linfeng fae6e9ade4
feat(ebpf):[WIP] add eBPF support (#948)
* feat(kprobe): Add basic kprobe support for x86_64

* feat: add ebpf support (#912)

- 实现bpf()一部分命令,包括几种基本map,相关的helper函数
- 实现部分perf相关的数据结构
- 暂时为文件实现简单mmap
- 实现一个使用kprobe统计syscall 调用次数的ebpf程序

对eBPF支持程度(基本):

- 简单的eBPF程序(没有指定特殊的Map)
- 使用内核已经实现的Map的eBPF程序
- 可以和kprobe配合使用
- 内核Map相关的接口定义已经实现,添加新的Map较为简单

不支持的功能:
- 区分不同的eBPF程序类型(Network/Cgroup)并限定可调用的helper函数集
- 与内核其它跟踪机制配合(tracepoint)
- 其它helper和Map


todo

- [ ]  修改mmap,需要讨论,因为这个和块缓存层相关
- [x]  添加文档
- [x]  修复可能的错误
- [x] 增加rbpf版本信息

* feat: add /sys/devices/system/cpu/possible file

* feat: add /sys/devices/system/cpu/online
2024-10-25 15:59:57 +08:00

572 lines
20 KiB
Rust

// SPDX-License-Identifier: (Apache-2.0 OR MIT)
// Copyright 2016 6WIND S.A. <quentin.monnet@6wind.com>
// There are unused mut warnings due to unsafe code.
#![allow(unused_mut)]
#![allow(clippy::unreadable_literal)]
// This crate would be needed to load bytecode from a BPF-compiled object file. Since the crate
// is not used anywhere else in the library, it is deactivated: we do not want to load and compile
// it just for the tests. If you want to use it, do not forget to add the following
// dependency to your Cargo.toml file:
//
// ---
// elf = "0.0.10"
// ---
//
// extern crate elf;
// use std::path::PathBuf;
extern crate rbpf;
#[cfg(feature = "std")]
use rbpf::helpers;
use rbpf::{assembler::assemble, Error, ErrorKind};
// The following two examples have been compiled from C with the following command:
//
// ```bash
// clang -O2 -emit-llvm -c <file.c> -o - | llc -march=bpf -filetype=obj -o <file.o>
// ```
//
// The C source code was the following:
//
// ```c
// #include <linux/ip.h>
// #include <linux/in.h>
// #include <linux/tcp.h>
// #include <linux/bpf.h>
//
// #define ETH_ALEN 6
// #define ETH_P_IP 0x0008 /* htons(0x0800) */
// #define TCP_HDR_LEN 20
//
// #define BLOCKED_TCP_PORT 0x9999
//
// struct eth_hdr {
// unsigned char h_dest[ETH_ALEN];
// unsigned char h_source[ETH_ALEN];
// unsigned short h_proto;
// };
//
// #define SEC(NAME) __attribute__((section(NAME), used))
// SEC(".classifier")
// int handle_ingress(struct __sk_buff *skb)
// {
// void *data = (void *)(long)skb->data;
// void *data_end = (void *)(long)skb->data_end;
// struct eth_hdr *eth = data;
// struct iphdr *iph = data + sizeof(*eth);
// struct tcphdr *tcp = data + sizeof(*eth) + sizeof(*iph);
//
// /* single length check */
// if (data + sizeof(*eth) + sizeof(*iph) + sizeof(*tcp) > data_end)
// return 0;
// if (eth->h_proto != ETH_P_IP)
// return 0;
// if (iph->protocol != IPPROTO_TCP)
// return 0;
// if (tcp->source == BLOCKED_TCP_PORT || tcp->dest == BLOCKED_TCP_PORT)
// return -1;
// return 0;
// }
// char _license[] SEC(".license") = "GPL";
// ```
//
// This program, once compiled, can be injected into Linux kernel, with tc for instance. Sadly, we
// need to bring some modifications to the generated bytecode in order to run it: the three
// instructions with opcode 0x61 load data from a packet area as 4-byte words, where we need to
// load it as 8-bytes double words (0x79). The kernel does the same kind of translation before
// running the program, but rbpf does not implement this.
//
// In addition, the offset at which the pointer to the packet data is stored must be changed: since
// we use 8 bytes instead of 4 for the start and end addresses of the data packet, we cannot use
// the offsets produced by clang (0x4c and 0x50), the addresses would overlap. Instead we can use,
// for example, 0x40 and 0x50. See comments on the bytecode below to see the modifications.
//
// Once the bytecode has been (manually, in our case) edited, we can load the bytecode directly
// from the ELF object file. This is easy to do, but requires the addition of two crates in the
// Cargo.toml file (see comments above), so here we use just the hardcoded bytecode instructions
// instead.
#[test]
#[cfg(feature = "std")]
fn test_vm_block_port() {
// To load the bytecode from an object file instead of using the hardcoded instructions,
// use the additional crates commented at the beginning of this file (and also add them to your
