mirror of
https://github.com/DragonOS-Community/DragonOS.git
synced 2025-06-08 10:15:03 +00:00
* 添加make run-nographic * 添加session和processgroup结构体 * 添加一些有关进程组的syscall * 在fork中加入set_group * 修改broadcast未实现的信息 * 添加对kill缺失的进程组的逻辑的补充
1782 lines
54 KiB
Rust
1782 lines
54 KiB
Rust
use core::{
|
||
fmt,
|
||
hash::Hash,
|
||
hint::spin_loop,
|
||
intrinsics::{likely, unlikely},
|
||
mem::ManuallyDrop,
|
||
sync::atomic::{compiler_fence, fence, AtomicBool, AtomicUsize, Ordering},
|
||
};
|
||
|
||
use alloc::{
|
||
ffi::CString,
|
||
string::{String, ToString},
|
||
sync::{Arc, Weak},
|
||
vec::Vec,
|
||
};
|
||
use cred::INIT_CRED;
|
||
use hashbrown::HashMap;
|
||
use log::{debug, error, info, warn};
|
||
use process_group::{Pgid, ProcessGroup, ALL_PROCESS_GROUP};
|
||
use session::{Session, Sid, ALL_SESSION};
|
||
use system_error::SystemError;
|
||
|
||
use crate::{
|
||
arch::{
|
||
cpu::current_cpu_id,
|
||
ipc::signal::{AtomicSignal, SigSet, Signal},
|
||
process::ArchPCBInfo,
|
||
CurrentIrqArch,
|
||
},
|
||
driver::tty::tty_core::TtyCore,
|
||
exception::InterruptArch,
|
||
filesystem::{
|
||
procfs::procfs_unregister_pid,
|
||
vfs::{file::FileDescriptorVec, FileType},
|
||
},
|
||
ipc::{
|
||
signal::RestartBlock,
|
||
signal_types::{SigInfo, SigPending, SignalStruct},
|
||
},
|
||
libs::{
|
||
align::AlignedBox,
|
||
casting::DowncastArc,
|
||
futex::{
|
||
constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
|
||
futex::{Futex, RobustListHead},
|
||
},
|
||
lock_free_flags::LockFreeFlags,
|
||
mutex::Mutex,
|
||
rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard},
|
||
spinlock::{SpinLock, SpinLockGuard},
|
||
wait_queue::WaitQueue,
|
||
},
|
||
mm::{
|
||
percpu::{PerCpu, PerCpuVar},
|
||
set_IDLE_PROCESS_ADDRESS_SPACE,
|
||
ucontext::AddressSpace,
|
||
VirtAddr,
|
||
},
|
||
namespaces::{mnt_namespace::FsStruct, pid_namespace::PidStrcut, NsProxy},
|
||
net::socket::SocketInode,
|
||
sched::{
|
||
completion::Completion, cpu_rq, fair::FairSchedEntity, prio::MAX_PRIO, DequeueFlag,
|
||
EnqueueFlag, OnRq, SchedMode, WakeupFlags, __schedule,
|
||
},
|
||
smp::{
|
||
core::smp_get_processor_id,
|
||
cpu::{AtomicProcessorId, ProcessorId},
|
||
kick_cpu,
|
||
},
|
||
syscall::{user_access::clear_user, Syscall},
|
||
};
|
||
use timer::AlarmTimer;
|
||
|
||
use self::{cred::Cred, kthread::WorkerPrivate};
|
||
|
||
pub mod abi;
|
||
pub mod cred;
|
||
pub mod exec;
|
||
pub mod exit;
|
||
pub mod fork;
|
||
pub mod idle;
|
||
pub mod kthread;
|
||
pub mod pid;
|
||
pub mod process_group;
|
||
pub mod resource;
|
||
pub mod session;
|
||
pub mod stdio;
|
||
pub mod syscall;
|
||
pub mod timer;
|
||
pub mod utils;
|
||
|
||
/// 系统中所有进程的pcb
|
||
static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
|
||
|
||
pub static mut PROCESS_SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
|
||
|
||
/// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
|
||
static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
|
||
|
||
pub struct SwitchResult {
|
||
pub prev_pcb: Option<Arc<ProcessControlBlock>>,
|
||
pub next_pcb: Option<Arc<ProcessControlBlock>>,
|
||
}
|
||
|
||
impl SwitchResult {
|
||
pub fn new() -> Self {
|
||
Self {
|
||
prev_pcb: None,
|
||
next_pcb: None,
|
||
}
|
||
}
|
||
}
|
||
|
||
#[derive(Debug)]
|
||
pub struct ProcessManager;
|
||
impl ProcessManager {
|
||
#[inline(never)]
|
||
fn init() {
|
||
static INIT_FLAG: AtomicBool = AtomicBool::new(false);
|
||
if INIT_FLAG
|
||
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
|
||
.is_err()
|
||
{
|
||
panic!("ProcessManager has been initialized!");
|
||
}
|
||
|
||
unsafe {
|
||
compiler_fence(Ordering::SeqCst);
|
||
debug!("To create address space for INIT process.");
|
||
// test_buddy();
|
||
set_IDLE_PROCESS_ADDRESS_SPACE(
|
||
AddressSpace::new(true).expect("Failed to create address space for INIT process."),
|
||
);
|
||
debug!("INIT process address space created.");
|
||
compiler_fence(Ordering::SeqCst);
|
||
};
|
||
|
||
ALL_PROCESS.lock_irqsave().replace(HashMap::new());
|
||
ALL_PROCESS_GROUP.lock_irqsave().replace(HashMap::new());
|
||
ALL_SESSION.lock_irqsave().replace(HashMap::new());
|
||
Self::init_switch_result();
|
||
Self::arch_init();
|
||
debug!("process arch init done.");
|
||
Self::init_idle();
|
||
debug!("process idle init done.");
|
||
|
||
unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true };
|
||
info!("Process Manager initialized.");
|
||
}
|
||
|
||
fn init_switch_result() {
|
||
let mut switch_res_vec: Vec<SwitchResult> = Vec::new();
|
||
for _ in 0..PerCpu::MAX_CPU_NUM {
|
||
switch_res_vec.push(SwitchResult::new());
|
||
}
|
||
unsafe {
|
||
PROCESS_SWITCH_RESULT = Some(PerCpuVar::new(switch_res_vec).unwrap());
|
||
}
|
||
}
|
||
|
||
/// 判断进程管理器是否已经初始化完成
|
||
#[allow(dead_code)]
|
||
pub fn initialized() -> bool {
|
||
unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
|
||
}
|
||
|
||
/// 获取当前进程的pcb
|
||
pub fn current_pcb() -> Arc<ProcessControlBlock> {
|
||
if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
|
||
error!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
|
||
loop {
|
||
spin_loop();
|
||
}
|
||
}
|
||
return ProcessControlBlock::arch_current_pcb();
|
||
}
|
||
|
||
/// 获取当前进程的pid
|
||
///
|
||
/// 如果进程管理器未初始化完成,那么返回0
|
||
pub fn current_pid() -> Pid {
|
||
if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
|
||
return Pid(0);
|
||
}
|
||
|
||
return ProcessManager::current_pcb().pid();
|
||
}
|
||
|
||
/// 增加当前进程的锁持有计数
|
||
#[inline(always)]
|
||
pub fn preempt_disable() {
|
||
if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
|
||
ProcessManager::current_pcb().preempt_disable();
|
||
}
|
||
}
|
||
|
||
/// 减少当前进程的锁持有计数
|
||
#[inline(always)]
|
||
pub fn preempt_enable() {
|
||
if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
