mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-09 19:36:47 +00:00
* 增加了idr模块 * 增加了IDR模块,并尝试覆盖上一个错误版本. * 增加了IDR模块 * 完善了注释内容 * 修改了test-idr.c文件 * 进一步完善函数注释 Signed-off-by: guanjinquan <1666320330@qq.com> Co-authored-by: fslongjin <longjin@RinGoTek.cn>
1181 lines
35 KiB
C
1181 lines
35 KiB
C
#include "process.h"
|
||
|
||
#include <common/printk.h>
|
||
#include <common/kprint.h>
|
||
#include <common/stdio.h>
|
||
#include <common/string.h>
|
||
#include <common/compiler.h>
|
||
#include <common/elf.h>
|
||
#include <common/kthread.h>
|
||
#include <common/time.h>
|
||
#include <common/sys/wait.h>
|
||
#include <driver/video/video.h>
|
||
#include <driver/usb/usb.h>
|
||
#include <exception/gate.h>
|
||
#include <filesystem/fat32/fat32.h>
|
||
#include <filesystem/devfs/devfs.h>
|
||
#include <filesystem/rootfs/rootfs.h>
|
||
#include <mm/slab.h>
|
||
#include <common/spinlock.h>
|
||
#include <syscall/syscall.h>
|
||
#include <syscall/syscall_num.h>
|
||
#include <sched/sched.h>
|
||
#include <common/unistd.h>
|
||
#include <debug/traceback/traceback.h>
|
||
#include <debug/bug.h>
|
||
#include <driver/disk/ahci/ahci.h>
|
||
|
||
#include <ktest/ktest.h>
|
||
|
||
#include <mm/mmio.h>
|
||
|
||
#include <common/lz4.h>
|
||
|
||
// #pragma GCC push_options
|
||
// #pragma GCC optimize("O0")
|
||
|
||
spinlock_t process_global_pid_write_lock; // 增加pid的写锁
|
||
long process_global_pid = 1; // 系统中最大的pid
|
||
|
||
extern void system_call(void);
|
||
extern void kernel_thread_func(void);
|
||
|
||
ul _stack_start; // initial proc的栈基地址(虚拟地址)
|
||
extern struct mm_struct initial_mm;
|
||
struct thread_struct initial_thread =
|
||
{
|
||
.rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
||
.rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
|
||
.fs = KERNEL_DS,
|
||
.gs = KERNEL_DS,
|
||
.cr2 = 0,
|
||
.trap_num = 0,
|
||
.err_code = 0};
|
||
|
||
// 初始化 初始进程的union ,并将其链接到.data.init_proc段内
|
||
union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
|
||
|
||
struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
|
||
|
||
// 为每个核心初始化初始进程的tss
|
||
struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的标志位
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的文件描述符等信息
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 回收进程的所有文件描述符
|
||
*
|
||
* @param pcb 要被回收的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_exit_files(struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的内存空间分布结构体信息
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 释放进程的页表
|
||
*
|
||
* @param pcb 要被释放页表的进程
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_exit_mm(struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的线程结构体
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
|
||
|
||
void process_exit_thread(struct process_control_block *pcb);
|
||
|
||
/**
|
||
* @brief 切换进程
|
||
*
|
||
* @param prev 上一个进程的pcb
|
||
* @param next 将要切换到的进程的pcb
|
||
* 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
|
||
* 这里切换fs和gs寄存器
|
||
*/
|
||
#pragma GCC push_options
|
||
#pragma GCC optimize("O0")
|
||
void __switch_to(struct process_control_block *prev, struct process_control_block *next)
|
||
{
|
||
initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
|
||
// kdebug("next_rsp = %#018lx ", next->thread->rsp);
|
||
// set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
|
||
// initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
|
||
|
||
__asm__ __volatile__("movq %%fs, %0 \n\t"
|
||
: "=a"(prev->thread->fs));
|
||
__asm__ __volatile__("movq %%gs, %0 \n\t"
|
||
: "=a"(prev->thread->gs));
|
||
|
||
__asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
|
||
__asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
|
||
}
|
||
#pragma GCC pop_options
|
||
|
||