// Cargo.toml). See comments above.
//
// ---
// let filename = "my_ebpf_object_file.o";
//
// let path = PathBuf::from(filename);
// let file = match elf::File::open_path(&path) {
// Ok(f) => f,
// Err(e) => panic!("Error: {:?}", e),
// };
//
// let text_scn = match file.get_section(".classifier") {
// Some(s) => s,
// None => panic!("Failed to look up .classifier section"),
// };
//
// let prog = &text_scn.data;
// ---
let prog = &[
0xb7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x12, 0x50, 0x00, 0x00, 0x00, 0x00,
0x00, // 0x79 instead of 0x61
0x79, 0x11, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00, // 0x79 instead of 0x61, 0x40 i.o. 0x4c
0xbf, 0x13, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x03, 0x00, 0x00, 0x36, 0x00, 0x00,
0x00, 0x2d, 0x23, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x69, 0x12, 0x0c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x55, 0x02, 0x10, 0x00, 0x08, 0x00, 0x00, 0x00, 0x71, 0x12, 0x17, 0x00, 0x00,
0x00, 0x00, 0x00, 0x55, 0x02, 0x0e, 0x00, 0x06, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x11, 0x22,
0x00, 0x00, 0x00, 0x00, 0x00, // 0x79 instead of 0x61
0xbf, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x57, 0x02, 0x00, 0x00, 0xff, 0xff, 0x00,
0x00, 0x15, 0x02, 0x08, 0x00, 0x99, 0x99, 0x00, 0x00, 0x18, 0x02, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5f, 0x21, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xb7, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x18, 0x02, 0x00, 0x00,
0x00, 0x00, 0x99, 0x99, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1d, 0x21, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0xb7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x95, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let packet = &mut [
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x08,
0x00, // ethertype
0x45, 0x00, 0x00, 0x3b, // start ip_hdr
0xa6, 0xab, 0x40, 0x00, 0x40, 0x06, 0x96, 0x0f, 0x7f, 0x00, 0x00, 0x01, 0x7f, 0x00, 0x00,
0x01,
// Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
0x99, 0x99, 0xc6, 0xcc, // start tcp_hdr
0xd1, 0xe5, 0xc4, 0x9d, 0xd4, 0x30, 0xb5, 0xd2, 0x80, 0x18, 0x01, 0x56, 0xfe, 0x2f, 0x00,
0x00, 0x01, 0x01, 0x08, 0x0a, // start data
0x00, 0x23, 0x75, 0x89, 0x00, 0x23, 0x63, 0x2d, 0x71, 0x64, 0x66, 0x73, 0x64, 0x66, 0x0au8,
];
let mut vm = rbpf::EbpfVmFixedMbuff::new(Some(prog), 0x40, 0x50).unwrap();
vm.register_helper(helpers::BPF_TRACE_PRINTK_IDX, helpers::bpf_trace_printf)
.unwrap();
let res = vm.execute_program(packet).unwrap();
println!("Program returned: {res:?} ({res:#x})");
assert_eq!(res, 0xffffffff);
}
#[test]
#[cfg(all(not(windows), feature = "std"))]
fn test_jit_block_port() {
// To load the bytecode from an object file instead of using the hardcoded instructions,
// use the additional crates commented at the beginning of this file (and also add them to your
// Cargo.toml). See comments above.
//
// ---
// let filename = "my_ebpf_object_file.o";
//
// let path = PathBuf::from(filename);
// let file = match elf::File::open_path(&path) {
// Ok(f) => f,
// Err(e) => panic!("Error: {:?}", e),
// };
//
// let text_scn = match file.get_section(".classifier") {
// Some(s) => s,
// None => panic!("Failed to look up .classifier section"),
// };
//
// let prog = &text_scn.data;
// ---
let prog = &[
0xb7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x12, 0x50, 0x00, 0x00, 0x00, 0x00,
0x00, // 0x79 instead of 0x61
0x79, 0x11, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00, // 0x79 instead of 0x61, 0x40 i.o. 0x4c
0xbf, 0x13, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x03, 0x00, 0x00, 0x36, 0x00, 0x00,
0x00, 0x2d, 0x23, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x69, 0x12, 0x0c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x55, 0x02, 0x10, 0x00, 0x08, 0x00, 0x00, 0x00, 0x71, 0x12, 0x17, 0x00, 0x00,
0x00, 0x00, 0x00, 0x55, 0x02, 0x0e, 0x00, 0x06, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79, 0x11, 0x22,
0x00, 0x00, 0x00, 0x00, 0x00, // 0x79 instead of 0x61
0xbf, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x57, 0x02, 0x00, 0x00, 0xff, 0xff, 0x00,