|
||
ProcessManager::current_pcb().preempt_enable();
|
||
}
|
||
}
|
||
|
||
/// 根据pid获取进程的pcb
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `pid` : 进程的pid
|
||
///
|
||
/// ## 返回值
|
||
///
|
||
/// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
|
||
pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
|
||
return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned();
|
||
}
|
||
|
||
/// 向系统中添加一个进程的pcb
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `pcb` : 进程的pcb
|
||
///
|
||
/// ## 返回值
|
||
///
|
||
/// 无
|
||
pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
|
||
ALL_PROCESS
|
||
.lock_irqsave()
|
||
.as_mut()
|
||
.unwrap()
|
||
.insert(pcb.pid(), pcb.clone());
|
||
}
|
||
|
||
/// ### 获取所有进程的pid
|
||
pub fn get_all_processes() -> Vec<Pid> {
|
||
let mut pids = Vec::new();
|
||
for (pid, _) in ALL_PROCESS.lock_irqsave().as_ref().unwrap().iter() {
|
||
pids.push(*pid);
|
||
}
|
||
pids
|
||
}
|
||
|
||
/// 唤醒一个进程
|
||
pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
|
||
let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||
let state = pcb.sched_info().inner_lock_read_irqsave().state();
|
||
if state.is_blocked() {
|
||
let mut writer = pcb.sched_info().inner_lock_write_irqsave();
|
||
let state = writer.state();
|
||
if state.is_blocked() {
|
||
writer.set_state(ProcessState::Runnable);
|
||
writer.set_wakeup();
|
||
|
||
// avoid deadlock
|
||
drop(writer);
|
||
|
||
let rq =
|
||
cpu_rq(pcb.sched_info().on_cpu().unwrap_or(current_cpu_id()).data() as usize);
|
||
|
||
let (rq, _guard) = rq.self_lock();
|
||
rq.update_rq_clock();
|
||
rq.activate_task(
|
||
pcb,
|
||
EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK,
|
||
);
|
||
|
||
rq.check_preempt_currnet(pcb, WakeupFlags::empty());
|
||
|
||
// sched_enqueue(pcb.clone(), true);
|
||
return Ok(());
|
||
} else if state.is_exited() {
|
||
return Err(SystemError::EINVAL);
|
||
} else {
|
||
return Ok(());
|
||
}
|
||
} else if state.is_exited() {
|
||
return Err(SystemError::EINVAL);
|
||
} else {
|
||
return Ok(());
|
||
}
|
||
}
|
||
|
||
/// 唤醒暂停的进程
|
||
pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
|
||
let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||
let state = pcb.sched_info().inner_lock_read_irqsave().state();
|
||
if let ProcessState::Stopped = state {
|
||
let mut writer = pcb.sched_info().inner_lock_write_irqsave();
|
||
let state = writer.state();
|
||
if let ProcessState::Stopped = state {
|
||
writer.set_state(ProcessState::Runnable);
|
||
// avoid deadlock
|
||
drop(writer);
|
||
|
||
let rq = cpu_rq(
|
||
pcb.sched_info()
|
||
.on_cpu()
|
||
.unwrap_or(smp_get_processor_id())
|
||
.data() as usize,
|
||
);
|
||
|
||
let (rq, _guard) = rq.self_lock();
|
||
rq.update_rq_clock();
|
||
rq.activate_task(
|
||
pcb,
|
||
EnqueueFlag::ENQUEUE_WAKEUP | EnqueueFlag::ENQUEUE_NOCLOCK,
|
||
);
|
||
|
||
rq.check_preempt_currnet(pcb, WakeupFlags::empty());
|
||
|
||
// sched_enqueue(pcb.clone(), true);
|
||
return Ok(());
|
||
} else if state.is_runnable() {
|
||
return Ok(());
|
||
} else {
|
||
return Err(SystemError::EINVAL);
|
||
}
|
||
} else if state.is_runnable() {
|
||
return Ok(());
|
||
} else {
|
||
return Err(SystemError::EINVAL);
|
||
}
|
||
}
|
||
|
||
/// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
|
||
///
|
||
/// ## 注意
|
||
///
|
||
/// - 进入当前函数之前,不能持有sched_info的锁
|
||
/// - 进入当前函数之前,必须关闭中断
|
||
/// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
|
||
pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
|
||
assert!(
|
||
!CurrentIrqArch::is_irq_enabled(),
|
||
"interrupt must be disabled before enter ProcessManager::mark_sleep()"
|
||
);
|
||
let pcb = ProcessManager::current_pcb();
|
||
let mut writer = pcb.sched_info().inner_lock_write_irqsave();
|
||
if !matches!(writer.state(), ProcessState::Exited(_)) {
|
||
writer.set_state(ProcessState::Blocked(interruptable));
|
||
writer.set_sleep();
|
||
pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
|
||
fence(Ordering::SeqCst);
|
||
drop(writer);
|
||
return Ok(());
|
||
}
|
||
return Err(SystemError::EINTR);
|
||
}
|
||
|
||
/// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
|
||
///
|
||
/// ## 注意
|
||
///
|
||
/// - 进入当前函数之前,不能持有sched_info的锁
|
||
/// - 进入当前函数之前,必须关闭中断
|
||
pub fn mark_stop() -> Result<(), SystemError> {
|
||
assert!(
|
||
!CurrentIrqArch::is_irq_enabled(),
|
||
"interrupt must be disabled before enter ProcessManager::mark_stop()"
|
||
);
|
||
|
||
let pcb = ProcessManager::current_pcb();
|
||
let mut writer = pcb.sched_info().inner_lock_write_irqsave();
|
||
if !matches!(writer.state(), ProcessState::Exited(_)) {
|
||
writer.set_state(ProcessState::Stopped);
|
||
pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
|
||
drop(writer);
|
||
|
||
return Ok(());
|
||
}
|
||
return Err(SystemError::EINTR);
|
||
}
|
||
/// 当子进程退出后向父进程发送通知
|
||
fn exit_notify() {
|
||
let current = ProcessManager::current_pcb();
|
||
// 让INIT进程收养所有子进程
|
||
if current.pid() != Pid(1) {
|
||
unsafe {
|
||
current
|
||
.adopt_childen()
|
||
.unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
|
||
};
|
||
let r = current.parent_pcb.read_irqsave().upgrade();
|
||
if r.is_none() {
|
||
return;
|
||
}
|
||
let parent_pcb = r.unwrap();
|
||
let r = Syscall::kill_process(parent_pcb.pid(), Signal::SIGCHLD);
|
||
if r.is_err() {
|
||
warn!(
|
||
"failed to send kill signal to {:?}'s parent pcb {:?}",
|
||
current.pid(),
|
||
parent_pcb.pid()
|
||
);
|
||
}
|
||
// todo: 这里需要向父进程发送SIGCHLD信号
|
||
// todo: 这里还需要根据线程组的信息,决定信号的发送
|
||
}
|
||
}
|
||
|
||
/// 退出当前进程
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `exit_code` : 进程的退出码
|
||
pub fn exit(exit_code: usize) -> ! {
|
||
// 关中断
|
||
let _irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||
let pid: Pid;
|
||
{
|
||