/**
|
||
* @brief 打开要执行的程序文件
|
||
*
|
||
* @param path
|
||
* @return struct vfs_file_t*
|
||
*/
|
||
struct vfs_file_t *process_open_exec_file(char *path)
|
||
{
|
||
struct vfs_dir_entry_t *dentry = NULL;
|
||
struct vfs_file_t *filp = NULL;
|
||
|
||
dentry = vfs_path_walk(path, 0);
|
||
|
||
if (dentry == NULL)
|
||
return (void *)-ENOENT;
|
||
|
||
if (dentry->dir_inode->attribute == VFS_IF_DIR)
|
||
return (void *)-ENOTDIR;
|
||
|
||
filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
|
||
if (filp == NULL)
|
||
return (void *)-ENOMEM;
|
||
|
||
filp->position = 0;
|
||
filp->mode = 0;
|
||
filp->dEntry = dentry;
|
||
filp->mode = ATTR_READ_ONLY;
|
||
filp->file_ops = dentry->dir_inode->file_ops;
|
||
|
||
return filp;
|
||
}
|
||
|
||
/**
|
||
* @brief 加载elf格式的程序文件到内存中,并设置regs
|
||
*
|
||
* @param regs 寄存器
|
||
* @param path 文件路径
|
||
* @return int
|
||
*/
|
||
static int process_load_elf_file(struct pt_regs *regs, char *path)
|
||
{
|
||
int retval = 0;
|
||
struct vfs_file_t *filp = process_open_exec_file(path);
|
||
|
||
if ((long)filp <= 0 && (long)filp >= -255)
|
||
{
|
||
// kdebug("(long)filp=%ld", (long)filp);
|
||
return (unsigned long)filp;
|
||
}
|
||
|
||
void *buf = kmalloc(PAGE_4K_SIZE, 0);
|
||
memset(buf, 0, PAGE_4K_SIZE);
|
||
uint64_t pos = 0;
|
||
pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
|
||
retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
|
||
retval = 0;
|
||
if (!elf_check(buf))
|
||
{
|
||
kerror("Not an ELF file: %s", path);
|
||
retval = -ENOTSUP;
|
||
goto load_elf_failed;
|
||
}
|
||
|
||
#if ARCH(X86_64)
|
||
// 暂时只支持64位的文件
|
||
if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
|
||
{
|
||
kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
|
||
retval = -EUNSUPPORTED;
|
||
goto load_elf_failed;
|
||
}
|
||
Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
|
||
// 暂时只支持AMD64架构
|
||
if (ehdr.e_machine != EM_AMD64)
|
||
{
|
||
kerror("e_machine=%d", ehdr.e_machine);
|
||
retval = -EUNSUPPORTED;
|
||
goto load_elf_failed;
|
||
}
|
||
#else
|
||
#error Unsupported architecture!
|
||
#endif
|
||
if (ehdr.e_type != ET_EXEC)
|
||
{
|
||
kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
|
||
retval = -EUNSUPPORTED;
|
||
goto load_elf_failed;
|
||
}
|
||
// kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
|
||
regs->rip = ehdr.e_entry;
|
||
current_pcb->mm->code_addr_start = ehdr.e_entry;
|
||
|
||
// kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
|
||
// 将指针移动到program header处
|
||
pos = ehdr.e_phoff;
|
||
// 读取所有的phdr
|
||
pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
|
||
filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
|
||
if ((unsigned long)filp <= 0)
|
||
{
|
||
kdebug("(unsigned long)filp=%d", (long)filp);
|
||
retval = -ENOEXEC;
|
||
goto load_elf_failed;
|
||
}
|
||
Elf64_Phdr *phdr = buf;
|
||
|
||
// 将程序加载到内存中
|
||
for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
|
||
{
|
||
// kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
|
||
|
||
// 不是可加载的段
|
||
if (phdr->p_type != PT_LOAD)
|
||
continue;
|
||
|
||
int64_t remain_mem_size = phdr->p_memsz;
|
||
int64_t remain_file_size = phdr->p_filesz;
|
||
pos = phdr->p_offset;
|
||
|
||
uint64_t virt_base = 0;
|
||
uint64_t beginning_offset = 0; // 由于页表映射导致的virtbase与实际的p_vaddr之间的偏移量
|
||
|
||
if (remain_mem_size >= PAGE_2M_SIZE) // 接下来存在映射2M页的情况,因此将vaddr按2M向下对齐
|
||
virt_base = phdr->p_vaddr & PAGE_2M_MASK;
|
||
else // 接下来只有4K页的映射
|
||
virt_base = phdr->p_vaddr & PAGE_4K_MASK;
|
||
|
||
beginning_offset = phdr->p_vaddr - virt_base;
|
||
remain_mem_size += beginning_offset;
|
||
|
||
while (remain_mem_size > 0)
|
||
{
|
||
// kdebug("loading...");
|
||
int64_t map_size = 0;
|
||
if (remain_mem_size >= PAGE_2M_SIZE)
