Support reading argv and envp from init stack

This commit is contained in:
Jianfeng Jiang 2024-03-26 07:54:08 +00:00 committed by Tate, Hongliang Tian
parent cc4111cab2
commit 29ebf8e60c
18 changed files with 654 additions and 519 deletions

View File

@ -358,9 +358,7 @@ fn clone_vm(parent_process_vm: &ProcessVm, clone_flags: CloneFlags) -> Result<Pr
if clone_flags.contains(CloneFlags::CLONE_VM) { if clone_flags.contains(CloneFlags::CLONE_VM) {
Ok(parent_process_vm.clone()) Ok(parent_process_vm.clone())
} else { } else {
let root_vmar = Vmar::<Full>::fork_from(parent_process_vm.root_vmar())?; ProcessVm::fork_from(parent_process_vm)
let user_heap = parent_process_vm.user_heap().clone();
Ok(ProcessVm::new(user_heap, root_vmar))
} }
} }

View File

@ -26,6 +26,7 @@ pub use process::{
Terminal, Terminal,
}; };
pub use process_filter::ProcessFilter; pub use process_filter::ProcessFilter;
pub use process_vm::{MAX_ARGV_NUMBER, MAX_ARG_LEN, MAX_ENVP_NUMBER, MAX_ENV_LEN};
pub use program_loader::{check_executable_file, load_program_to_vm}; pub use program_loader::{check_executable_file, load_program_to_vm};
pub use rlimit::ResourceType; pub use rlimit::ResourceType;
pub use term_status::TermStatus; pub use term_status::TermStatus;

View File

@ -3,7 +3,7 @@
use super::{ use super::{
posix_thread::PosixThreadExt, posix_thread::PosixThreadExt,
process_table, process_table,
process_vm::{user_heap::UserHeap, ProcessVm}, process_vm::{Heap, InitStackReader, ProcessVm},
rlimit::ResourceLimits, rlimit::ResourceLimits,
signal::{ signal::{
constants::SIGCHLD, sig_disposition::SigDispositions, sig_mask::SigMask, signals::Signal, constants::SIGCHLD, sig_disposition::SigDispositions, sig_mask::SigMask, signals::Signal,
@ -501,8 +501,12 @@ impl Process {
self.process_vm.root_vmar() self.process_vm.root_vmar()
} }
pub fn user_heap(&self) -> &UserHeap { pub fn heap(&self) -> &Heap {
self.process_vm.user_heap() self.process_vm.heap()
}
pub fn init_stack_reader(&self) -> InitStackReader {
self.process_vm.init_stack_reader()
} }
// ************** File system **************** // ************** File system ****************