let pcb = ProcessManager::current_pcb();
|
||
pid = pcb.pid();
|
||
pcb.sched_info
|
||
.inner_lock_write_irqsave()
|
||
.set_state(ProcessState::Exited(exit_code));
|
||
pcb.wait_queue.mark_dead();
|
||
pcb.wait_queue.wakeup_all(Some(ProcessState::Blocked(true)));
|
||
|
||
let rq = cpu_rq(smp_get_processor_id().data() as usize);
|
||
let (rq, guard) = rq.self_lock();
|
||
rq.deactivate_task(
|
||
pcb.clone(),
|
||
DequeueFlag::DEQUEUE_SLEEP | DequeueFlag::DEQUEUE_NOCLOCK,
|
||
);
|
||
drop(guard);
|
||
|
||
// 进行进程退出后的工作
|
||
let thread = pcb.thread.write_irqsave();
|
||
if let Some(addr) = thread.set_child_tid {
|
||
unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
|
||
}
|
||
|
||
if let Some(addr) = thread.clear_child_tid {
|
||
if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
|
||
let _ = Futex::futex_wake(
|
||
addr,
|
||
FutexFlag::FLAGS_MATCH_NONE,
|
||
1,
|
||
FUTEX_BITSET_MATCH_ANY,
|
||
);
|
||
}
|
||
unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
|
||
}
|
||
|
||
RobustListHead::exit_robust_list(pcb.clone());
|
||
|
||
// 如果是vfork出来的进程,则需要处理completion
|
||
if thread.vfork_done.is_some() {
|
||
thread.vfork_done.as_ref().unwrap().complete_all();
|
||
}
|
||
drop(thread);
|
||
unsafe { pcb.basic_mut().set_user_vm(None) };
|
||
pcb.exit_files();
|
||
|
||
// TODO 由于未实现进程组,tty记录的前台进程组等于当前进程,故退出前要置空
|
||
// 后续相关逻辑需要在SYS_EXIT_GROUP系统调用中实现
|
||
if let Some(tty) = pcb.sig_info_irqsave().tty() {
|
||
// 临时解决方案!!! 临时解决方案!!! 引入进程组之后,要重写这个更新前台进程组的逻辑
|
||
let mut g = tty.core().contorl_info_irqsave();
|
||
if g.pgid == Some(pid) {
|
||
g.pgid = None;
|
||
}
|
||
}
|
||
pcb.sig_info_mut().set_tty(None);
|
||
|
||
pcb.clear_pg_and_session_reference();
|
||
drop(pcb);
|
||
ProcessManager::exit_notify();
|
||
}
|
||
|
||
__schedule(SchedMode::SM_NONE);
|
||
error!("pid {pid:?} exited but sched again!");
|
||
#[allow(clippy::empty_loop)]
|
||
loop {
|
||
spin_loop();
|
||
}
|
||
}
|
||
|
||
pub unsafe fn release(pid: Pid) {
|
||
let pcb = ProcessManager::find(pid);
|
||
if pcb.is_some() {
|
||
// log::debug!("release pid {}", pid);
|
||
// let pcb = pcb.unwrap();
|
||
// 判断该pcb是否在全局没有任何引用
|
||
// TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
|
||
// 因此目前暂时注释掉,使得能跑
|
||
// if Arc::strong_count(&pcb) <= 2 {
|
||
// drop(pcb);
|
||
// ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
|
||
// } else {
|
||
// // 如果不为1就panic
|
||
// let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(), Arc::strong_count(&pcb));
|
||
// error!("{}", msg);
|
||
// panic!()
|
||
// }
|
||
|
||
ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid);
|
||
}
|
||
}
|
||
|
||
/// 上下文切换完成后的钩子函数
|
||
unsafe fn switch_finish_hook() {
|
||
// debug!("switch_finish_hook");
|
||
let prev_pcb = PROCESS_SWITCH_RESULT
|
||
.as_mut()
|
||
.unwrap()
|
||
.get_mut()
|
||
.prev_pcb
|
||
.take()
|
||
.expect("prev_pcb is None");
|
||
let next_pcb = PROCESS_SWITCH_RESULT
|
||
.as_mut()
|
||
.unwrap()
|
||
.get_mut()
|
||
.next_pcb
|
||
.take()
|
||
.expect("next_pcb is None");
|
||
|
||
// 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
|
||
fence(Ordering::SeqCst);
|
||
|
||
prev_pcb.arch_info.force_unlock();
|
||
fence(Ordering::SeqCst);
|
||
|
||
next_pcb.arch_info.force_unlock();
|
||
fence(Ordering::SeqCst);
|
||
}
|
||
|
||
/// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `pcb` : 进程的pcb
|
||
#[allow(dead_code)]
|
||
pub fn kick(pcb: &Arc<ProcessControlBlock>) {
|
||
ProcessManager::current_pcb().preempt_disable();
|
||
let cpu_id = pcb.sched_info().on_cpu();
|
||
|
||
if let Some(cpu_id) = cpu_id {
|
||
if pcb.pid() == cpu_rq(cpu_id.data() as usize).current().pid() {
|
||
kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
|
||
}
|
||
}
|
||
|
||
ProcessManager::current_pcb().preempt_enable();
|
||
}
|
||
}
|
||
|
||
/// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
|
||
#[cfg(target_arch = "x86_64")]
|
||
#[inline(never)]
|
||
pub unsafe extern "sysv64" fn switch_finish_hook() {
|
||
ProcessManager::switch_finish_hook();
|
||
}
|
||
#[cfg(target_arch = "riscv64")]
|
||
#[inline(always)]
|
||
pub unsafe fn switch_finish_hook() {
|
||
ProcessManager::switch_finish_hook();
|
||
}
|
||
|
||
int_like!(Pid, AtomicPid, usize, AtomicUsize);
|
||
|
||
impl fmt::Display for Pid {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
write!(f, "{}", self.0)
|
||
}
|
||
}
|
||
|
||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||
pub enum ProcessState {
|
||
/// The process is running on a CPU or in a run queue.
|
||
Runnable,
|
||
/// The process is waiting for an event to occur.
|
||
/// 其中的bool表示该等待过程是否可以被打断。
|
||
/// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
|
||
/// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
|
||
Blocked(bool),
|
||
/// 进程被信号终止
|
||
Stopped,
|
||
/// 进程已经退出,usize表示进程的退出码
|
||
Exited(usize),
|
||
}
|
||
|
||
#[allow(dead_code)]
|
||
impl ProcessState {
|
||
#[inline(always)]
|
||
pub fn is_runnable(&self) -> bool {
|
||
return matches!(self, ProcessState::Runnable);
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn is_blocked(&self) -> bool {
|
||
return matches!(self, ProcessState::Blocked(_));
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn is_blocked_interruptable(&self) -> bool {
|
||
return matches!(self, ProcessState::Blocked(true));
|
||
}
|
||
|
||
/// Returns `true` if the process state is [`Exited`].
|
||
#[inline(always)]
|
||
pub fn is_exited(&self) -> bool {
|
||
return matches!(self, ProcessState::Exited(_));
|
||
}
|
||
|
||
/// Returns `true` if the process state is [`Stopped`].
|
||
///
|
||
/// [`Stopped`]: ProcessState::Stopped
|
||
#[inline(always)]
|
||
pub fn is_stopped(&self) -> bool {
|
||
matches!(self, ProcessState::Stopped)
|
||
}
|
||
|
||
/// Returns exit code if the process state is [`Exited`].
