64
|
||
* @param flags 将页面属性设置成flag
|
||
* @return struct Page*
|
||
*/
|
||
struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
|
||
{
|
||
ul zone_start = 0, zone_end = 0;
|
||
if (num >= 64 && num <= 0)
|
||
{
|
||
kerror("alloc_pages(): num is invalid.");
|
||
return NULL;
|
||
}
|
||
|
||
ul attr = flags;
|
||
switch (zone_select)
|
||
{
|
||
case ZONE_DMA:
|
||
// DMA区域
|
||
zone_start = 0;
|
||
zone_end = ZONE_DMA_INDEX;
|
||
attr |= PAGE_PGT_MAPPED;
|
||
break;
|
||
case ZONE_NORMAL:
|
||
zone_start = ZONE_DMA_INDEX;
|
||
zone_end = ZONE_NORMAL_INDEX;
|
||
attr |= PAGE_PGT_MAPPED;
|
||
break;
|
||
case ZONE_UNMAPPED_IN_PGT:
|
||
zone_start = ZONE_NORMAL_INDEX;
|
||
zone_end = ZONE_UNMAPPED_INDEX;
|
||
attr = 0;
|
||
break;
|
||
|
||
default:
|
||
kerror("In alloc_pages: param: zone_select incorrect.");
|
||
// 返回空
|
||
return NULL;
|
||
break;
|
||
}
|
||
|
||
for (int i = zone_start; i <= zone_end; ++i)
|
||
{
|
||
if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
|
||
continue;
|
||
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
// 区域对应的起止页号
|
||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||
|
||
ul tmp = 64 - page_start % 64;
|
||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||
{
|
||
// 按照bmp中的每一个元素进行查找
|
||
// 先将p定位到bmp的起始元素
|
||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||
|
||
ul shift = j % 64;
|
||
ul tmp_num = ((1UL << num) - 1);
|
||
for (ul k = shift; k < 64; ++k)
|
||
{
|
||
// 寻找连续num个空页
|
||
if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
|
||
|
||
{
|
||
ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
|
||
for (ul l = 0; l < num; ++l)
|
||
{
|
||
struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
|
||
|
||
// 分配页面,手动配置属性及计数器
|
||
// 置位bmp
|
||
*(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
|
||
++(z->count_pages_using);
|
||
--(z->count_pages_free);
|
||
x->attr = attr;
|
||
}
|
||
// 成功分配了页面,返回第一个页面的指针
|
||
// kwarn("start page num=%d\n", start_page_num);
|
||
return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
kBUG("Cannot alloc page, ZONE=%d\tnums=%d, total_2M_pages=%d", zone_select, num, total_2M_pages);
|
||
while (1)
|
||
;
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
|
||
*
|
||
* @param p 物理页结构体
|
||
* @return unsigned long
|
||
*/
|
||
unsigned long page_clean(struct Page *p)
|
||
{
|
||
--p->ref_counts;
|
||
--p->zone->total_pages_link;
|
||
|
||
// 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
|
||
if (!p->ref_counts)
|
||
{
|
||
p->attr &= PAGE_PGT_MAPPED;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief Get the page's attr
|
||
*
|
||
* @param page 内存页结构体
|
||
* @return ul 属性
|
||
*/
|
||
ul get_page_attr(struct Page *page)
|
||
{
|
||
if (page == NULL)
|
||
{
|
||
kBUG("get_page_attr(): page == NULL");
|
||
return EPAGE_NULL;
|
||
}
|
||
else
|
||
return page->attr;
|
||
}
|
||
|
||
/**
|
||
* @brief Set the page's attr
|
||
*
|
||
* @param page 内存页结构体
|
||
* @param flags 属性
|
||
* @return ul 错误码
|
||
*/
|
||
ul set_page_attr(struct Page *page, ul flags)
|
||
{
|
||
if (page == NULL)
|
||
{
|
||
kBUG("get_page_attr(): page == NULL");
|
||