|
||
{
|
||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||
struct vm_area_struct *vma = NULL;
|
||
int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||
|
||
// 防止内存泄露
|
||
if (ret == -EEXIST)
|
||
free_pages(Phy_to_2M_Page(pa), 1);
|
||
else
|
||
mm_map(current_pcb->mm, virt_base, PAGE_2M_SIZE, pa);
|
||
// mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
|
||
io_mfence();
|
||
memset((void *)virt_base, 0, PAGE_2M_SIZE);
|
||
map_size = PAGE_2M_SIZE;
|
||
}
|
||
else
|
||
{
|
||
// todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
|
||
map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
|
||
// 循环分配4K大小内存块
|
||
for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
|
||
{
|
||
uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
|
||
|
||
struct vm_area_struct *vma = NULL;
|
||
int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||
// kdebug("virt_base=%#018lx", virt_base + off);
|
||
if (val == -EEXIST)
|
||
kfree(phys_2_virt(paddr));
|
||
else
|
||
mm_map(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, paddr);
|
||
// mm_map_vma(vma, paddr, 0, PAGE_4K_SIZE);
|
||
io_mfence();
|
||
memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
|
||
}
|
||
}
|
||
|
||
pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
|
||
int64_t val = 0;
|
||
if (remain_file_size > 0)
|
||
{
|
||
int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
|
||
val = filp->file_ops->read(filp, (char *)(virt_base + beginning_offset), to_trans, &pos);
|
||
}
|
||
|
||
if (val < 0)
|
||
goto load_elf_failed;
|
||
|
||
remain_mem_size -= map_size;
|
||
remain_file_size -= val;
|
||
virt_base += map_size;
|
||
}
|
||
}
|
||
|
||
// 分配2MB的栈内存空间
|
||
regs->rsp = current_pcb->mm->stack_start;
|
||
regs->rbp = current_pcb->mm->stack_start;
|
||
|
||
{
|
||
struct vm_area_struct *vma = NULL;
|
||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||
int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
|
||
if (val == -EEXIST)
|
||
free_pages(Phy_to_2M_Page(pa), 1);
|
||
else
|
||
mm_map_vma(vma, pa, 0, PAGE_2M_SIZE);
|
||
}
|
||
|
||
// 清空栈空间
|
||
memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
|
||
|
||
load_elf_failed:;
|
||
if (buf != NULL)
|
||
kfree(buf);
|
||
return retval;
|
||
}
|
||
/**
|
||
* @brief 使当前进程去执行新的代码
|
||
*
|
||
* @param regs 当前进程的寄存器
|
||
* @param path 可执行程序的路径
|
||
* @param argv 参数列表
|
||
* @param envp 环境变量
|
||
* @return ul 错误码
|
||
*/
|
||
#pragma GCC push_options
|
||
#pragma GCC optimize("O0")
|
||
ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
|
||
{
|
||
|
||
// kdebug("do_execve is running...");
|
||
|
||
// 当前进程正在与父进程共享地址空间,需要创建
|
||
// 独立的地址空间才能使新程序正常运行
|
||
if (current_pcb->flags & PF_VFORK)
|
||
{
|
||
kdebug("proc:%d creating new mem space", current_pcb->pid);
|
||
// 分配新的内存空间分布结构体
|
||
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
||
memset(new_mms, 0, sizeof(struct mm_struct));
|
||
current_pcb->mm = new_mms;
|
||
|
||
// 分配顶层页表, 并设置顶层页表的物理地址
|
||
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
||
|
||
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
||
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
||
|
||
// 拷贝内核空间的页表指针
|
||
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
|
||
}
|
||
|
||
// 设置用户栈和用户堆的基地址
|
||
unsigned long stack_start_addr = 0x6ffff0a00000UL;
|
||
const uint64_t brk_start_addr = 0x700000000000UL;
|
||
|
||
process_switch_mm(current_pcb);
|
||
|
||
// 为用户态程序设置地址边界
|
||
if (!(current_pcb->flags & PF_KTHREAD))
|
||
current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
|
||
|
||
current_pcb->mm->code_addr_end = 0;
|
||
current_pcb->mm->data_addr_start = 0;
|
||
current_pcb->mm->data_addr_end = 0;
|
||
current_pcb->mm->rodata_addr_start = 0;
|
||