|
||
#[inline(always)]
|
||
pub fn exit_code(&self) -> Option<usize> {
|
||
match self {
|
||
ProcessState::Exited(code) => Some(*code),
|
||
_ => None,
|
||
}
|
||
}
|
||
}
|
||
|
||
bitflags! {
|
||
/// pcb的标志位
|
||
pub struct ProcessFlags: usize {
|
||
/// 当前pcb表示一个内核线程
|
||
const KTHREAD = 1 << 0;
|
||
/// 当前进程需要被调度
|
||
const NEED_SCHEDULE = 1 << 1;
|
||
/// 进程由于vfork而与父进程存在资源共享
|
||
const VFORK = 1 << 2;
|
||
/// 进程不可被冻结
|
||
const NOFREEZE = 1 << 3;
|
||
/// 进程正在退出
|
||
const EXITING = 1 << 4;
|
||
/// 进程由于接收到终止信号唤醒
|
||
const WAKEKILL = 1 << 5;
|
||
/// 进程由于接收到信号而退出.(Killed by a signal)
|
||
const SIGNALED = 1 << 6;
|
||
/// 进程需要迁移到其他cpu上
|
||
const NEED_MIGRATE = 1 << 7;
|
||
/// 随机化的虚拟地址空间,主要用于动态链接器的加载
|
||
const RANDOMIZE = 1 << 8;
|
||
/// 进程有未处理的信号(这是一个用于快速判断的标志位)
|
||
/// 相当于Linux的TIF_SIGPENDING
|
||
const HAS_PENDING_SIGNAL = 1 << 9;
|
||
/// 进程需要恢复之前保存的信号掩码
|
||
const RESTORE_SIG_MASK = 1 << 10;
|
||
}
|
||
}
|
||
|
||
impl ProcessFlags {
|
||
pub const fn exit_to_user_mode_work(&self) -> Self {
|
||
Self::from_bits_truncate(self.bits & (Self::HAS_PENDING_SIGNAL.bits))
|
||
}
|
||
|
||
/// 测试并清除标志位
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `rhs` : 需要测试并清除的标志位
|
||
///
|
||
/// ## 返回值
|
||
///
|
||
/// 如果标志位在清除前是置位的,则返回 `true`,否则返回 `false`
|
||
pub const fn test_and_clear(&mut self, rhs: Self) -> bool {
|
||
let r = (self.bits & rhs.bits) != 0;
|
||
self.bits &= !rhs.bits;
|
||
r
|
||
}
|
||
}
|
||
#[derive(Debug)]
|
||
pub struct ProcessControlBlock {
|
||
/// 当前进程的pid
|
||
pid: Pid,
|
||
/// 当前进程的线程组id(这个值在同一个线程组内永远不变)
|
||
tgid: Pid,
|
||
/// 有关Pid的相关的信息
|
||
thread_pid: Arc<RwLock<PidStrcut>>,
|
||
basic: RwLock<ProcessBasicInfo>,
|
||
/// 当前进程的自旋锁持有计数
|
||
preempt_count: AtomicUsize,
|
||
|
||
flags: LockFreeFlags<ProcessFlags>,
|
||
worker_private: SpinLock<Option<WorkerPrivate>>,
|
||
/// 进程的内核栈
|
||
kernel_stack: RwLock<KernelStack>,
|
||
|
||
/// 系统调用栈
|
||
syscall_stack: RwLock<KernelStack>,
|
||
|
||
/// 与调度相关的信息
|
||
sched_info: ProcessSchedulerInfo,
|
||
/// 与处理器架构相关的信息
|
||
arch_info: SpinLock<ArchPCBInfo>,
|
||
/// 与信号处理相关的信息(似乎可以是无锁的)
|
||
sig_info: RwLock<ProcessSignalInfo>,
|
||
/// 信号处理结构体
|
||
sig_struct: SpinLock<SignalStruct>,
|
||
/// 退出信号S
|
||
exit_signal: AtomicSignal,
|
||
|
||
/// 父进程指针
|
||
parent_pcb: RwLock<Weak<ProcessControlBlock>>,
|
||
/// 真实父进程指针
|
||
real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
|
||
|
||
/// 子进程链表
|
||
children: RwLock<Vec<Pid>>,
|
||
|
||
/// 等待队列
|
||
wait_queue: WaitQueue,
|
||
|
||
/// 线程信息
|
||
thread: RwLock<ThreadInfo>,
|
||
|
||
/// 进程文件系统的状态
|
||
fs: Arc<SpinLock<FsStruct>>,
|
||
|
||
///闹钟定时器
|
||
alarm_timer: SpinLock<Option<AlarmTimer>>,
|
||
|
||
/// 进程的robust lock列表
|
||
robust_list: RwLock<Option<RobustListHead>>,
|
||
|
||
/// namespace的指针
|
||
nsproxy: Arc<RwLock<NsProxy>>,
|
||
|
||
/// 进程作为主体的凭证集
|
||
cred: SpinLock<Cred>,
|
||
self_ref: Weak<ProcessControlBlock>,
|
||
|
||
restart_block: SpinLock<Option<RestartBlock>>,
|
||
|
||
/// 进程组
|
||
process_group: Mutex<Weak<ProcessGroup>>,
|
||
}
|
||
|
||
impl ProcessControlBlock {
|
||
/// Generate a new pcb.
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `name` : 进程的名字
|
||
/// - `kstack` : 进程的内核栈
|
||
///
|
||
/// ## 返回值
|
||
///
|
||
/// 返回一个新的pcb
|
||
pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
|
||
return Self::do_create_pcb(name, kstack, false);
|
||
}
|
||
|
||
/// 创建一个新的idle进程
|
||
///
|
||
/// 请注意,这个函数只能在进程管理初始化的时候调用。
|
||
pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
|
||
let name = format!("idle-{}", cpu_id);
|
||
return Self::do_create_pcb(name, kstack, true);
|
||
}
|
||
|
||
/// # 函数的功能
|
||
///
|
||
/// 返回此函数是否是内核进程
|
||
///
|
||
/// # 返回值
|
||
///
|
||
/// 若进程是内核进程则返回true 否则返回false
|
||
pub fn is_kthread(&self) -> bool {
|
||
return matches!(self.flags(), &mut ProcessFlags::KTHREAD);
|
||
}
|
||
|
||
#[inline(never)]
|
||
fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
|
||
let (pid, ppid, cwd, cred, tty) = if is_idle {
|
||
let cred = INIT_CRED.clone();
|
||
(Pid(0), Pid(0), "/".to_string(), cred, None)
|
||
} else {
|
||
let ppid = ProcessManager::current_pcb().pid();
|
||
let mut cred = ProcessManager::current_pcb().cred();
|
||
cred.cap_permitted = cred.cap_ambient;
|
||
cred.cap_effective = cred.cap_ambient;
|
||
let cwd = ProcessManager::current_pcb().basic().cwd();
|
||
let tty = ProcessManager::current_pcb().sig_info_irqsave().tty();
|
||
(Self::generate_pid(), ppid, cwd, cred, tty)
|
||
};
|
||
|
||
let basic_info = ProcessBasicInfo::new(
|
||
Pgid::from(pid.into()),
|
||
ppid,
|
||
Sid::from(pid.into()),
|
||
name,
|
||
cwd,
|
||
None,
|
||
);
|
||
let preempt_count = AtomicUsize::new(0);
|
||
let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
|
||
|
||
let sched_info = ProcessSchedulerInfo::new(None);
|
||
let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
|
||
|
||
let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
|
||
.map(|p| Arc::downgrade(&p))
|
||
.unwrap_or_default();
|
||
let mut pcb = Self {
|
||
pid,
|
||
tgid: pid,
|
||
thread_pid: Arc::new(RwLock::new(PidStrcut::new())),
|
||
basic: basic_info,
|
||
preempt_count,
|
||
flags,
|
||
kernel_stack: RwLock::new(kstack),
|
||
syscall_stack: RwLock::new(KernelStack::new().unwrap()),
|
||
worker_private: SpinLock::new(None),
|
||
sched_info,
|
||
arch_info,
|
||
sig_info: RwLock::new(ProcessSignalInfo::default()),
|
||
sig_struct: SpinLock::new(SignalStruct::new()),
|
||
exit_signal: AtomicSignal::new(Signal::SIGCHLD),
|
||
parent_pcb: RwLock::new(ppcb.clone()),
|
||
real_parent_pcb: RwLock::new(ppcb),
|
||
children: RwLock::new(Vec::new()),
|
||
wait_queue: WaitQueue::default(),
|
||
thread: RwLock::new(ThreadInfo::new()),
|
||
fs: Arc::new(SpinLock::new(FsStruct::new())),
|
||
alarm_timer: SpinLock::new(None),
|
||
robust_list: RwLock::new(None),
|
||
nsproxy: Arc::new(RwLock::new(NsProxy::new())),
|
||
cred: SpinLock::new(cred),
|
||
self_ref: Weak::new(),
|
||
restart_block: SpinLock::new(None),
|
||
process_group: Mutex::new(Weak::new()),
|
||
};
|
||
|
||
pcb.sig_info.write().set_tty(tty);
|
||
|
||
// 初始化系统调用栈
|
||