0x00, 0x15, 0x02, 0x08, 0x00, 0x99, 0x99, 0x00, 0x00, 0x18, 0x02, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5f, 0x21, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xb7, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x18, 0x02, 0x00, 0x00,
0x00, 0x00, 0x99, 0x99, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1d, 0x21, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0xb7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x95, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let packet = &mut [
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x08,
0x00, // ethertype
0x45, 0x00, 0x00, 0x3b, // start ip_hdr
0xa6, 0xab, 0x40, 0x00, 0x40, 0x06, 0x96, 0x0f, 0x7f, 0x00, 0x00, 0x01, 0x7f, 0x00, 0x00,
0x01,
// Program matches the next two bytes: 0x9999 returns 0xffffffff, else return 0.
0x99, 0x99, 0xc6, 0xcc, // start tcp_hdr
0xd1, 0xe5, 0xc4, 0x9d, 0xd4, 0x30, 0xb5, 0xd2, 0x80, 0x18, 0x01, 0x56, 0xfe, 0x2f, 0x00,
0x00, 0x01, 0x01, 0x08, 0x0a, // start data
0x00, 0x23, 0x75, 0x89, 0x00, 0x23, 0x63, 0x2d, 0x71, 0x64, 0x66, 0x73, 0x64, 0x66, 0x0au8,
];
let mut vm = rbpf::EbpfVmFixedMbuff::new(Some(prog), 0x40, 0x50).unwrap();
vm.register_helper(helpers::BPF_TRACE_PRINTK_IDX, helpers::bpf_trace_printf)
.unwrap();
vm.jit_compile().unwrap();
unsafe {
let res = vm.execute_program_jit(packet).unwrap();
println!("Program returned: {res:?} ({res:#x})");
assert_eq!(res, 0xffffffff);
}
}
// Program and memory come from uBPF test ldxh.
#[test]
fn test_vm_mbuff() {
let prog = &[
// Load mem from mbuff into R1
0x79, 0x11, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // ldhx r1[2], r0
0x69, 0x10, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &[0xaa, 0xbb, 0x11, 0x22, 0xcc, 0xdd];
let mbuff = [0u8; 32];
unsafe {
let mut data = mbuff.as_ptr().offset(8) as *mut u64;
let mut data_end = mbuff.as_ptr().offset(24) as *mut u64;
data.write_unaligned(mem.as_ptr() as u64);
data_end.write_unaligned(mem.as_ptr() as u64 + mem.len() as u64);
}
let vm = rbpf::EbpfVmMbuff::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem, &mbuff).unwrap(), 0x2211);
}
// Program and memory come from uBPF test ldxh.
#[test]
fn test_vm_mbuff_with_rust_api() {
use rbpf::insn_builder::*;
let mut program = BpfCode::new();
program
.load_x(MemSize::DoubleWord)
.set_dst(0x01)
.set_src(0x01)
.set_off(0x00_08)
.push()
.load_x(MemSize::HalfWord)
.set_dst(0x00)
.set_src(0x01)
.set_off(0x00_02)
.push()
.exit()
.push();
let mem = &[0xaa, 0xbb, 0x11, 0x22, 0xcc, 0xdd];
let mbuff = [0u8; 32];
unsafe {
let mut data = mbuff.as_ptr().offset(8) as *mut u64;
let mut data_end = mbuff.as_ptr().offset(24) as *mut u64;
*data = mem.as_ptr() as u64;
*data_end = mem.as_ptr() as u64 + mem.len() as u64;
}
let vm = rbpf::EbpfVmMbuff::new(Some(program.into_bytes())).unwrap();
assert_eq!(vm.execute_program(mem, &mbuff).unwrap(), 0x2211);
}
// Program and memory come from uBPF test ldxh.
#[test]
#[cfg(all(not(windows), feature = "std"))]
fn test_jit_mbuff() {
let prog = &[
// Load mem from mbuff into R1
0x79, 0x11, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, // ldhx r1[2], r0
0x69, 0x10, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &mut [0xaa, 0xbb, 0x11, 0x22, 0xcc, 0xdd];
let mut mbuff = [0u8; 32];
unsafe {
let mut data = mbuff.as_ptr().offset(8) as *mut u64;
let mut data_end = mbuff.as_ptr().offset(24) as *mut u64;
*data = mem.as_ptr() as u64;
*data_end = mem.as_ptr() as u64 + mem.len() as u64;
}
unsafe {
let mut vm = rbpf::EbpfVmMbuff::new(Some(prog)).unwrap();
vm.jit_compile().unwrap();
assert_eq!(vm.execute_program_jit(mem, &mut mbuff).unwrap(), 0x2211);
}
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldabsb() {
let prog = &[
0x30, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0x33);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0x33);
};
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldabsh() {
let prog = &[
0x28, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0x4433);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0x4433);
};
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldabsw() {
let prog = &[