current_pcb->mm->rodata_addr_end = 0;
|
||
current_pcb->mm->bss_start = 0;
|
||
current_pcb->mm->bss_end = 0;
|
||
current_pcb->mm->brk_start = brk_start_addr;
|
||
current_pcb->mm->brk_end = brk_start_addr;
|
||
current_pcb->mm->stack_start = stack_start_addr;
|
||
|
||
// 关闭之前的文件描述符
|
||
process_exit_files(current_pcb);
|
||
|
||
// 清除进程的vfork标志位
|
||
current_pcb->flags &= ~PF_VFORK;
|
||
|
||
// 加载elf格式的可执行文件
|
||
int tmp = process_load_elf_file(regs, path);
|
||
if (tmp < 0)
|
||
goto exec_failed;
|
||
|
||
// 拷贝参数列表
|
||
if (argv != NULL)
|
||
{
|
||
int argc = 0;
|
||
|
||
// 目标程序的argv基地址指针,最大8个参数
|
||
char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
|
||
uint64_t str_addr = (uint64_t)dst_argv;
|
||
|
||
for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
|
||
{
|
||
|
||
if (*argv[argc] == NULL)
|
||
break;
|
||
|
||
// 测量参数的长度(最大1023)
|
||
int argv_len = strnlen_user(argv[argc], 1023) + 1;
|
||
strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
|
||
str_addr -= argv_len;
|
||
dst_argv[argc] = (char *)str_addr;
|
||
// 字符串加上结尾字符
|
||
((char *)str_addr)[argv_len] = '\0';
|
||
}
|
||
|
||
// 重新设定栈基址,并预留空间防止越界
|
||
stack_start_addr = str_addr - 8;
|
||
current_pcb->mm->stack_start = stack_start_addr;
|
||
regs->rsp = regs->rbp = stack_start_addr;
|
||
|
||
// 传递参数
|
||
regs->rdi = argc;
|
||
regs->rsi = (uint64_t)dst_argv;
|
||
}
|
||
// kdebug("execve ok");
|
||
|
||
regs->cs = USER_CS | 3;
|
||
regs->ds = USER_DS | 3;
|
||
regs->ss = USER_DS | 0x3;
|
||
regs->rflags = 0x200246;
|
||
regs->rax = 1;
|
||
regs->es = 0;
|
||
|
||
return 0;
|
||
|
||
exec_failed:;
|
||
process_do_exit(tmp);
|
||
}
|
||
#pragma GCC pop_options
|
||
|
||
/**
|
||
* @brief 内核init进程
|
||
*
|
||
* @param arg
|
||
* @return ul 参数
|
||
*/
|
||
#pragma GCC push_options
|
||
#pragma GCC optimize("O0")
|
||
ul initial_kernel_thread(ul arg)
|
||
{
|
||
// kinfo("initial proc running...\targ:%#018lx", arg);
|
||
|
||
ahci_init();
|
||
fat32_init();
|
||
rootfs_umount();
|
||
|
||
// 使用单独的内核线程来初始化usb驱动程序
|
||
// 注释:由于目前usb驱动程序不完善,因此先将其注释掉
|
||
// int usb_pid = kernel_thread(usb_init, 0, 0);
|
||
|
||
kinfo("LZ4 lib Version=%s", LZ4_versionString());
|
||
|
||
// 对一些组件进行单元测试
|
||
uint64_t tpid[] = {
|
||
ktest_start(ktest_test_bitree, 0),
|
||
ktest_start(ktest_test_kfifo, 0),
|
||
ktest_start(ktest_test_mutex, 0),
|
||
ktest_start(ktest_test_idr, 0),
|
||
// usb_pid,
|
||
};
|
||
kinfo("Waiting test thread exit...");
|
||
// 等待测试进程退出
|
||
for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
|
||
waitpid(tpid[i], NULL, NULL);
|
||
kinfo("All test done.");
|
||
|
||
// 准备切换到用户态
|
||
struct pt_regs *regs;
|
||
|
||
// 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
|
||
cli();
|
||
current_pcb->thread->rip = (ul)ret_from_system_call;
|
||
current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
|
||
current_pcb->thread->fs = USER_DS | 0x3;
|
||
barrier();
|
||
current_pcb->thread->gs = USER_DS | 0x3;
|
||
|
||
// 主动放弃内核线程身份
|
||
current_pcb->flags &= (~PF_KTHREAD);
|
||
kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
|
||
|
||
regs = (struct pt_regs *)current_pcb->thread->rsp;
|
||
// kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
|
||
current_pcb->flags = 0;
|
||
// 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
|
||
// 加载用户态程序:shell.elf
|
||
char init_path[] = "/shell.elf";
|
||
uint64_t addr = (uint64_t)&init_path;
|
||
__asm__ __volatile__("movq %1, %%rsp \n\t"
|
||
"pushq %2 \n\t"
|
||
"jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
|
||
"m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
|
||
: "memory");
|
||
|
||
return 1;
|
||
}
|
||
#pragma GCC pop_options
|
||
/**
|
||
* @brief 当子进程退出后向父进程发送通知
|
||
*
|
||
*/
|
||
void process_exit_notify()