#[cfg(target_arch = "x86_64")]
|
||
pcb.arch_info
|
||
.lock()
|
||
.init_syscall_stack(&pcb.syscall_stack.read());
|
||
|
||
let pcb = Arc::new_cyclic(|weak| {
|
||
pcb.self_ref = weak.clone();
|
||
pcb
|
||
});
|
||
|
||
pcb.sched_info()
|
||
.sched_entity()
|
||
.force_mut()
|
||
.set_pcb(Arc::downgrade(&pcb));
|
||
// 设置进程的arc指针到内核栈和系统调用栈的最低地址处
|
||
unsafe {
|
||
pcb.kernel_stack
|
||
.write()
|
||
.set_pcb(Arc::downgrade(&pcb))
|
||
.unwrap();
|
||
|
||
pcb.syscall_stack
|
||
.write()
|
||
.set_pcb(Arc::downgrade(&pcb))
|
||
.unwrap()
|
||
};
|
||
|
||
// 将当前pcb加入父进程的子进程哈希表中
|
||
if pcb.pid() > Pid(1) {
|
||
if let Some(ppcb_arc) = pcb.parent_pcb.read_irqsave().upgrade() {
|
||
let mut children = ppcb_arc.children.write_irqsave();
|
||
children.push(pcb.pid());
|
||
} else {
|
||
panic!("parent pcb is None");
|
||
}
|
||
}
|
||
|
||
if pcb.pid() > Pid(0) && !is_idle {
|
||
let process_group = ProcessGroup::new(pcb.clone());
|
||
*pcb.process_group.lock() = Arc::downgrade(&process_group);
|
||
ProcessManager::add_process_group(process_group.clone());
|
||
|
||
let session = Session::new(process_group.clone());
|
||
process_group.process_group_inner.lock().session = Arc::downgrade(&session);
|
||
session.session_inner.lock().leader = Some(pcb.clone());
|
||
ProcessManager::add_session(session);
|
||
|
||
ProcessManager::add_pcb(pcb.clone());
|
||
}
|
||
// log::debug!(
|
||
// "A new process is created, pid: {:?}, pgid: {:?}, sid: {:?}",
|
||
// pcb.pid(),
|
||
// pcb.process_group().unwrap().pgid(),
|
||
// pcb.session().unwrap().sid()
|
||
// );
|
||
|
||
return pcb;
|
||
}
|
||
|
||
/// 生成一个新的pid
|
||
#[inline(always)]
|
||
fn generate_pid() -> Pid {
|
||
static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
|
||
return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
|
||
}
|
||
|
||
/// 返回当前进程的锁持有计数
|
||
#[inline(always)]
|
||
pub fn preempt_count(&self) -> usize {
|
||
return self.preempt_count.load(Ordering::SeqCst);
|
||
}
|
||
|
||
/// 增加当前进程的锁持有计数
|
||
#[inline(always)]
|
||
pub fn preempt_disable(&self) {
|
||
self.preempt_count.fetch_add(1, Ordering::SeqCst);
|
||
}
|
||
|
||
/// 减少当前进程的锁持有计数
|
||
#[inline(always)]
|
||
pub fn preempt_enable(&self) {
|
||
self.preempt_count.fetch_sub(1, Ordering::SeqCst);
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub unsafe fn set_preempt_count(&self, count: usize) {
|
||
self.preempt_count.store(count, Ordering::SeqCst);
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn contain_child(&self, pid: &Pid) -> bool {
|
||
let children = self.children.read();
|
||
return children.contains(pid);
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn flags(&self) -> &mut ProcessFlags {
|
||
return self.flags.get_mut();
|
||
}
|
||
|
||
/// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改
|
||
/// 否则会导致死锁
|
||
#[inline(always)]
|
||
pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
|
||
return self.basic.read_irqsave();
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn set_name(&self, name: String) {
|
||
self.basic.write().set_name(name);
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
|
||
return self.basic.write_irqsave();
|
||
}
|
||
|
||
/// # 获取arch info的锁,同时关闭中断
|
||
#[inline(always)]
|
||
pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
|
||
return self.arch_info.lock_irqsave();
|
||
}
|
||
|
||
/// # 获取arch info的锁,但是不关闭中断
|
||
///
|
||
/// 由于arch info在进程切换的时候会使用到,
|
||
/// 因此在中断上下文外,获取arch info 而不irqsave是不安全的.
|
||
///
|
||
/// 只能在以下情况下使用这个函数:
|
||
/// - 在中断上下文中(中断已经禁用),获取arch info的锁。
|
||
/// - 刚刚创建新的pcb
|
||
#[inline(always)]
|
||
pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
|
||
return self.arch_info.lock();
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
|
||
return self.kernel_stack.read();
|
||
}
|
||
|
||
pub unsafe fn kernel_stack_force_ref(&self) -> &KernelStack {
|
||
self.kernel_stack.force_get_ref()
|
||
}
|
||
|
||
#[inline(always)]
|
||
#[allow(dead_code)]
|
||
pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
|
||
return self.kernel_stack.write();
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn sched_info(&self) -> &ProcessSchedulerInfo {
|
||
return &self.sched_info;
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
|
||
return self.worker_private.lock();
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn pid(&self) -> Pid {
|
||
return self.pid;
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn pid_strcut(&self) -> Arc<RwLock<PidStrcut>> {
|
||
self.thread_pid.clone()
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn tgid(&self) -> Pid {
|
||
return self.tgid;
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn fs_struct(&self) -> Arc<SpinLock<FsStruct>> {
|
||
self.fs.clone()
|
||
}
|
||
|
||
/// 获取文件描述符表的Arc指针
|
||
#[inline(always)]
|
||
pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
|
||
return self.basic.read().fd_table().unwrap();
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn cred(&self) -> Cred {
|
||
self.cred.lock().clone()
|
||
}
|
||
|
||
/// 根据文件描述符序号,获取socket对象的Arc指针
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `fd` 文件描述符序号
|
||
///
|
||
/// ## 返回值
|
||
///
|
||
/// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
|
||
pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
|
||
let binding = ProcessManager::current_pcb().fd_table();
|
||
let fd_table_guard = binding.read();
|
||
|
||
let f = fd_table_guard.get_file_by_fd(fd)?;
|
||
drop(fd_table_guard);
|
||
|
||
if f.file_type() != FileType::Socket {
|
||
return None;
|
||
}
|
||
let socket: Arc<SocketInode> = f
|
||
.inode()
|
||
.downcast_arc::<SocketInode>()
|
||
.expect("Not a socket inode");
|
||
return Some(socket);
|
||
}
|
||
|
||
/// 当前进程退出时,让初始进程收养所有子进程
|
||
unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
|
||
match ProcessManager::find(Pid(1)) {
|
||
Some(init_pcb) => {
|
||
let childen_guard = self.children.write();
|
||
let mut init_childen_guard = init_pcb.children.write();
|
||
|
||
childen_guard.iter().for_each(|pid| {
|
||
init_childen_guard.push(*pid);
|
||
});
|
||
|
||
return Ok(());
|
||
}
|
||
_ => Err(SystemError::ECHILD),
|
||
}
|
||
}
|
||
|
||