return EPAGE_NULL;
|
||
}
|
||
else
|
||
{
|
||
page->attr = flags;
|
||
return 0;
|
||
}
|
||
}
|
||
/**
|
||
* @brief 释放连续number个内存页
|
||
*
|
||
* @param page 第一个要被释放的页面的结构体
|
||
* @param number 要释放的内存页数量 number<64
|
||
*/
|
||
|
||
void free_pages(struct Page *page, int number)
|
||
{
|
||
if (page == NULL)
|
||
{
|
||
kerror("free_pages() page is invalid.");
|
||
return;
|
||
}
|
||
|
||
if (number >= 64 || number <= 0)
|
||
{
|
||
kerror("free_pages(): number %d is invalid.", number);
|
||
return;
|
||
}
|
||
|
||
ul page_num;
|
||
for (int i = 0; i < number; ++i, ++page)
|
||
{
|
||
page_num = page->addr_phys >> PAGE_2M_SHIFT;
|
||
// 复位bmp
|
||
*(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
|
||
// 更新计数器
|
||
--page->zone->count_pages_using;
|
||
++page->zone->count_pages_free;
|
||
page->attr = 0;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/**
|
||
* @brief 重新初始化页表的函数
|
||
* 将0~4GB的物理页映射到线性地址空间
|
||
*/
|
||
void page_table_init()
|
||
{
|
||
kinfo("Re-Initializing page table...");
|
||
ul *global_CR3 = get_CR3();
|
||
|
||
int js = 0;
|
||
ul *tmp_addr;
|
||
for (int i = 0; i < memory_management_struct.count_zones; ++i)
|
||
{
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
struct Page *p = z->pages_group;
|
||
|
||
if (i == ZONE_UNMAPPED_INDEX && ZONE_UNMAPPED_INDEX != 0)
|
||
break;
|
||
|
||
for (int j = 0; j < z->count_pages; ++j)
|
||
{
|
||
// if (p->addr_phys)
|
||
// kdebug("(ul)phys_2_virt(p->addr_phys)=%#018lx",(ul)phys_2_virt(p->addr_phys));
|
||
// mm_map_phys_addr((ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE);
|
||
mm_map_proc_page_table((uint64_t)get_CR3(), true, (ul)phys_2_virt(p->addr_phys), p->addr_phys, PAGE_2M_SIZE, PAGE_KERNEL_PAGE, false, true);
|
||
|
||
++p;
|
||
++js;
|
||
}
|
||
}
|
||
|
||
flush_tlb();
|
||
|
||
kinfo("Page table Initialized. Affects:%d", js);
|
||
}
|
||
|
||
/**
|
||
* @brief 将物理地址映射到页表的函数
|
||
*
|
||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||
* @param phys_addr_start 物理地址的起始位置
|
||
* @param length 要映射的区域的长度(字节)
|
||
*/
|
||
void mm_map_phys_addr(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
|
||
{
|
||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||
|
||
mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, false, true);
|
||
}
|
||
|
||
void mm_map_phys_addr_user(ul virt_addr_start, ul phys_addr_start, ul length, ul flags)
|
||
{
|
||
uint64_t global_CR3 = (uint64_t)get_CR3();
|
||
mm_map_proc_page_table(global_CR3, true, virt_addr_start, phys_addr_start, length, flags, true, true);
|
||
}
|
||
|
||
/**
|
||
* @brief 将将物理地址填写到进程的页表的函数
|
||
*
|
||
* @param proc_page_table_addr 页表的基地址
|
||
* @param is_phys 页表的基地址是否为物理地址
|
||
* @param virt_addr_start 要映射到的虚拟地址的起始位置
|
||
* @param phys_addr_start 物理地址的起始位置
|
||
* @param length 要映射的区域的长度(字节)
|
||
* @param user 用户态是否可访问
|
||
* @param flush 是否刷新tlb
|
||
*/
|
||
void mm_map_proc_page_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul phys_addr_start, ul length, ul flags, bool user, bool flush)
|
||
{
|
||
|
||
// 计算线性地址对应的pml4页表项的地址
|
||
mm_pgt_entry_num_t pgt_num;
|
||
mm_calculate_entry_num(length, &pgt_num);
|
||
// kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
|
||
// 已映射的内存大小
|
||
uint64_t length_mapped = 0;
|
||
|
||
uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||
uint64_t *pml4_ptr;
|
||
if (is_phys)
|
||
pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
|
||
else
|
||
pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
|
||
|
||
// 循环填写顶层页表
|
||
for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
|
||
{
|
||
// 剩余需要处理的pml4E -1
|
||
--(pgt_num.num_PML4E);
|
||
|
||
ul *pml4e_ptr = pml4_ptr + pml4e_id;
|
||
|
||
// 创建新的二级页表
|
||
if (*pml4e_ptr == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
memset(virt_addr, 0, PAGE_4K_SIZE);
|
||
set_pml4t(pml4e_ptr, mk_pml4t(virt_2_phys(virt_addr), (user ? PAGE_USER_PGT : PAGE_KERNEL_PGT)));
|
||
}
|
||
|
||
uint64_t pdpte_id = (((virt_addr_start + length_mapped) >> PAGE_1G_SHIFT) & 0x1ff);
|
||
uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
|
||
// kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
|
||
|
||
// 循环填写二级页表
|
||
for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
|
||
{
|
||
--pgt_num.num_PDPTE;
|
||
uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
|
||
// kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
|
||
|
||
// 创建新的三级页表
|
||
if (*pdpte_ptr == 0)
|
||
{
|
||
ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
|
||
memset(virt_addr, 0, PAGE_4K_SIZE);
|
||
set_pdpt(pdpte_ptr, mk_pdpt(virt_2_phys(virt_addr), (user ? PAGE_USER_DIR : PAGE_KERNEL_DIR)));
|
||
// kdebug("created new pdt, *pdpte_ptr=%#018lx, virt_addr=%#018lx", *pdpte_ptr, virt_addr);
|
||
}
|
||
|
||
uint64_t pde_id = (((virt_addr_start + length_mapped) >> PAGE_2M_SHIFT) & 0x1ff);
|
||
uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
|
||
// kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
|
||
|
||
// 循环填写三级页表,初始化2M物理页
|
||
for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
|
||
{
|
||
--pgt_num.num_PDE;
|
||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||
ul *pde_ptr = pd_ptr + pde_id;
|
||
if (*pde_ptr != 0 && user)
|
||
{
|
||
// kwarn("page already mapped!");
|
||
// 如果是用户态可访问的页,则释放当前新获取的物理页
|
||
free_pages(Phy_to_2M_Page((ul)phys_addr_start + length_mapped), 1);
|
||
length_mapped += PAGE_2M_SIZE;
|
||
continue;
|
||
}
|
||
// 页面写穿,禁止缓存
|
||
set_pdt(pde_ptr, mk_pdt((ul)phys_addr_start + length_mapped, flags | (user ? PAGE_USER_PAGE : PAGE_KERNEL_PAGE)));
|
||
length_mapped += PAGE_2M_SIZE;
|
||
}
|
||
}
|
||
}
|
||
if (flush)
|
||
flush_tlb();
|
||
}
|
||
|
||
/**
|
||
* @brief 从页表中获取pdt页表项的内容
|
||
*
|
||
* @param proc_page_table_addr 页表的地址
|
||
* @param is_phys 页表地址是否为物理地址
|
||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||
* @param length 要清除的区域的长度
|
||
* @param clear 是否清除标志位
|
||
*/
|
||
uint64_t mm_get_PDE(ul proc_page_table_addr, bool is_phys, ul virt_addr, bool clear)
|
||
{
|
||
ul *tmp;
|
||
if (is_phys)
|
||
tmp = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||
else
|
||
tmp = (ul *)((ul)proc_page_table_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff);
|
||
|
||
// pml4页表项为0
|
||
if (*tmp == 0)
|
||
return 0;
|
||
|
||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||