View File

@ -14,38 +14,48 @@ use crate::{
}, },
}; };
/// The base address of user heap
pub const USER_HEAP_BASE: Vaddr = 0x0000_0000_1000_0000; pub const USER_HEAP_BASE: Vaddr = 0x0000_0000_1000_0000;
pub const USER_HEAP_SIZE_LIMIT: usize = PAGE_SIZE * 1000; /// The max allowed size of user heap
pub const USER_HEAP_SIZE_LIMIT: usize = PAGE_SIZE * 1000; // 4MB
#[derive(Debug)] #[derive(Debug)]
pub struct UserHeap { pub struct Heap {
/// the low address of user heap /// The lowest address of the heap
heap_base: Vaddr, base: Vaddr,
/// the max heap size /// The heap size limit
heap_size_limit: usize, limit: usize,
/// The current heap highest address
current_heap_end: AtomicUsize, current_heap_end: AtomicUsize,
} }
impl UserHeap { impl Heap {
pub const fn new() -> Self { pub const fn new() -> Self {
UserHeap { Heap {
heap_base: USER_HEAP_BASE, base: USER_HEAP_BASE,
heap_size_limit: USER_HEAP_SIZE_LIMIT, limit: USER_HEAP_SIZE_LIMIT,
current_heap_end: AtomicUsize::new(USER_HEAP_BASE), current_heap_end: AtomicUsize::new(USER_HEAP_BASE),
} }
} }
pub fn init(&self, root_vmar: &Vmar<Full>) -> Vaddr { /// Inits and maps the heap Vmo
let perms = VmPerms::READ | VmPerms::WRITE; pub(super) fn alloc_and_map_vmo(&self, root_vmar: &Vmar<Full>) -> Result<()> {
let vmo_options = VmoOptions::<Rights>::new(0).flags(VmoFlags::RESIZABLE); let heap_vmo = {
let heap_vmo = vmo_options.alloc().unwrap(); let vmo_options = VmoOptions::<Rights>::new(0).flags(VmoFlags::RESIZABLE);
let vmar_map_options = root_vmar vmo_options.alloc()?
.new_map(heap_vmo, perms) };
.unwrap() let vmar_map_options = {
.offset(self.heap_base) let perms = VmPerms::READ | VmPerms::WRITE;
.size(self.heap_size_limit); root_vmar
vmar_map_options.build().unwrap(); .new_map(heap_vmo, perms)
self.current_heap_end.load(Ordering::Relaxed) .unwrap()
.offset(self.base)
.size(self.limit)
};
vmar_map_options.build()?;
self.set_uninitialized();
Ok(())
} }
pub fn brk(&self, new_heap_end: Option<Vaddr>) -> Result<Vaddr> { pub fn brk(&self, new_heap_end: Option<Vaddr>) -> Result<Vaddr> {
@ -54,7 +64,7 @@ impl UserHeap {
match new_heap_end { match new_heap_end {
None => Ok(self.current_heap_end.load(Ordering::Relaxed)), None => Ok(self.current_heap_end.load(Ordering::Relaxed)),
Some(new_heap_end) => { Some(new_heap_end) => {
if new_heap_end > self.heap_base + self.heap_size_limit { if new_heap_end > self.base + self.limit {
return_errno_with_message!(Errno::ENOMEM, "heap size limit was met."); return_errno_with_message!(Errno::ENOMEM, "heap size limit was met.");
} }
let current_heap_end = self.current_heap_end.load(Ordering::Acquire); let current_heap_end = self.current_heap_end.load(Ordering::Acquire);
@ -62,7 +72,7 @@ impl UserHeap {
// FIXME: should we allow shrink current user heap? // FIXME: should we allow shrink current user heap?
return Ok(current_heap_end); return Ok(current_heap_end);
} }
let new_size = (new_heap_end - self.heap_base).align_up(PAGE_SIZE); let new_size = (new_heap_end - self.base).align_up(PAGE_SIZE);
let heap_mapping = root_vmar.get_vm_mapping(USER_HEAP_BASE)?; let heap_mapping = root_vmar.get_vm_mapping(USER_HEAP_BASE)?;
let heap_vmo = heap_mapping.vmo(); let heap_vmo = heap_mapping.vmo();
heap_vmo.resize(new_size)?; heap_vmo.resize(new_size)?;
@ -72,21 +82,17 @@ impl UserHeap {
} }
} }
/// Set heap to the default status. i.e., point the heap end to heap base. pub(super) fn set_uninitialized(&self) {
/// This function will we called in execve. self.current_heap_end.store(self.base, Ordering::Relaxed);
pub fn set_default(&self, root_vmar: &Vmar<Full>) {
self.current_heap_end
.store(self.heap_base, Ordering::Relaxed);
self.init(root_vmar);
} }
} }
impl Clone for UserHeap { impl Clone for Heap {
fn clone(&self) -> Self { fn clone(&self) -> Self {
let current_heap_end = self.current_heap_end.load(Ordering::Relaxed); let current_heap_end = self.current_heap_end.load(Ordering::Relaxed);
Self { Self {
heap_base: self.heap_base, base: self.base,
heap_size_limit: self.heap_size_limit, limit: self.limit,
current_heap_end: AtomicUsize::new(current_heap_end), current_heap_end: AtomicUsize::new(current_heap_end),
} }
} }

View File

@ -2,8 +2,6 @@
use crate::prelude::*; use crate::prelude::*;
/// This implementation is from occlum.
/// Auxiliary Vector. /// Auxiliary Vector.
/// ///
/// # What is Auxiliary Vector? /// # What is Auxiliary Vector?