/// 生成进程的名字
|
||
pub fn generate_name(program_path: &str, args: &Vec<CString>) -> String {
|
||
let mut name = program_path.to_string();
|
||
for arg in args {
|
||
name.push(' ');
|
||
name.push_str(arg.to_string_lossy().as_ref());
|
||
}
|
||
return name;
|
||
}
|
||
|
||
pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
|
||
self.sig_info.read_irqsave()
|
||
}
|
||
|
||
pub fn try_siginfo_irqsave(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
|
||
for _ in 0..times {
|
||
if let Some(r) = self.sig_info.try_read_irqsave() {
|
||
return Some(r);
|
||
}
|
||
}
|
||
|
||
return None;
|
||
}
|
||
|
||
pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
|
||
self.sig_info.write_irqsave()
|
||
}
|
||
|
||
pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
|
||
for _ in 0..times {
|
||
if let Some(r) = self.sig_info.try_write_irqsave() {
|
||
return Some(r);
|
||
}
|
||
}
|
||
|
||
return None;
|
||
}
|
||
|
||
/// 判断当前进程是否有未处理的信号
|
||
pub fn has_pending_signal(&self) -> bool {
|
||
let sig_info = self.sig_info_irqsave();
|
||
let has_pending = sig_info.sig_pending().has_pending();
|
||
drop(sig_info);
|
||
return has_pending;
|
||
}
|
||
|
||
/// 根据 pcb 的 flags 判断当前进程是否有未处理的信号
|
||
pub fn has_pending_signal_fast(&self) -> bool {
|
||
self.flags.get().contains(ProcessFlags::HAS_PENDING_SIGNAL)
|
||
}
|
||
|
||
/// 检查当前进程是否有未被阻塞的待处理信号。
|
||
///
|
||
/// 注:该函数较慢,因此需要与 has_pending_signal_fast 一起使用。
|
||
pub fn has_pending_not_masked_signal(&self) -> bool {
|
||
let sig_info = self.sig_info_irqsave();
|
||
let blocked: SigSet = *sig_info.sig_blocked();
|
||
let mut pending: SigSet = sig_info.sig_pending().signal();
|
||
drop(sig_info);
|
||
pending.remove(blocked);
|
||
// log::debug!(
|
||
// "pending and not masked:{:?}, masked: {:?}",
|
||
// pending,
|
||
// blocked
|
||
// );
|
||
let has_not_masked = !pending.is_empty();
|
||
return has_not_masked;
|
||
}
|
||
|
||
pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
|
||
self.sig_struct.lock_irqsave()
|
||
}
|
||
|
||
pub fn try_sig_struct_irqsave(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
|
||
for _ in 0..times {
|
||
if let Ok(r) = self.sig_struct.try_lock_irqsave() {
|
||
return Some(r);
|
||
}
|
||
}
|
||
|
||
return None;
|
||
}
|
||
|
||
pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> {
|
||
self.sig_struct.lock_irqsave()
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn get_robust_list(&self) -> RwLockReadGuard<Option<RobustListHead>> {
|
||
return self.robust_list.read_irqsave();
|
||
}
|
||
|
||
#[inline(always)]
|
||
pub fn set_robust_list(&self, new_robust_list: Option<RobustListHead>) {
|
||
*self.robust_list.write_irqsave() = new_robust_list;
|
||
}
|
||
|
||
pub fn alarm_timer_irqsave(&self) -> SpinLockGuard<Option<AlarmTimer>> {
|
||
return self.alarm_timer.lock_irqsave();
|
||
}
|
||
|
||
pub fn get_nsproxy(&self) -> Arc<RwLock<NsProxy>> {
|
||
self.nsproxy.clone()
|
||
}
|
||
|
||
pub fn set_nsproxy(&self, nsprsy: NsProxy) {
|
||
*self.nsproxy.write() = nsprsy;
|
||
}
|
||
|
||
/// Exit fd table when process exit
|
||
fn exit_files(&self) {
|
||
self.basic.write_irqsave().set_fd_table(None);
|
||
}
|
||
|
||
pub fn children_read_irqsave(&self) -> RwLockReadGuard<Vec<Pid>> {
|
||
self.children.read_irqsave()
|
||
}
|
||
|
||
pub fn threads_read_irqsave(&self) -> RwLockReadGuard<ThreadInfo> {
|
||
self.thread.read_irqsave()
|
||
}
|
||
|
||
pub fn restart_block(&self) -> SpinLockGuard<Option<RestartBlock>> {
|
||
self.restart_block.lock()
|
||
}
|
||
|
||
pub fn set_restart_fn(
|
||
&self,
|
||
restart_block: Option<RestartBlock>,
|
||
) -> Result<usize, SystemError> {
|
||
*self.restart_block.lock() = restart_block;
|
||
return Err(SystemError::ERESTART_RESTARTBLOCK);
|
||
}
|
||
}
|
||
|
||
impl Drop for ProcessControlBlock {
|
||
fn drop(&mut self) {
|
||
let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
|
||
// 在ProcFS中,解除进程的注册
|
||
procfs_unregister_pid(self.pid())
|
||
.unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
|
||
|
||
if let Some(ppcb) = self.parent_pcb.read_irqsave().upgrade() {
|
||
ppcb.children
|
||
.write_irqsave()
|
||
.retain(|pid| *pid != self.pid());
|
||
}
|
||
|
||
// log::debug!("Drop pid: {:?}", self.pid());
|
||
drop(irq_guard);
|
||
}
|
||
}
|
||
|
||
/// 线程信息
|
||
#[derive(Debug)]
|
||
pub struct ThreadInfo {
|
||
// 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
|
||
clear_child_tid: Option<VirtAddr>,
|
||
set_child_tid: Option<VirtAddr>,
|
||
|
||
vfork_done: Option<Arc<Completion>>,
|
||
/// 线程组的组长
|
||
group_leader: Weak<ProcessControlBlock>,
|
||
}
|
||
|
||
impl Default for ThreadInfo {
|
||
fn default() -> Self {
|
||
Self::new()
|
||
}
|
||
}
|
||
|
||
impl ThreadInfo {
|
||
pub fn new() -> Self {
|
||
Self {
|
||
clear_child_tid: None,
|
||
set_child_tid: None,
|
||
vfork_done: None,
|
||
group_leader: Weak::default(),
|
||
}
|
||
}
|
||
|
||
pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
|
||
return self.group_leader.upgrade();
|
||
}
|
||
}
|
||
|
||
/// 进程的基本信息
|
||
///
|
||
/// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
|
||
#[derive(Debug)]
|
||
pub struct ProcessBasicInfo {
|
||
/// 当前进程的进程组id
|
||
pgid: Pgid,
|
||
/// 当前进程的父进程的pid
|
||
ppid: Pid,
|
||
/// 当前进程所属会话id
|
||
sid: Sid,
|
||
/// 进程的名字
|
||
name: String,
|
||
|
||
/// 当前进程的工作目录
|
||
cwd: String,
|
||
|
||
/// 用户地址空间
|
||
user_vm: Option<Arc<AddressSpace>>,
|
||
|
||
/// 文件描述符表
|
||
fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
|
||
}
|
||
|
||
impl ProcessBasicInfo {
|
||
#[inline(never)]
|
||
pub fn new(
|
||
pgid: Pgid,
|
||
ppid: Pid,
|
||
sid: Sid,
|
||
name: String,
|
||
cwd: String,
|
||
user_vm: Option<Arc<AddressSpace>>,
|
||
) -> RwLock<Self> {
|
||
let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
|
||
return RwLock::new(Self {
|
||
pgid,
|
||
ppid,
|
||
sid,
|
||
name,
|
||
cwd,
|
||
user_vm,
|
||
fd_table: Some(fd_table),
|
||
});
|
||
}
|
||
|
||
pub fn pgid(&self) -> Pgid {
|
||
return self.pgid;
|
||
}
|
||
|
||
pub fn set_pgid(&mut self, pgid: Pgid) {
|
||
self.pgid = pgid;
|
||
}
|
||
|
||
pub fn ppid(&self) -> Pid {
|
||
return self.ppid;