0x20, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0x66554433);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0x66554433);
};
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldabsdw() {
let prog = &[
0x38, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0xaa99887766554433);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0xaa99887766554433);
};
}
#[test]
#[should_panic(expected = "Error: out of bounds memory load (insn #1),")]
fn test_vm_err_ldabsb_oob() {
let prog = &[
0x38, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
vm.execute_program(mem).unwrap();
// Memory check not implemented for JIT yet.
}
#[test]
#[should_panic(expected = "Error: out of bounds memory load (insn #1),")]
fn test_vm_err_ldabsb_nomem() {
let prog = &[
0x38, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
];
let vm = rbpf::EbpfVmNoData::new(Some(prog)).unwrap();
vm.execute_program().unwrap();
// Memory check not implemented for JIT yet.
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldindb() {
let prog = &[
0xb7, 0x01, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x50, 0x10, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0x88);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0x88);
};
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldindh() {
let prog = &[
0xb7, 0x01, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x48, 0x10, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0x9988);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0x9988);
};
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldindw() {
let prog = &[
0xb7, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x40, 0x10, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0x88776655);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0x88776655);
};
}
#[cfg(all(not(windows), feature = "std"))]
#[test]
fn test_vm_jit_ldinddw() {
let prog = &[
0xb7, 0x01, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x58, 0x10, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let mut vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
assert_eq!(vm.execute_program(mem).unwrap(), 0xccbbaa9988776655);
vm.jit_compile().unwrap();
unsafe {
assert_eq!(vm.execute_program_jit(mem).unwrap(), 0xccbbaa9988776655);
};
}
#[test]
#[should_panic(expected = "Error: out of bounds memory load (insn #2),")]
fn test_vm_err_ldindb_oob() {
let prog = &[
0xb7, 0x01, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x38, 0x10, 0x00, 0x00, 0x33, 0x00, 0x00,
0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let mem = &mut [
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
0xff,
];
let vm = rbpf::EbpfVmRaw::new(Some(prog)).unwrap();
vm.execute_program(mem).unwrap();
// Memory check not implemented for JIT yet.
}
#[test]
#[should_panic(expected = "Error: out of bounds memory load (insn #2),")]
fn test_vm_err_ldindb_nomem() {
let prog = &[
0xb7, 0x01, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x38, 0x10, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00, 0x95, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let vm = rbpf::EbpfVmNoData::new(Some(prog)).unwrap();
vm.execute_program().unwrap();
// Memory check not implemented for JIT yet.
}
#[test]
#[should_panic(expected = "Error: No program set, call prog_set() to load one")]
fn test_vm_exec_no_program() {
let vm = rbpf::EbpfVmNoData::new(None).unwrap();
assert_eq!(vm.execute_program().unwrap(), 0xBEE);
}
fn verifier_success(_prog: &[u8]) -> Result<(), Error> {
Ok(())
}
fn verifier_fail(_prog: &[u8]) -> Result<(), Error> {
Err(Error::new(ErrorKind::Other, "Gaggablaghblagh!"))
}
#[test]
fn test_verifier_success() {
let prog = assemble(
"mov32 r0, 0xBEE
exit",
)
.unwrap();
let mut vm = rbpf::EbpfVmNoData::new(None).unwrap();
vm.set_verifier(verifier_success).unwrap();
vm.set_program(&prog).unwrap();
assert_eq!(vm.execute_program().unwrap(), 0xBEE);
}
#[test]
#[should_panic(expected = "Gaggablaghblagh!")]
fn test_verifier_fail() {
let prog = assemble(
"mov32 r0, 0xBEE
exit",
)
.unwrap();
let mut vm = rbpf::EbpfVmNoData::new(None).unwrap();
vm.set_verifier(verifier_fail).unwrap();
vm.set_program(&prog).unwrap();
assert_eq!(vm.execute_program().unwrap(), 0xBEE);
}