View File

@ -0,0 +1,410 @@
// SPDX-License-Identifier: MPL-2.0
//! The init stack for the process.
//! The init stack is used to store the `argv` and `envp` and auxiliary vectors.
//! We can read `argv` and `envp` of a process from the init stack.
//! Usually, the lowest address of init stack is
//! the highest address of the user stack of the first thread.
//!
//! However, the init stack will be mapped to user space
//! and the user process can write the content of init stack,
//! so the content reading from init stack may not be the same as the process init status.
//!
use core::{
mem,
sync::atomic::{AtomicUsize, Ordering},
};
use align_ext::AlignExt;
use aster_frame::vm::{VmIo, MAX_USERSPACE_VADDR};
use aster_rights::{Full, Rights};
use self::aux_vec::{AuxKey, AuxVec};
use crate::{
prelude::*,
util::read_cstring_from_vmar,
vm::{perms::VmPerms, vmar::Vmar, vmo::VmoOptions},
};
pub mod aux_vec;
/// Set the initial stack size to 8 megabytes, following the default Linux stack size limit.
pub const INIT_STACK_SIZE: usize = 8 * 1024 * 1024; // 8 MB
/// The max number of arguments that can be used to creating a new process.
pub const MAX_ARGV_NUMBER: usize = 128;
/// The max number of environmental variables that can be used to creating a new process.
pub const MAX_ENVP_NUMBER: usize = 128;
/// The max length of each argument to create a new process.
pub const MAX_ARG_LEN: usize = 2048;
/// The max length of each environmental variable (the total length of key-value pair) to create a new process.
pub const MAX_ENV_LEN: usize = 128;
/*
* Illustration of the virtual memory space containing the processes' init stack:
*
* (high address)
* +---------------------+ <------+ Highest address
* | | Random stack paddings
* +---------------------+ <------+ The base of stack (stack grows down)
* | |
* | Null-terminated |
* | strings referenced |
* | by variables below |
* | |
* +---------------------+
* | AT_NULL |
* +---------------------+
* | AT_NULL |
* +---------------------+
* | ... |
* +---------------------+
* | aux_val[0] |
* +---------------------+
* | aux_key[0] | <------+ Auxiliary table
* +---------------------+
* | NULL |
* +---------------------+
* | ... |
* +---------------------+
* | char* envp[0] | <------+ Environment variables
* +---------------------+
* | NULL |
* +---------------------+
* | char* argv[argc-1] |
* +---------------------+
* | ... |
* +---------------------+
* | char* argv[0] |
* +---------------------+
* | long argc | <------+ Program arguments
* +---------------------+
* | |
* | |
* +---------------------+
* | |
* +---------------------+ <------+ User stack default rlimit
* (low address)
*/
/// The initial portion of the main stack of a process.
#[derive(Debug, Clone)]
pub struct InitStack {
/// The initial highest address.
/// The stack grows down from this address
initial_top: Vaddr,
/// The max allowed stack size
max_size: usize,
/// The current stack pointer.
/// Before initialized, `pos` points to the `initial_top`,
/// After initialized, `pos` points to the user stack pointer(rsp)
/// of the process.
pos: Arc<AtomicUsize>,
}
impl InitStack {
pub(super) fn new() -> Self {
let nr_pages_padding = {
let mut random_nr_pages_padding: u8 = 0;
getrandom::getrandom(random_nr_pages_padding.as_bytes_mut()).unwrap();
random_nr_pages_padding as usize
};
let initial_top = MAX_USERSPACE_VADDR - PAGE_SIZE * nr_pages_padding;
let max_size = INIT_STACK_SIZE;
Self {
initial_top,
max_size,
pos: Arc::new(AtomicUsize::new(initial_top)),
}
}
/// Init and map the vmo for init stack
pub(super) fn alloc_and_map_vmo(&self, root_vmar: &Vmar<Full>) -> Result<()> {
let vmo = {
let vmo_options = VmoOptions::<Rights>::new(self.max_size);
vmo_options.alloc()?
};
let vmar_map_options = {
let perms = VmPerms::READ | VmPerms::WRITE;
let map_addr = self.initial_top - self.max_size;
debug_assert!(map_addr % PAGE_SIZE == 0);
root_vmar.new_map(vmo, perms)?.offset(map_addr)
};
vmar_map_options.build()?;
self.set_uninitialized();
Ok(())
}
/// Returns the user stack top(highest address), used to setup rsp.
///
/// This method should only be called after the stack is initialized.
pub fn user_stack_top(&self) -> Vaddr {
let stack_top = self.pos();
debug_assert!(self.is_initialized());
stack_top
}
pub(super) fn writer<'a>(
&self,
vmar: &'a Vmar<Full>,
argv: Vec<CString>,
envp: Vec<CString>,
auxvec: AuxVec,
) -> InitStackWriter<'a> {
// The stack should be written only once.
debug_assert!(!self.is_initialized());
InitStackWriter {
pos: self.pos.clone(),
vmar,
argv,
envp,
auxvec,
}
}
pub(super) fn reader<'a>(&self, vmar: &'a Vmar<Full>) -> InitStackReader<'a> {
// The stack should only be read after initialized
debug_assert!(self.is_initialized());
InitStackReader {
base: self.pos(),
vmar,
}
}
fn is_initialized(&self) -> bool {
self.pos() != self.initial_top
}
fn set_uninitialized(&self) {
self.pos.store(self.initial_top, Ordering::Relaxed);
}
fn pos(&self) -> Vaddr {
self.pos.load(Ordering::Relaxed)
}
}
/// A writer to initialize the content of an `InitStack`.
pub struct InitStackWriter<'a> {
pos: Arc<AtomicUsize>,
vmar: &'a Vmar<Full>,
argv: Vec<CString>,
envp: Vec<CString>,
auxvec: AuxVec,
}
impl<'a> InitStackWriter<'a> {
pub fn write(mut self) -> Result<()> {