|
||
}
|
||
|
||
pub fn sid(&self) -> Sid {
|
||
return self.sid;
|
||
}
|
||
|
||
pub fn set_sid(&mut self, sid: Sid) {
|
||
self.sid = sid;
|
||
}
|
||
|
||
pub fn name(&self) -> &str {
|
||
return &self.name;
|
||
}
|
||
|
||
pub fn set_name(&mut self, name: String) {
|
||
self.name = name;
|
||
}
|
||
|
||
pub fn cwd(&self) -> String {
|
||
return self.cwd.clone();
|
||
}
|
||
pub fn set_cwd(&mut self, path: String) {
|
||
return self.cwd = path;
|
||
}
|
||
|
||
pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
|
||
return self.user_vm.clone();
|
||
}
|
||
|
||
pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
|
||
self.user_vm = user_vm;
|
||
}
|
||
|
||
pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
|
||
return self.fd_table.clone();
|
||
}
|
||
|
||
pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
|
||
self.fd_table = fd_table;
|
||
}
|
||
}
|
||
|
||
#[derive(Debug)]
|
||
pub struct ProcessSchedulerInfo {
|
||
/// 当前进程所在的cpu
|
||
on_cpu: AtomicProcessorId,
|
||
/// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
|
||
/// 该字段存储要被迁移到的目标处理器核心号
|
||
// migrate_to: AtomicProcessorId,
|
||
inner_locked: RwLock<InnerSchedInfo>,
|
||
/// 进程的调度优先级
|
||
// priority: SchedPriority,
|
||
/// 当前进程的虚拟运行时间
|
||
// virtual_runtime: AtomicIsize,
|
||
/// 由实时调度器管理的时间片
|
||
// rt_time_slice: AtomicIsize,
|
||
pub sched_stat: RwLock<SchedInfo>,
|
||
/// 调度策略
|
||
pub sched_policy: RwLock<crate::sched::SchedPolicy>,
|
||
/// cfs调度实体
|
||
pub sched_entity: Arc<FairSchedEntity>,
|
||
pub on_rq: SpinLock<OnRq>,
|
||
|
||
pub prio_data: RwLock<PrioData>,
|
||
}
|
||
|
||
#[derive(Debug, Default)]
|
||
#[allow(dead_code)]
|
||
pub struct SchedInfo {
|
||
/// 记录任务在特定 CPU 上运行的次数
|
||
pub pcount: usize,
|
||
/// 记录任务等待在运行队列上的时间
|
||
pub run_delay: usize,
|
||
/// 记录任务上次在 CPU 上运行的时间戳
|
||
pub last_arrival: u64,
|
||
/// 记录任务上次被加入到运行队列中的时间戳
|
||
pub last_queued: u64,
|
||
}
|
||
|
||
#[derive(Debug)]
|
||
#[allow(dead_code)]
|
||
pub struct PrioData {
|
||
pub prio: i32,
|
||
pub static_prio: i32,
|
||
pub normal_prio: i32,
|
||
}
|
||
|
||
impl Default for PrioData {
|
||
fn default() -> Self {
|
||
Self {
|
||
prio: MAX_PRIO - 20,
|
||
static_prio: MAX_PRIO - 20,
|
||
normal_prio: MAX_PRIO - 20,
|
||
}
|
||
}
|
||
}
|
||
|
||
#[derive(Debug)]
|
||
pub struct InnerSchedInfo {
|
||
/// 当前进程的状态
|
||
state: ProcessState,
|
||
/// 进程的调度策略
|
||
sleep: bool,
|
||
}
|
||
|
||
impl InnerSchedInfo {
|
||
pub fn state(&self) -> ProcessState {
|
||
return self.state;
|
||
}
|
||
|
||
pub fn set_state(&mut self, state: ProcessState) {
|
||
self.state = state;
|
||
}
|
||
|
||
pub fn set_sleep(&mut self) {
|
||
self.sleep = true;
|
||
}
|
||
|
||
pub fn set_wakeup(&mut self) {
|
||
self.sleep = false;
|
||
}
|
||
|
||
pub fn is_mark_sleep(&self) -> bool {
|
||
self.sleep
|
||
}
|
||
}
|
||
|
||
impl ProcessSchedulerInfo {
|
||
#[inline(never)]
|
||
pub fn new(on_cpu: Option<ProcessorId>) -> Self {
|
||
let cpu_id = on_cpu.unwrap_or(ProcessorId::INVALID);
|
||
return Self {
|
||
on_cpu: AtomicProcessorId::new(cpu_id),
|
||
// migrate_to: AtomicProcessorId::new(ProcessorId::INVALID),
|
||
inner_locked: RwLock::new(InnerSchedInfo {
|
||
state: ProcessState::Blocked(false),
|
||
sleep: false,
|
||
}),
|
||
// virtual_runtime: AtomicIsize::new(0),
|
||
// rt_time_slice: AtomicIsize::new(0),
|
||
// priority: SchedPriority::new(100).unwrap(),
|
||
sched_stat: RwLock::new(SchedInfo::default()),
|
||
sched_policy: RwLock::new(crate::sched::SchedPolicy::CFS),
|
||
sched_entity: FairSchedEntity::new(),
|
||
on_rq: SpinLock::new(OnRq::None),
|
||
prio_data: RwLock::new(PrioData::default()),
|
||
};
|
||
}
|
||
|
||
pub fn sched_entity(&self) -> Arc<FairSchedEntity> {
|
||
return self.sched_entity.clone();
|
||
}
|
||
|
||
pub fn on_cpu(&self) -> Option<ProcessorId> {
|
||
let on_cpu = self.on_cpu.load(Ordering::SeqCst);
|
||
if on_cpu == ProcessorId::INVALID {
|
||
return None;
|
||
} else {
|
||
return Some(on_cpu);
|
||
}
|
||
}
|
||
|
||
pub fn set_on_cpu(&self, on_cpu: Option<ProcessorId>) {
|
||
if let Some(cpu_id) = on_cpu {
|
||
self.on_cpu.store(cpu_id, Ordering::SeqCst);
|
||
} else {
|
||
self.on_cpu.store(ProcessorId::INVALID, Ordering::SeqCst);
|
||
}
|
||
}
|
||
|
||
// pub fn migrate_to(&self) -> Option<ProcessorId> {
|
||
// let migrate_to = self.migrate_to.load(Ordering::SeqCst);
|
||
// if migrate_to == ProcessorId::INVALID {
|
||
// return None;
|
||
// } else {
|
||
// return Some(migrate_to);
|
||
// }
|
||
// }
|
||
|
||
// pub fn set_migrate_to(&self, migrate_to: Option<ProcessorId>) {
|
||
// if let Some(data) = migrate_to {
|
||
// self.migrate_to.store(data, Ordering::SeqCst);
|
||
// } else {
|
||
// self.migrate_to
|
||
// .store(ProcessorId::INVALID, Ordering::SeqCst)
|
||
// }
|
||
// }
|
||
|
||
pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> {
|
||
return self.inner_locked.write_irqsave();
|
||
}
|
||
|
||
pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> {
|
||
return self.inner_locked.read_irqsave();
|
||
}
|
||
|
||
// pub fn inner_lock_try_read_irqsave(
|
||
// &self,
|
||
// times: u8,
|
||
// ) -> Option<RwLockReadGuard<InnerSchedInfo>> {
|
||
// for _ in 0..times {
|
||
// if let Some(r) = self.inner_locked.try_read_irqsave() {
|
||
// return Some(r);
|
||
// }
|
||
// }
|
||
|
||
// return None;
|
||
// }
|
||
|
||
// pub fn inner_lock_try_upgradable_read_irqsave(
|
||
// &self,
|
||
// times: u8,
|
||
// ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> {
|
||
// for _ in 0..times {
|
||
// if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() {
|
||
// return Some(r);
|
||
// }
|
||
// }
|
||
|
||
// return None;
|
||
// }
|
||
|
||
// pub fn virtual_runtime(&self) -> isize {
|
||
// return self.virtual_runtime.load(Ordering::SeqCst);
|
||
// }
|
||
|
||
// pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
|
||
// self.virtual_runtime
|
||
// .store(virtual_runtime, Ordering::SeqCst);
|
||
// }
|
||
// pub fn increase_virtual_runtime(&self, delta: isize) {
|
||
// self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
|
||
// }
|
||
|
||
// pub fn rt_time_slice(&self) -> isize {