|
||
{
|
||
|
||
wait_queue_wakeup(¤t_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
|
||
}
|
||
/**
|
||
* @brief 进程退出时执行的函数
|
||
*
|
||
* @param code 返回码
|
||
* @return ul
|
||
*/
|
||
ul process_do_exit(ul code)
|
||
{
|
||
// kinfo("process exiting..., code is %ld.", (long)code);
|
||
cli();
|
||
struct process_control_block *pcb = current_pcb;
|
||
|
||
// 进程退出时释放资源
|
||
process_exit_files(pcb);
|
||
process_exit_thread(pcb);
|
||
// todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
|
||
|
||
pcb->state = PROC_ZOMBIE;
|
||
pcb->exit_code = code;
|
||
sti();
|
||
|
||
process_exit_notify();
|
||
sched();
|
||
|
||
while (1)
|
||
pause();
|
||
}
|
||
|
||
/**
|
||
* @brief 初始化内核进程
|
||
*
|
||
* @param fn 目标程序的地址
|
||
* @param arg 向目标程序传入的参数
|
||
* @param flags
|
||
* @return int
|
||
*/
|
||
|
||
pid_t kernel_thread(int (*fn)(void*), void* arg, unsigned long flags)
|
||
{
|
||
struct pt_regs regs;
|
||
barrier();
|
||
memset(®s, 0, sizeof(regs));
|
||
barrier();
|
||
// 在rbx寄存器中保存进程的入口地址
|
||
regs.rbx = (ul)fn;
|
||
// 在rdx寄存器中保存传入的参数
|
||
regs.rdx = (ul)arg;
|
||
barrier();
|
||
regs.ds = KERNEL_DS;
|
||
barrier();
|
||
regs.es = KERNEL_DS;
|
||
barrier();
|
||
regs.cs = KERNEL_CS;
|
||
barrier();
|
||
regs.ss = KERNEL_DS;
|
||
barrier();
|
||
|
||
// 置位中断使能标志位
|
||
regs.rflags = (1 << 9);
|
||
barrier();
|
||
// rip寄存器指向内核线程的引导程序
|
||
regs.rip = (ul)kernel_thread_func;
|
||
barrier();
|
||
// kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
|
||
// kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
|
||
// kdebug("1111\tregs.rip = %#018lx", regs.rip);
|
||
return do_fork(®s, flags | CLONE_VM, 0, 0);
|
||
}
|
||
|
||
/**
|
||
* @brief 初始化进程模块
|
||
* ☆前置条件:已完成系统调用模块的初始化
|
||
*/
|
||
void process_init()
|
||
{
|
||
kinfo("Initializing process...");
|
||
|
||
initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
|
||
|
||
/*
|
||
kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
|
||
kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
|
||
kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
|
||
*/
|
||
// 初始化pid的写锁
|
||
|
||
spin_init(&process_global_pid_write_lock);
|
||
|
||
// 初始化进程的循环链表
|
||
list_init(&initial_proc_union.pcb.list);
|
||
|
||
// 临时设置IDLE进程的的虚拟运行时间为0,防止下面的这些内核线程的虚拟运行时间出错
|
||
current_pcb->virtual_runtime = 0;
|
||
barrier();
|
||
kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
|
||
barrier();
|
||
kthread_mechanism_init(); // 初始化kthread机制
|
||
|
||
initial_proc_union.pcb.state = PROC_RUNNING;
|
||
initial_proc_union.pcb.preempt_count = 0;
|
||
initial_proc_union.pcb.cpu_id = 0;
|
||
initial_proc_union.pcb.virtual_runtime = (1UL << 60);
|
||
// 将IDLE进程的虚拟运行时间设置为一个很大的数值
|
||
current_pcb->virtual_runtime = (1UL << 60);
|
||
}
|
||
|
||
/**
|
||
* @brief fork当前进程
|
||
*
|
||
* @param regs 新的寄存器值
|
||
* @param clone_flags 克隆标志
|
||
* @param stack_start 堆栈开始地址
|
||
* @param stack_size 堆栈大小
|
||
* @return unsigned long
|
||
*/
|
||
unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
|
||
{
|
||
int retval = 0;
|
||
struct process_control_block *tsk = NULL;
|
||
|
||
// 为新的进程分配栈空间,并将pcb放置在底部
|
||
tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
|
||
barrier();
|
||
|
||
if (tsk == NULL)
|
||
{
|
||
retval = -ENOMEM;
|
||
return retval;
|
||
}
|
||
|
||
barrier();
|
||
memset(tsk, 0, sizeof(struct process_control_block));
|
||
io_mfence();
|
||
// 将当前进程的pcb复制到新的pcb内
|
||
memcpy(tsk, current_pcb, sizeof(struct process_control_block));
|
||
tsk->worker_private = NULL;
|
||
io_mfence();
|
||
|
||
// 初始化进程的循环链表结点
|
||
list_init(&tsk->list);
|
||
|
||
io_mfence();
|
||
// 判断是否为内核态调用fork
|
||
if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0)
|
||
tsk->flags |= PF_KFORK;
|
||
|
||
if (tsk->flags & PF_KTHREAD)