// FIXME: Some OSes may put the first page of excutable file here
// for interpreting elf headers.
let argc = self.argv.len() as u64;
// Write envp string
let envp_pointers = self.write_envp_strings()?;
// Write argv string
let argv_pointers = self.write_argv_strings()?;
// Generate random values for auxvec
let random_value_pointer = {
let random_value = generate_random_for_aux_vec();
self.write_bytes(&random_value)?
};
self.auxvec.set(AuxKey::AT_RANDOM, random_value_pointer)?;
self.adjust_stack_alignment(&envp_pointers, &argv_pointers)?;
self.write_aux_vec()?;
self.write_envp_pointers(envp_pointers)?;
self.write_argv_pointers(argv_pointers)?;
// write argc
self.write_u64(argc)?;
// Ensure stack top is 16-bytes aligned
debug_assert_eq!(self.pos() & !0xf, self.pos());
Ok(())
}
fn write_envp_strings(&self) -> Result<Vec<u64>> {
let mut envp_pointers = Vec::with_capacity(self.envp.len());
for envp in self.envp.iter() {
let pointer = self.write_cstring(envp)?;
envp_pointers.push(pointer);
}
Ok(envp_pointers)
}
fn write_argv_strings(&self) -> Result<Vec<u64>> {
let mut argv_pointers = Vec::with_capacity(self.argv.len());
for argv in self.argv.iter().rev() {
let pointer = self.write_cstring(argv)?;
debug!("argv address = 0x{:x}", pointer);
argv_pointers.push(pointer);
}
argv_pointers.reverse();
Ok(argv_pointers)
}
/// Libc ABI requires 16-byte alignment of the stack entrypoint.
/// Current postion of the stack is 8-byte aligned already, insert 8 byte
/// to meet the requirement if necessary.
fn adjust_stack_alignment(&self, envp_pointers: &[u64], argv_pointers: &[u64]) -> Result<()> {
// Ensure 8-byte alignment
self.write_u64(0)?;
let auxvec_size = (self.auxvec.table().len() + 1) * (mem::size_of::<u64>() * 2);
let envp_pointers_size = (envp_pointers.len() + 1) * mem::size_of::<u64>();
let argv_pointers_size = (argv_pointers.len() + 1) * mem::size_of::<u64>();
let argc_size = mem::size_of::<u64>();
let to_write_size = auxvec_size + envp_pointers_size + argv_pointers_size + argc_size;
if (self.pos() - to_write_size) % 16 != 0 {
self.write_u64(0)?;
}
Ok(())
}
fn write_aux_vec(&self) -> Result<()> {
// Write NULL auxilary
self.write_u64(0)?;
self.write_u64(AuxKey::AT_NULL as u64)?;
// Write Auxiliary vectors
let aux_vec: Vec<_> = self
.auxvec
.table()
.iter()
.map(|(aux_key, aux_value)| (*aux_key, *aux_value))
.collect();
for (aux_key, aux_value) in aux_vec.iter() {
self.write_u64(*aux_value)?;
self.write_u64(*aux_key as u64)?;
}
Ok(())
}
fn write_envp_pointers(&self, mut envp_pointers: Vec<u64>) -> Result<()> {
// write NULL pointer
self.write_u64(0)?;
// write envp pointers
envp_pointers.reverse();
for envp_pointer in envp_pointers {
self.write_u64(envp_pointer)?;
}
Ok(())
}
fn write_argv_pointers(&self, mut argv_pointers: Vec<u64>) -> Result<()> {
// write 0
self.write_u64(0)?;
// write argv pointers
argv_pointers.reverse();
for argv_pointer in argv_pointers {
self.write_u64(argv_pointer)?;
}
Ok(())
}
/// Writes u64 to the stack.
/// Returns the writing address
fn write_u64(&self, val: u64) -> Result<u64> {
let start_address = (self.pos() - 8).align_down(8);
self.pos.store(start_address, Ordering::Relaxed);
self.vmar.write_val(start_address, &val)?;
Ok(self.pos() as u64)
}
/// Writes a CString including the ending null byte to the stack.
/// Returns the writing address
fn write_cstring(&self, val: &CString) -> Result<u64> {
let bytes = val.as_bytes_with_nul();
self.write_bytes(bytes)
}
/// Writes u64 to the stack.
/// Returns the writing address.
fn write_bytes(&self, bytes: &[u8]) -> Result<u64> {
let len = bytes.len();
self.pos.fetch_sub(len, Ordering::Relaxed);
let pos = self.pos();
self.vmar.write_bytes(pos, bytes)?;
Ok(pos as u64)
}
fn pos(&self) -> Vaddr {
self.pos.load(Ordering::Relaxed)
}
}
fn generate_random_for_aux_vec() -> [u8; 16] {
let mut rand_val = [0; 16];
getrandom::getrandom(&mut rand_val).unwrap();
rand_val
}
/// A reader to parse the content of an `InitStack`.
pub struct InitStackReader<'a> {
base: Vaddr,
vmar: &'a Vmar<Full>,
}
impl<'a> InitStackReader<'a> {
/// Read argc from the process init stack
pub fn argc(&self) -> Result<u64> {
let stack_base = self.user_stack_top();
Ok(self.vmar.read_val(stack_base)?)
}
/// Read argv from the process init stack
pub fn argv(&self) -> Result<Vec<CString>> {
let argc = self.argc()? as usize;
// base = stack bottom + the size of argc
let base = self.user_stack_top() + 8;
let mut argv = Vec::with_capacity(argc);
for i in 0..argc {
let arg_ptr = {
let offset = base + i * 8;
self.vmar.read_val::<Vaddr>(offset)?
};
let arg = read_cstring_from_vmar(self.vmar, arg_ptr, MAX_ARG_LEN)?;
argv.push(arg);
}
Ok(argv)
}
/// Read envp from the process
pub fn envp(&self) -> Result<Vec<CString>> {
let argc = self.argc()? as usize;
// base = stack bottom
// + the size of argc(8)
// + the size of arg pointer(8) * the number of arg(argc)
// + the size of null pointer(8)
let base = self.user_stack_top() + 8 + 8 * argc + 8;
let mut envp = Vec::new();
for i in 0..MAX_ENVP_NUMBER {
let envp_ptr = {
let offset = base + i * 8;
self.vmar.read_val::<Vaddr>(offset)?
};
if envp_ptr == 0 {
break;
}
let env = read_cstring_from_vmar(self.vmar, envp_ptr, MAX_ENV_LEN)?;
envp.push(env);
}
Ok(envp)
}
pub const fn user_stack_top(&self) -> Vaddr {
self.base
}
}