|
||
// return self.rt_time_slice.load(Ordering::SeqCst);
|
||
// }
|
||
|
||
// pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
|
||
// self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
|
||
// }
|
||
|
||
// pub fn increase_rt_time_slice(&self, delta: isize) {
|
||
// self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
|
||
// }
|
||
|
||
pub fn policy(&self) -> crate::sched::SchedPolicy {
|
||
return *self.sched_policy.read_irqsave();
|
||
}
|
||
}
|
||
|
||
#[derive(Debug, Clone)]
|
||
pub struct KernelStack {
|
||
stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
|
||
/// 标记该内核栈是否可以被释放
|
||
can_be_freed: bool,
|
||
}
|
||
|
||
impl KernelStack {
|
||
pub const SIZE: usize = 0x4000;
|
||
pub const ALIGN: usize = 0x4000;
|
||
|
||
pub fn new() -> Result<Self, SystemError> {
|
||
return Ok(Self {
|
||
stack: Some(
|
||
AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
|
||
),
|
||
can_be_freed: true,
|
||
});
|
||
}
|
||
|
||
/// 根据已有的空间,构造一个内核栈结构体
|
||
///
|
||
/// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
|
||
pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
|
||
if base.is_null() || !base.check_aligned(Self::ALIGN) {
|
||
return Err(SystemError::EFAULT);
|
||
}
|
||
|
||
return Ok(Self {
|
||
stack: Some(
|
||
AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
|
||
base.data() as *mut [u8; KernelStack::SIZE],
|
||
),
|
||
),
|
||
can_be_freed: false,
|
||
});
|
||
}
|
||
|
||
/// 返回内核栈的起始虚拟地址(低地址)
|
||
pub fn start_address(&self) -> VirtAddr {
|
||
return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
|
||
}
|
||
|
||
/// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
|
||
pub fn stack_max_address(&self) -> VirtAddr {
|
||
return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
|
||
}
|
||
|
||
pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
|
||
// 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
|
||
let p: *const ProcessControlBlock = Weak::into_raw(pcb);
|
||
let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
|
||
|
||
// 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
|
||
if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
|
||
error!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
|
||
return Err(SystemError::EPERM);
|
||
}
|
||
// 将pcb的地址放到内核栈的最低地址处
|
||
unsafe {
|
||
*stack_bottom_ptr = p;
|
||
}
|
||
|
||
return Ok(());
|
||
}
|
||
|
||
/// 清除内核栈的pcb指针
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
|
||
pub unsafe fn clear_pcb(&mut self, force: bool) {
|
||
let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
|
||
if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
|
||
return;
|
||
}
|
||
|
||
if !force {
|
||
let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
|
||
drop(pcb_ptr);
|
||
}
|
||
|
||
*stack_bottom_ptr = core::ptr::null();
|
||
}
|
||
|
||
/// 返回指向当前内核栈pcb的Arc指针
|
||
#[allow(dead_code)]
|
||
pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
|
||
// 从内核栈的最低地址处取出pcb的地址
|
||
let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
|
||
if unlikely(unsafe { (*p).is_null() }) {
|
||
return None;
|
||
}
|
||
|
||
// 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
|
||
let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
|
||
ManuallyDrop::new(Weak::from_raw(*p));
|
||
|
||
let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
|
||
return Some(new_arc);
|
||
}
|
||
}
|
||
|
||
impl Drop for KernelStack {
|
||
fn drop(&mut self) {
|
||
if self.stack.is_some() {
|
||
let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
|
||
if unsafe { !(*ptr).is_null() } {
|
||
let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) };
|
||
drop(pcb_ptr);
|
||
}
|
||
}
|
||
// 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
|
||
if !self.can_be_freed {
|
||
let bx = self.stack.take();
|
||
core::mem::forget(bx);
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn process_init() {
|
||
ProcessManager::init();
|
||
}
|
||
|
||
#[derive(Debug)]
|
||
pub struct ProcessSignalInfo {
|
||
// 当前进程被屏蔽的信号
|
||
sig_blocked: SigSet,
|
||
// 暂存旧信号,用于恢复
|
||
saved_sigmask: SigSet,
|
||
// sig_pending 中存储当前线程要处理的信号
|
||
sig_pending: SigPending,
|
||
// sig_shared_pending 中存储当前线程所属进程要处理的信号
|
||
sig_shared_pending: SigPending,
|
||
// 当前进程对应的tty
|
||
tty: Option<Arc<TtyCore>>,
|
||
}
|
||
|
||
impl ProcessSignalInfo {
|
||
pub fn sig_blocked(&self) -> &SigSet {
|
||
&self.sig_blocked
|
||
}
|
||
|
||
pub fn sig_pending(&self) -> &SigPending {
|
||
&self.sig_pending
|
||
}
|
||
|
||
pub fn sig_pending_mut(&mut self) -> &mut SigPending {
|
||
&mut self.sig_pending
|
||
}
|
||
|
||
pub fn sig_block_mut(&mut self) -> &mut SigSet {
|
||
&mut self.sig_blocked
|
||
}
|
||
|
||
pub fn saved_sigmask(&self) -> &SigSet {
|
||
&self.saved_sigmask
|
||
}
|
||
|
||
pub fn saved_sigmask_mut(&mut self) -> &mut SigSet {
|
||
&mut self.saved_sigmask
|
||
}
|
||
|
||
pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
|
||
&mut self.sig_shared_pending
|
||
}
|
||
|
||
pub fn sig_shared_pending(&self) -> &SigPending {
|
||
&self.sig_shared_pending
|
||
}
|
||
|
||
pub fn tty(&self) -> Option<Arc<TtyCore>> {
|
||
self.tty.clone()
|
||
}
|
||
|
||
pub fn set_tty(&mut self, tty: Option<Arc<TtyCore>>) {
|
||
self.tty = tty;
|
||
}
|
||
|
||
/// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
|
||
///
|
||
/// ## 参数
|
||
///
|
||
/// - `sig_mask` 被忽略掉的信号
|
||
///
|
||
pub fn dequeue_signal(
|
||
&mut self,
|
||
sig_mask: &SigSet,
|
||
pcb: &Arc<ProcessControlBlock>,
|
||
) -> (Signal, Option<SigInfo>) {
|
||
let res = self.sig_pending.dequeue_signal(sig_mask);
|
||
pcb.recalc_sigpending(Some(self));
|
||
if res.0 != Signal::INVALID {
|
||
return res;
|
||
} else {
|
||
let res = self.sig_shared_pending.dequeue_signal(sig_mask);
|
||
pcb.recalc_sigpending(Some(self));
|
||
return res;
|
||
}
|
||
}
|
||
}
|
||
|
||
impl Default for ProcessSignalInfo {
|
||
fn default() -> Self {
|
||
Self {
|
||
sig_blocked: SigSet::empty(),
|
||
saved_sigmask: SigSet::empty(),
|
||
sig_pending: SigPending::default(),
|
||
sig_shared_pending: SigPending::default(),
|
||
tty: None,
|
||
}
|
||
}
|
||
}
|