|
||
{
|
||
// 对于内核线程,设置其worker私有信息
|
||
retval = kthread_set_worker_private(tsk);
|
||
if (IS_ERR_VALUE(retval))
|
||
goto copy_flags_failed;
|
||
tsk->virtual_runtime = 0;
|
||
}
|
||
tsk->priority = 2;
|
||
tsk->preempt_count = 0;
|
||
|
||
// 增加全局的pid并赋值给新进程的pid
|
||
spin_lock(&process_global_pid_write_lock);
|
||
tsk->pid = process_global_pid++;
|
||
barrier();
|
||
// 加入到进程链表中
|
||
tsk->next_pcb = initial_proc_union.pcb.next_pcb;
|
||
barrier();
|
||
initial_proc_union.pcb.next_pcb = tsk;
|
||
barrier();
|
||
tsk->parent_pcb = current_pcb;
|
||
barrier();
|
||
|
||
spin_unlock(&process_global_pid_write_lock);
|
||
|
||
tsk->cpu_id = proc_current_cpu_id;
|
||
tsk->state = PROC_UNINTERRUPTIBLE;
|
||
|
||
tsk->parent_pcb = current_pcb;
|
||
wait_queue_init(&tsk->wait_child_proc_exit, NULL);
|
||
barrier();
|
||
list_init(&tsk->list);
|
||
|
||
retval = -ENOMEM;
|
||
|
||
// 拷贝标志位
|
||
if (process_copy_flags(clone_flags, tsk))
|
||
goto copy_flags_failed;
|
||
|
||
// 拷贝内存空间分布结构体
|
||
if (process_copy_mm(clone_flags, tsk))
|
||
goto copy_mm_failed;
|
||
|
||
// 拷贝文件
|
||
if (process_copy_files(clone_flags, tsk))
|
||
goto copy_files_failed;
|
||
|
||
// 拷贝线程结构体
|
||
if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
|
||
goto copy_thread_failed;
|
||
|
||
// 拷贝成功
|
||
retval = tsk->pid;
|
||
|
||
tsk->flags &= ~PF_KFORK;
|
||
|
||
// 唤醒进程
|
||
process_wakeup(tsk);
|
||
|
||
return retval;
|
||
|
||
copy_thread_failed:;
|
||
// 回收线程
|
||
process_exit_thread(tsk);
|
||
copy_files_failed:;
|
||
// 回收文件
|
||
process_exit_files(tsk);
|
||
copy_mm_failed:;
|
||
// 回收内存空间分布结构体
|
||
process_exit_mm(tsk);
|
||
copy_flags_failed:;
|
||
kfree(tsk);
|
||
return retval;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 根据pid获取进程的pcb
|
||
*
|
||
* @param pid
|
||
* @return struct process_control_block*
|
||
*/
|
||
struct process_control_block *process_get_pcb(long pid)
|
||
{
|
||
struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
|
||
|
||
// 使用蛮力法搜索指定pid的pcb
|
||
// todo: 使用哈希表来管理pcb
|
||
for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
|
||
{
|
||
if (pcb->pid == pid)
|
||
return pcb;
|
||
}
|
||
return NULL;
|
||
}
|
||
/**
|
||
* @brief 将进程加入到调度器的就绪队列中
|
||
*
|
||
* @param pcb 进程的pcb
|
||
*/
|
||
int process_wakeup(struct process_control_block *pcb)
|
||
{
|
||
BUG_ON(pcb == NULL);
|
||
if (pcb == current_pcb || pcb == NULL)
|
||
return -EINVAL;
|
||
// 如果pcb正在调度队列中,则不重复加入调度队列
|
||
if (pcb->state == PROC_RUNNING)
|
||
return 0;
|
||
pcb->state = PROC_RUNNING;
|
||
sched_enqueue(pcb);
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
|
||
*
|
||
* @param pcb 进程的pcb
|
||
*/
|
||
int process_wakeup_immediately(struct process_control_block *pcb)
|
||
{
|
||
if (pcb->state == PROC_RUNNING)
|
||
return 0;
|
||
int retval = process_wakeup(pcb);
|
||
if (retval != 0)
|
||
return retval;
|
||
// 将当前进程标志为需要调度,缩短新进程被wakeup的时间
|
||
current_pcb->flags |= PF_NEED_SCHED;
|
||
}
|
||
/**
|
||
* @brief 拷贝当前进程的标志位
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
|
||
{
|
||
if (clone_flags & CLONE_VM)
|
||
pcb->flags |= PF_VFORK;
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的文件描述符等信息
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
|
||
{
|
||
int retval = 0;
|
||
// 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
|
||
// 文件描述符已经在复制pcb时被拷贝
|
||
if (clone_flags & CLONE_FS)
|
||
return retval;
|
||
|
||
// 为新进程拷贝新的文件描述符
|
||
for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
|
||
{
|
||
if (current_pcb->fds[i] == NULL)
|
||
continue;
|
||
|
||
pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
|
||
memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* @brief 回收进程的所有文件描述符
|
||
*
|
||