View File

@ -1,17 +1,29 @@
// SPDX-License-Identifier: MPL-2.0 // SPDX-License-Identifier: MPL-2.0
//! This module defines the UserVm of a process. //! This module defines struct `ProcessVm`
//! The UserSpace of a process only contains the virtual-physical memory mapping. //! to represent the layout of user space process virtual memory.
//! But we cannot know which vaddr is user heap, which vaddr is mmap areas. //!
//! So we define a UserVm struct to store such infomation. //! The `ProcessVm` struct contains `Vmar`,
//! Briefly, it contains the exact usage of each segment of virtual spaces. //! which stores all existing memory mappings.
//! The `Vm` also contains
//! the basic info of process level vm segments,
//! like init stack and heap.
pub mod user_heap; mod heap;
mod init_stack;
use aster_rights::Full; use aster_rights::Full;
use user_heap::UserHeap; pub use heap::Heap;
use crate::vm::vmar::Vmar; pub use self::{
heap::USER_HEAP_SIZE_LIMIT,
init_stack::{
aux_vec::{AuxKey, AuxVec},
InitStack, InitStackReader, InitStackWriter, INIT_STACK_SIZE, MAX_ARGV_NUMBER, MAX_ARG_LEN,
MAX_ENVP_NUMBER, MAX_ENV_LEN,
},
};
use crate::{prelude::*, vm::vmar::Vmar};
/* /*
* The user's virtual memory space layout looks like below. * The user's virtual memory space layout looks like below.
@ -49,51 +61,77 @@ use crate::vm::vmar::Vmar;
* (low address) * (low address)
*/ */
/// The virtual space usage. // The process user space virtual memory
/// This struct is used to control brk and mmap now.
pub struct ProcessVm { pub struct ProcessVm {
user_heap: UserHeap,
root_vmar: Vmar<Full>, root_vmar: Vmar<Full>,
init_stack: InitStack,
heap: Heap,
} }
impl Clone for ProcessVm { impl Clone for ProcessVm {
fn clone(&self) -> Self { fn clone(&self) -> Self {
Self { Self {
root_vmar: self.root_vmar.dup().unwrap(), root_vmar: self.root_vmar.dup().unwrap(),
user_heap: self.user_heap.clone(), init_stack: self.init_stack.clone(),
heap: self.heap.clone(),
} }
} }
} }
impl ProcessVm { impl ProcessVm {
/// Allocates a new `ProcessVm`
pub fn alloc() -> Self { pub fn alloc() -> Self {
let root_vmar = Vmar::<Full>::new_root(); let root_vmar = Vmar::<Full>::new_root();
let user_heap = UserHeap::new(); let init_stack = InitStack::new();
user_heap.init(&root_vmar); init_stack.alloc_and_map_vmo(&root_vmar).unwrap();
ProcessVm { let heap = Heap::new();
user_heap, heap.alloc_and_map_vmo(&root_vmar).unwrap();
root_vmar,
}
}
pub fn new(user_heap: UserHeap, root_vmar: Vmar<Full>) -> Self {
Self { Self {
user_heap,
root_vmar, root_vmar,
heap,
init_stack,
} }
} }
pub fn user_heap(&self) -> &UserHeap { /// Forks a `ProcessVm` from `other`.
&self.user_heap ///
/// The returned `ProcessVm` will have a forked `Vmar`.
pub fn fork_from(other: &ProcessVm) -> Result<Self> {
let root_vmar = Vmar::<Full>::fork_from(&other.root_vmar)?;
Ok(Self {
root_vmar,
heap: other.heap.clone(),
init_stack: other.init_stack.clone(),
})
} }
pub fn root_vmar(&self) -> &Vmar<Full> { pub fn root_vmar(&self) -> &Vmar<Full> {
&self.root_vmar &self.root_vmar
} }
/// Set user vm to the init status /// Returns a reader for reading contents from
pub fn clear(&self) { /// the `InitStack`.
pub fn init_stack_reader(&self) -> InitStackReader {
self.init_stack.reader(&self.root_vmar)
}
pub(super) fn init_stack_writer(
&self,
argv: Vec<CString>,
envp: Vec<CString>,
aux_vec: AuxVec,
) -> InitStackWriter {
self.init_stack.writer(&self.root_vmar, argv, envp, aux_vec)
}
pub(super) fn heap(&self) -> &Heap {
&self.heap
}
/// Clears existing mappings and then maps stack and heap vmo.
pub(super) fn clear_and_map(&self) {
self.root_vmar.clear().unwrap(); self.root_vmar.clear().unwrap();
self.user_heap.set_default(&self.root_vmar); self.init_stack.alloc_and_map_vmo(&self.root_vmar).unwrap();
self.heap.alloc_and_map_vmo(&self.root_vmar).unwrap();
} }
} }