|
||
// pdpt页表项为0
|
||
if (*tmp == 0)
|
||
return 0;
|
||
|
||
// 读取pdt页表项
|
||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||
|
||
if (clear) // 清除页表项的标志位
|
||
return *tmp & (~0x1fff);
|
||
else
|
||
return *tmp;
|
||
}
|
||
|
||
/**
|
||
* @brief 从页表中清除虚拟地址的映射
|
||
*
|
||
* @param proc_page_table_addr 页表的地址
|
||
* @param is_phys 页表地址是否为物理地址
|
||
* @param virt_addr_start 要清除的虚拟地址的起始地址
|
||
* @param length 要清除的区域的长度
|
||
*/
|
||
void mm_unmap_proc_table(ul proc_page_table_addr, bool is_phys, ul virt_addr_start, ul length)
|
||
{
|
||
|
||
// 计算线性地址对应的pml4页表项的地址
|
||
mm_pgt_entry_num_t pgt_num;
|
||
mm_calculate_entry_num(length, &pgt_num);
|
||
// kdebug("ent1=%d ent2=%d ent3=%d, ent4=%d", pgt_num.num_PML4E, pgt_num.num_PDPTE, pgt_num.num_PDE, pgt_num.num_PTE);
|
||
// 已取消映射的内存大小
|
||
uint64_t length_unmapped = 0;
|
||
|
||
uint64_t pml4e_id = ((virt_addr_start >> PAGE_GDT_SHIFT) & 0x1ff);
|
||
uint64_t *pml4_ptr;
|
||
if (is_phys)
|
||
pml4_ptr = phys_2_virt((ul *)((ul)proc_page_table_addr & (~0xfffUL)));
|
||
else
|
||
pml4_ptr = (ul *)((ul)proc_page_table_addr & (~0xfffUL));
|
||
|
||
// 循环填写顶层页表
|
||
for (; (pgt_num.num_PML4E > 0) && pml4e_id < 512; ++pml4e_id)
|
||
{
|
||
// 剩余需要处理的pml4E -1
|
||
--(pgt_num.num_PML4E);
|
||
|
||
ul *pml4e_ptr = NULL;
|
||
pml4e_ptr = pml4_ptr + pml4e_id;
|
||
|
||
// 二级页表不存在
|
||
if (*pml4e_ptr == 0)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
uint64_t pdpte_id = (((virt_addr_start + length_unmapped) >> PAGE_1G_SHIFT) & 0x1ff);
|
||
uint64_t *pdpt_ptr = (uint64_t *)phys_2_virt(*pml4e_ptr & (~0xfffUL));
|
||
// kdebug("pdpt_ptr=%#018lx", pdpt_ptr);
|
||
|
||
// 循环处理二级页表
|
||
for (; (pgt_num.num_PDPTE > 0) && pdpte_id < 512; ++pdpte_id)
|
||
{
|
||
--pgt_num.num_PDPTE;
|
||
uint64_t *pdpte_ptr = (pdpt_ptr + pdpte_id);
|
||
// kdebug("pgt_num.num_PDPTE=%ld pdpte_ptr=%#018lx", pgt_num.num_PDPTE, pdpte_ptr);
|
||
|
||
// 三级页表为空
|
||
if (*pdpte_ptr == 0)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
uint64_t pde_id = (((virt_addr_start + length_unmapped) >> PAGE_2M_SHIFT) & 0x1ff);
|
||
uint64_t *pd_ptr = (uint64_t *)phys_2_virt(*pdpte_ptr & (~0xfffUL));
|
||
// kdebug("pd_ptr=%#018lx, *pd_ptr=%#018lx", pd_ptr, *pd_ptr);
|
||
|
||
// 循环处理三级页表
|
||
for (; (pgt_num.num_PDE > 0) && pde_id < 512; ++pde_id)
|
||
{
|
||
--pgt_num.num_PDE;
|
||
// 计算当前2M物理页对应的pdt的页表项的物理地址
|
||
ul *pde_ptr = pd_ptr + pde_id;
|
||
|
||
*pde_ptr = 0;
|
||
|
||
length_unmapped += PAGE_2M_SIZE;
|
||
}
|
||
}
|
||
}
|
||
flush_tlb();
|
||
}
|
||
|
||
/**
|
||
* @brief 从mms中寻找Page结构体
|
||
*
|
||
* @param phys_addr
|
||
* @return struct Page*
|
||
*/
|
||
static struct Page *mm_find_page(uint64_t phys_addr, uint32_t zone_select)
|
||
{
|
||
uint32_t zone_start, zone_end;
|
||
switch (zone_select)
|
||
{
|
||
case ZONE_DMA:
|
||
// DMA区域
|
||
zone_start = 0;
|
||
zone_end = ZONE_DMA_INDEX;
|
||
break;
|
||
case ZONE_NORMAL:
|
||
zone_start = ZONE_DMA_INDEX;
|
||
zone_end = ZONE_NORMAL_INDEX;
|
||
break;
|
||
case ZONE_UNMAPPED_IN_PGT:
|
||
zone_start = ZONE_NORMAL_INDEX;
|
||
zone_end = ZONE_UNMAPPED_INDEX;
|
||
break;
|
||
|
||
default:
|
||
kerror("In mm_find_page: param: zone_select incorrect.");
|
||
// 返回空
|
||
return NULL;
|
||
break;
|
||
}
|
||
|
||
for (int i = zone_start; i <= zone_end; ++i)
|
||
{
|
||
if ((memory_management_struct.zones_struct + i)->count_pages_using == 0)
|
||
continue;
|
||
|
||
struct Zone *z = memory_management_struct.zones_struct + i;
|
||
|
||
// 区域对应的起止页号
|
||
ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
|
||
ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
|
||
|
||
ul tmp = 64 - page_start % 64;
|
||
for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
|
||
{
|
||
// 按照bmp中的每一个元素进行查找
|
||
// 先将p定位到bmp的起始元素
|
||
ul *p = memory_management_struct.bmp + (j >> 6);
|
||
|
||
ul shift = j % 64;
|
||
for (ul k = shift; k < 64; ++k)
|
||
{
|
||
if ((*p >> k) & 1) // 若当前页已分配
|
||
{
|
||
uint64_t page_num = j + k - shift;
|
||
struct Page *x = memory_management_struct.pages_struct + page_num;
|
||
|
||
if (x->addr_phys == phys_addr) // 找到对应的页
|
||
return x;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/**
|
||
* @brief 调整堆区域的大小(暂时只能增加堆区域)
|
||
*
|
||
* @todo 缩小堆区域
|
||
* @param old_brk_end_addr 原本的堆内存区域的结束地址
|
||
* @param offset 新的地址相对于原地址的偏移量
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t mm_do_brk(uint64_t old_brk_end_addr, int64_t offset)
|
||
{
|
||
|
||
uint64_t end_addr = PAGE_2M_ALIGN(old_brk_end_addr + offset);
|
||
if (offset >= 0)
|
||
{
|
||
for (uint64_t i = old_brk_end_addr; i < end_addr; i += PAGE_2M_SIZE)
|
||
{
|
||
kdebug("map [%#018lx]", i);
|
||
mm_map_proc_page_table((uint64_t)current_pcb->mm->pgd, true, i, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true, true);
|
||
}
|
||
current_pcb->mm->brk_end = end_addr;
|
||
}
|
||
else
|
||
{
|
||
|
||
// 释放堆内存
|
||
for (uint64_t i = end_addr; i < old_brk_end_addr; i += PAGE_2M_SIZE)
|
||
{
|
||
uint64_t phys = mm_get_PDE((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, i, true);
|
||
|
||
// 找到对应的页
|
||
struct Page *p = mm_find_page(phys, ZONE_NORMAL);
|
||
if (p == NULL)
|
||
{
|
||
kerror("cannot find page addr=%#018lx", phys);
|
||
return end_addr;
|
||
}
|
||
|
||
free_pages(p, 1);
|
||
}
|
||
|
||
mm_unmap_proc_table((uint64_t)phys_2_virt((uint64_t)current_pcb->mm->pgd), false, end_addr, PAGE_2M_ALIGN(ABS(offset)));
|
||
// 在页表中取消映射
|
||
}
|
||
return end_addr;
|
||
}
|
||
|
||
/**
|
||
* @brief 检测指定地址是否已经被映射
|
||
*
|
||
* @param page_table_phys_addr 页表的物理地址
|
||
* @param virt_addr 要检测的地址
|
||
* @return true 已经被映射
|
||
* @return false
|
||
*/
|
||
bool mm_check_mapped(ul page_table_phys_addr, uint64_t virt_addr)
|
||
{
|
||
ul *tmp;
|
||
|
||
tmp = phys_2_virt((ul *)((ul)page_table_phys_addr & (~0xfffUL)) + ((virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
|
||
|
||
// pml4页表项为0
|
||
if (*tmp == 0)
|
||
return 0;
|
||
|
||
tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
|
||
|
||
// pdpt页表项为0
|
||
if (*tmp == 0)
|
||
return 0;
|
||
|
||
// 读取pdt页表项
|
||
tmp = phys_2_virt(((ul *)(*tmp & (~0xfffUL)) + (((ul)(virt_addr) >> PAGE_2M_SHIFT) & 0x1ff)));
|
||
|
||
// todo: 增加对使用了4K页的页表的检测
|
||
if (*tmp != 0)
|
||
return true;
|
||
else
|
||
return false;
|
||
} |