* @param pcb 要被回收的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_exit_files(struct process_control_block *pcb)
|
||
{
|
||
// 不与父进程共享文件描述符
|
||
if (!(pcb->flags & PF_VFORK))
|
||
{
|
||
|
||
for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
|
||
{
|
||
if (pcb->fds[i] == NULL)
|
||
continue;
|
||
kfree(pcb->fds[i]);
|
||
}
|
||
}
|
||
// 清空当前进程的文件描述符列表
|
||
memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
|
||
}
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的内存空间分布结构体信息
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
|
||
{
|
||
int retval = 0;
|
||
// 与父进程共享内存空间
|
||
if (clone_flags & CLONE_VM)
|
||
{
|
||
pcb->mm = current_pcb->mm;
|
||
|
||
return retval;
|
||
}
|
||
|
||
// 分配新的内存空间分布结构体
|
||
struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
|
||
memset(new_mms, 0, sizeof(struct mm_struct));
|
||
|
||
memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
|
||
new_mms->vmas = NULL;
|
||
pcb->mm = new_mms;
|
||
|
||
// 分配顶层页表, 并设置顶层页表的物理地址
|
||
new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
|
||
// 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
|
||
memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
|
||
|
||
// 拷贝内核空间的页表指针
|
||
memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
|
||
|
||
uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
|
||
|
||
uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
|
||
|
||
// 拷贝用户空间的vma
|
||
struct vm_area_struct *vma = current_pcb->mm->vmas;
|
||
while (vma != NULL)
|
||
{
|
||
if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
|
||
{
|
||
vma = vma->vm_next;
|
||
continue;
|
||
}
|
||
|
||
int64_t vma_size = vma->vm_end - vma->vm_start;
|
||
// kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
|
||
if (vma_size > PAGE_2M_SIZE / 2)
|
||
{
|
||
int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
|
||
for (int i = 0; i < page_to_alloc; ++i)
|
||
{
|
||
uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
|
||
|
||
struct vm_area_struct *new_vma = NULL;
|
||
int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
|
||
// 防止内存泄露
|
||
if (unlikely(ret == -EEXIST))
|
||
free_pages(Phy_to_2M_Page(pa), 1);
|
||
else
|
||
mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE);
|
||
|
||
memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
|
||
vma_size -= PAGE_2M_SIZE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
uint64_t map_size = PAGE_4K_ALIGN(vma_size);
|
||
uint64_t va = (uint64_t)kmalloc(map_size, 0);
|
||
|
||
struct vm_area_struct *new_vma = NULL;
|
||
int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
|
||
// 防止内存泄露
|
||
if (unlikely(ret == -EEXIST))
|
||
kfree((void *)va);
|
||
else
|
||
mm_map_vma(new_vma, virt_2_phys(va), 0, map_size);
|
||
|
||
memcpy((void *)va, (void *)vma->vm_start, vma_size);
|
||
}
|
||
vma = vma->vm_next;
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* @brief 释放进程的页表
|
||
*
|
||
* @param pcb 要被释放页表的进程
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_exit_mm(struct process_control_block *pcb)
|
||
{
|
||
if (pcb->flags & CLONE_VM)
|
||
return 0;
|
||
if (pcb->mm == NULL)
|
||
{
|
||
kdebug("pcb->mm==NULL");
|
||
return 0;
|
||
}
|
||
if (pcb->mm->pgd == NULL)
|
||
{
|
||
kdebug("pcb->mm->pgd==NULL");
|
||
return 0;
|
||
}
|
||
|
||
// // 获取顶层页表
|
||
pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
|
||
|
||
// 循环释放VMA中的内存
|
||
struct vm_area_struct *vma = pcb->mm->vmas;
|
||
while (vma != NULL)
|
||
{
|
||
|
||
struct vm_area_struct *cur_vma = vma;
|
||
vma = cur_vma->vm_next;
|
||
|
||
uint64_t pa;
|
||
// kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
|
||
mm_unmap_vma(pcb->mm, cur_vma, &pa);
|
||
|
||
uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
|
||
|
||
// 释放内存
|
||
switch (size)
|
||
{
|
||
case PAGE_4K_SIZE:
|
||
kfree(phys_2_virt(pa));
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
vm_area_del(cur_vma);
|
||
vm_area_free(cur_vma);
|
||
}
|
||
|
||
// 释放顶层页表
|
||
kfree(current_pgd);
|
||
if (unlikely(pcb->mm->vmas != NULL))
|
||
{
|
||
kwarn("pcb.mm.vmas!=NULL");
|
||
}
|
||
// 释放内存空间分布结构体
|
||
kfree(pcb->mm);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 重写内核栈中的rbp地址
|
||
*
|
||
* @param new_regs 子进程的reg
|
||
* @param new_pcb 子进程的pcb
|
||
* @return int
|
||
*/
|
||
static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
|
||
{
|
||
|
||
uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
|
||
uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
|
||
|
||
uint64_t *rbp = &new_regs->rbp;
|
||
uint64_t *tmp = rbp;
|
||
|
||
// 超出内核栈范围
|
||
if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
|
||
return 0;
|
||
|
||
while (1)
|
||
{
|
||
// 计算delta
|
||
uint64_t delta = old_top - *rbp;
|
||
// 计算新的rbp值
|
||
uint64_t newVal = new_top - delta;
|
||
|
||
// 新的值不合法
|
||
if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
|
||
break;
|
||
// 将新的值写入对应位置
|
||
*rbp = newVal;
|
||
// 跳转栈帧
|
||
rbp = (uint64_t *)*rbp;
|
||
}
|
||
|
||
// 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
|
||
new_regs->rsp = new_top - (old_top - new_regs->rsp);
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief 拷贝当前进程的线程结构体
|
||
*
|
||
* @param clone_flags 克隆标志位
|
||
* @param pcb 新的进程的pcb
|
||
* @return uint64_t
|
||
*/
|
||
uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
|
||
{
|
||
// 将线程结构体放置在pcb后方
|
||
struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
|
||
memset(thd, 0, sizeof(struct thread_struct));
|
||
pcb->thread = thd;
|
||
|
||
struct pt_regs *child_regs = NULL;
|
||
// 拷贝栈空间
|
||
if (pcb->flags & PF_KFORK) // 内核态下的fork
|
||
{
|
||
// 内核态下则拷贝整个内核栈
|
||
uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
|
||
|
||
child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
|
||
memcpy(child_regs, (void *)current_regs, size);
|
||
barrier();
|
||
// 然后重写新的栈中,每个栈帧的rbp值
|
||
process_rewrite_rbp(child_regs, pcb);
|
||
}
|
||
else
|
||
{
|
||
child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
|
||
memcpy(child_regs, current_regs, sizeof(struct pt_regs));
|
||
barrier();
|
||
child_regs->rsp = stack_start;
|
||
}
|
||
|
||
// 设置子进程的返回值为0
|
||
child_regs->rax = 0;
|
||
if (pcb->flags & PF_KFORK)
|
||
thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
|
||
else
|
||
thd->rbp = (uint64_t)pcb + STACK_SIZE;
|
||
|
||
// 设置新的内核线程开始执行的时候的rsp
|
||
thd->rsp = (uint64_t)child_regs;
|
||
thd->fs = current_pcb->thread->fs;
|
||
thd->gs = current_pcb->thread->gs;
|
||
|
||
// 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
|
||
if (pcb->flags & PF_KFORK)
|
||
thd->rip = (uint64_t)ret_from_system_call;
|
||
else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
|
||
thd->rip = (uint64_t)kernel_thread_func;
|
||
else
|
||
thd->rip = (uint64_t)ret_from_system_call;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @brief todo: 回收线程结构体
|
||
*
|
||
* @param pcb
|
||
*/
|
||
void process_exit_thread(struct process_control_block *pcb)
|
||
{
|
||
}
|
||
|
||
/**
|
||
* @brief 释放pcb
|
||
*
|
||
* @param pcb
|
||
* @return int
|
||
*/
|
||
int process_release_pcb(struct process_control_block *pcb)
|
||
{
|
||
kfree(pcb);
|
||
return 0;
|
||
}
|
||
/**
|
||
* @brief 申请可用的文件句柄
|
||
*
|
||
* @return int
|
||
*/
|
||
int process_fd_alloc(struct vfs_file_t *file)
|
||
{
|
||
int fd_num = -1;
|
||
struct vfs_file_t **f = current_pcb->fds;
|
||
|
||
for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
|
||
{
|
||
/* 找到指针数组中的空位 */
|
||
if (f[i] == NULL)
|
||
{
|
||
fd_num = i;
|
||
f[i] = file;
|
||
break;
|
||
}
|
||
}
|
||
return fd_num;
|
||
} |