View File

@ -1,363 +0,0 @@
// SPDX-License-Identifier: MPL-2.0
//! This module defines the process initial stack.
//! The process initial stack, contains arguments, environmental variables and auxiliary vectors
//! The data layout of init stack can be seen in Figure 3.9 in <https://uclibc.org/docs/psABI-x86_64.pdf>
use core::mem;
use align_ext::AlignExt;
use aster_frame::vm::{VmIo, VmPerm, MAX_USERSPACE_VADDR};
use aster_rights::{Full, Rights};
use super::{
aux_vec::{AuxKey, AuxVec},
elf_file::Elf,
load_elf::LdsoLoadInfo,
};
use crate::{
prelude::*,
vm::{perms::VmPerms, vmar::Vmar, vmo::VmoOptions},
};
/// Set the initial stack size to 8 megabytes, following the default Linux stack size limit.
pub const INIT_STACK_SIZE: usize = 8 * 1024 * 1024; // 8 MB
/*
* Illustration of the virtual memory space containing the processes' init stack:
*
* (high address)
* +---------------------+ <------+ Highest address
* | | Random stack paddings
* +---------------------+ <------+ The base of stack (stack grows down)
* | |
* | Null-terminated |
* | strings referenced |
* | by variables below |
* | |
* +---------------------+
* | AT_NULL |
* +---------------------+
* | AT_NULL |
* +---------------------+
* | ... |
* +---------------------+
* | aux_val[0] |
* +---------------------+
* | aux_key[0] | <------+ Auxiliary table
* +---------------------+
* | NULL |
* +---------------------+
* | ... |
* +---------------------+
* | char* envp[0] | <------+ Environment variables
* +---------------------+
* | NULL |
* +---------------------+
* | char* argv[argc-1] |
* +---------------------+
* | ... |
* +---------------------+
* | char* argv[0] |
* +---------------------+
* | long argc | <------+ Program arguments
* +---------------------+
* | |
* | |
* +---------------------+
* | |
* +---------------------+ <------+ User stack default rlimit
* (low address)
*/
pub struct InitStack {
/// The high address of init stack
init_stack_top: Vaddr,
init_stack_size: usize,
pos: usize,
/// Command line args
argv: Vec<CString>,
/// Environmental variables
envp: Vec<CString>,
}
impl InitStack {
/// initialize user stack on base addr
pub fn new(
init_stack_top: Vaddr,
init_stack_size: usize,
argv: Vec<CString>,
envp: Vec<CString>,
) -> Self {
Self {
init_stack_top,
init_stack_size,
pos: init_stack_top,
argv,
envp,
}
}
pub fn new_default_config(argv: Vec<CString>, envp: Vec<CString>) -> Self {
let nr_pages_padding = {
let mut random_nr_pages_padding: u8 = 0;
getrandom::getrandom(random_nr_pages_padding.as_bytes_mut()).unwrap();
random_nr_pages_padding as usize
};
let init_stack_top = MAX_USERSPACE_VADDR - PAGE_SIZE * nr_pages_padding;
let init_stack_size = INIT_STACK_SIZE;
InitStack::new(init_stack_top, init_stack_size, argv, envp)
}
/// the user stack top(high address), used to setup rsp
pub fn user_stack_top(&self) -> Vaddr {
let stack_top = self.pos;
// ensure stack top is 16-bytes aligned
debug_assert!(stack_top & !0xf == stack_top);
stack_top
}
/// the user stack bottom(low address)
const fn user_stack_bottom(&self) -> Vaddr {
self.init_stack_top - self.init_stack_size
}
pub fn init(
&mut self,
root_vmar: &Vmar<Full>,
elf: &Elf,
ldso_load_info: &Option<LdsoLoadInfo>,
aux_vec: &mut AuxVec,
) -> Result<()> {
self.map_and_zeroed(root_vmar)?;
self.write_stack_content(root_vmar, elf, ldso_load_info, aux_vec)?;
self.debug_print_stack_content(root_vmar);
Ok(())
}
fn map_and_zeroed(&self, root_vmar: &Vmar<Full>) -> Result<()> {
let vmo_options = VmoOptions::<Rights>::new(self.init_stack_size);
let vmo = vmo_options.alloc()?;
vmo.clear(0..vmo.size())?;
let perms = VmPerms::READ | VmPerms::WRITE;
let vmar_map_options = root_vmar
.new_map(vmo, perms)?
.offset(self.user_stack_bottom());
vmar_map_options.build().unwrap();
Ok(())
}
/// Libc ABI requires 16-byte alignment of the stack entrypoint.
/// Current postion of the stack is 8-byte aligned already, insert 8 byte
/// to meet the requirement if necessary.
fn adjust_stack_alignment(
&mut self,
root_vmar: &Vmar<Full>,
envp_pointers: &[u64],
argv_pointers: &[u64],
aux_vec: &AuxVec,
) -> Result<()> {
// ensure 8-byte alignment
self.write_u64(0, root_vmar)?;
let auxvec_size = (aux_vec.table().len() + 1) * (mem::size_of::<u64>() * 2);
let envp_pointers_size = (envp_pointers.len() + 1) * mem::size_of::<u64>();
let argv_pointers_size = (argv_pointers.len() + 1) * mem::size_of::<u64>();
let argc_size = mem::size_of::<u64>();
let to_write_size = auxvec_size + envp_pointers_size + argv_pointers_size + argc_size;
if (self.pos - to_write_size) % 16 != 0 {
self.write_u64(0, root_vmar)?;
}
Ok(())
}
fn write_stack_content(
&mut self,
root_vmar: &Vmar<Full>,
elf: &Elf,
ldso_load_info: &Option<LdsoLoadInfo>,
aux_vec: &mut AuxVec,
) -> Result<()> {
// FIXME: Some OSes may put the first page of excutable file here
// for interpreting elf headers.
// write envp string
let envp_pointers = self.write_envp_strings(root_vmar)?;
// write argv string
let argv_pointers = self.write_argv_strings(root_vmar)?;
// write random value
let random_value = generate_random_for_aux_vec();
let random_value_pointer = self.write_bytes(&random_value, root_vmar)?;
aux_vec.set(AuxKey::AT_RANDOM, random_value_pointer)?;
if let Some(ldso_load_info) = ldso_load_info {
let ldso_base = ldso_load_info.base_addr();
aux_vec.set(AuxKey::AT_BASE, ldso_base as u64)?;
}
self.adjust_stack_alignment(root_vmar, &envp_pointers, &argv_pointers, aux_vec)?;
self.write_aux_vec(root_vmar, aux_vec)?;
self.write_envp_pointers(root_vmar, envp_pointers)?;
self.write_argv_pointers(root_vmar, argv_pointers)?;
// write argc
let argc = self.argc();
self.write_u64(argc, root_vmar)?;
Ok(())
}
fn write_envp_strings(&mut self, root_vmar: &Vmar<Full>) -> Result<Vec<u64>> {
let envp = self.envp.to_vec();
let mut envp_pointers = Vec::with_capacity(envp.len());
for envp in envp.iter() {
let pointer = self.write_cstring(envp, root_vmar)?;
envp_pointers.push(pointer);
}
Ok(envp_pointers)
}
fn write_argv_strings(&mut self, root_vmar: &Vmar<Full>) -> Result<Vec<u64>> {
let argv = self.argv.to_vec();
let mut argv_pointers = Vec::with_capacity(argv.len());
for argv in argv.iter().rev() {
let pointer = self.write_cstring(argv, root_vmar)?;
debug!("argv address = 0x{:x}", pointer);
argv_pointers.push(pointer);
}
argv_pointers.reverse();
Ok(argv_pointers)
}
fn write_aux_vec(&mut self, root_vmar: &Vmar<Full>, aux_vec: &AuxVec) -> Result<()> {
// Write NULL auxilary
self.write_u64(0, root_vmar)?;
self.write_u64(AuxKey::AT_NULL as u64, root_vmar)?;
// Write Auxiliary vectors
let aux_vec: Vec<_> = aux_vec
.table()
.iter()
.map(|(aux_key, aux_value)| (*aux_key, *aux_value))
.collect();
for (aux_key, aux_value) in aux_vec.iter() {
self.write_u64(*aux_value, root_vmar)?;
self.write_u64(*aux_key as u64, root_vmar)?;
}
Ok(())
}
fn write_envp_pointers(
&mut self,
root_vmar: &Vmar<Full>,
mut envp_pointers: Vec<u64>,
) -> Result<()> {
// write NULL pointer
self.write_u64(0, root_vmar)?;
// write envp pointers
envp_pointers.reverse();
for envp_pointer in envp_pointers {
self.write_u64(envp_pointer, root_vmar)?;
}
Ok(())
}
fn write_argv_pointers(
&mut self,
root_vmar: &Vmar<Full>,
mut argv_pointers: Vec<u64>,
) -> Result<()> {
// write 0
self.write_u64(0, root_vmar)?;
// write argv pointers
argv_pointers.reverse();
for argv_pointer in argv_pointers {
self.write_u64(argv_pointer, root_vmar)?;
}
Ok(())
}
/// Command line argument counter
pub fn argc(&self) -> u64 {
self.argv.len() as u64
}
/// Command linke argument start address
pub fn argv(&self) -> u64 {
self.user_stack_top() as u64 + 8
}
/// Environmental variables counter
pub fn envc(&self) -> u64 {
self.envp.len() as u64
}
/// Environmental variables pointers
pub fn envp(&self) -> u64 {
0
}
/// returns the top address of init stack.
/// It should points to a fixed address.
pub const fn init_stack_top(&self) -> Vaddr {
self.init_stack_top
}
/// returns the u64 start address
fn write_u64(&mut self, val: u64, root_vmar: &Vmar<Full>) -> Result<u64> {
let start_address = (self.pos - 8).align_down(8);
self.pos = start_address;
root_vmar.write_val(start_address, &val)?;
Ok(self.pos as u64)
}
fn write_bytes(&mut self, bytes: &[u8], root_vmar: &Vmar<Full>) -> Result<u64> {
let len = bytes.len();
self.pos -= len;
root_vmar.write_bytes(self.pos, bytes)?;
Ok(self.pos as u64)
}
/// returns the string start address
/// cstring will with end null byte.
fn write_cstring(&mut self, val: &CString, root_vmar: &Vmar<Full>) -> Result<u64> {
let bytes = val.as_bytes_with_nul();
self.write_bytes(bytes, root_vmar)
}
pub const fn perm() -> VmPerm {
VmPerm::RWU
}
fn debug_print_stack_content(&self, root_vmar: &Vmar<Full>) {
debug!("print stack content:");
let stack_top = self.user_stack_top();
let argc = root_vmar.read_val::<u64>(stack_top).unwrap();
debug!("argc = {}", argc);
}
}
pub fn init_aux_vec(elf: &Elf, elf_map_addr: Vaddr, vdso_text_base: Vaddr) -> Result<AuxVec> {
let mut aux_vec = AuxVec::new();
aux_vec.set(AuxKey::AT_PAGESZ, PAGE_SIZE as _)?;
let ph_addr = if elf.is_shared_object() {
elf.ph_addr()? + elf_map_addr
} else {
elf.ph_addr()?
};
aux_vec.set(AuxKey::AT_PHDR, ph_addr as u64)?;
aux_vec.set(AuxKey::AT_PHNUM, elf.ph_count() as u64)?;
aux_vec.set(AuxKey::AT_PHENT, elf.ph_ent() as u64)?;
let elf_entry = if elf.is_shared_object() {
let base_load_offset = elf.base_load_address_offset();
elf.entry_point() + elf_map_addr - base_load_offset as usize
} else {
elf.entry_point()
};
aux_vec.set(AuxKey::AT_ENTRY, elf_entry as u64)?;
aux_vec.set(AuxKey::AT_SYSINFO_EHDR, vdso_text_base as u64)?;
Ok(aux_vec)
}
/// generate random [u8; 16].
/// FIXME: generate really random value. Now only return array with fixed values.
fn generate_random_for_aux_vec() -> [u8; 16] {
let mut rand_val = [0; 16];
for i in 0..16u8 {
rand_val[i as usize] = 0xff - i;
}
rand_val
}

View File

@ -20,10 +20,10 @@ use crate::{
prelude::*, prelude::*,
process::{ process::{
do_exit_group, do_exit_group,
process_vm::ProcessVm, process_vm::{AuxKey, AuxVec, ProcessVm},
program_loader::elf::init_stack::{init_aux_vec, InitStack},
TermStatus, TermStatus,
}, },
vdso::vdso_vmo,
vm::{ vm::{
perms::VmPerms, perms::VmPerms,
vmar::Vmar, vmar::Vmar,
@ -31,10 +31,10 @@ use crate::{
}, },
}; };
/// load elf to the root vmar. this function will /// Loads elf to the process vm.
/// 1. read the vaddr of each segment to get all elf pages. ///
/// 2. create a vmo for each elf segment, create a pager for each segment. Then map the vmo to the root vmar. /// This function will map elf segments and
/// 3. write proper content to the init stack. /// initialize process init stack.
pub fn load_elf_to_vm( pub fn load_elf_to_vm(
process_vm: &ProcessVm, process_vm: &ProcessVm,
file_header: &[u8], file_header: &[u8],
@ -42,31 +42,48 @@ pub fn load_elf_to_vm(
fs_resolver: &FsResolver, fs_resolver: &FsResolver,
argv: Vec<CString>, argv: Vec<CString>,
envp: Vec<CString>, envp: Vec<CString>,
vdso_text_base: Vaddr,
) -> Result<ElfLoadInfo> { ) -> Result<ElfLoadInfo> {
let elf = Elf::parse_elf(file_header)?; let parsed_elf = Elf::parse_elf(file_header)?;
let ldso = if elf.is_shared_object() { let ldso = if parsed_elf.is_shared_object() {
Some(lookup_and_parse_ldso(&elf, file_header, fs_resolver)?) Some(lookup_and_parse_ldso(
&parsed_elf,
file_header,
fs_resolver,
)?)
} else { } else {
None None
}; };
match init_and_map_vmos( match init_and_map_vmos(process_vm, ldso, &parsed_elf, &elf_file) {
process_vm, Ok((entry_point, mut aux_vec)) => {
ldso, // Map and set vdso entry.
&elf, // Since vdso does not require being mapped to any specific address,
&elf_file, // vdso is mapped after the elf file, heap and stack are mapped.
argv, if let Some(vdso_text_base) = map_vdso_to_vm(process_vm) {
envp, aux_vec
vdso_text_base, .set(AuxKey::AT_SYSINFO_EHDR, vdso_text_base as u64)
) { .unwrap();
Ok(elf_load_info) => Ok(elf_load_info), }
Err(e) => {
// Since the process_vm is cleared, the process cannot return to user space again,
// so exit_group is called here.
// FIXME: if `current` macro is used when creating the init process, let init_stack_writer = process_vm.init_stack_writer(argv, envp, aux_vec);
init_stack_writer.write().unwrap();
let user_stack_top = process_vm.init_stack_reader().user_stack_top();
Ok(ElfLoadInfo {
entry_point,
user_stack_top,
})
}
Err(_) => {
// Since the process_vm is in invalid state,
// the process cannot return to user space again,
// so `Vmar::clear` and `do_exit_group` are called here.
// FIXME: sending a fault signal is an alternative approach.
process_vm.root_vmar().clear().unwrap();
// FIXME: `current` macro will be used in `do_exit_group`.
// if the macro is used when creating the init process,
// the macro will panic. This corner case should be handled later. // the macro will panic. This corner case should be handled later.
// FIXME: how to set the correct exit status? // FIXME: how to set the correct exit status?
do_exit_group(TermStatus::Exited(1)); do_exit_group(TermStatus::Exited(1));
@ -105,12 +122,9 @@ fn load_ldso(root_vmar: &Vmar<Full>, ldso_file: &Dentry, ldso_elf: &Elf) -> Resu
fn init_and_map_vmos( fn init_and_map_vmos(
process_vm: &ProcessVm, process_vm: &ProcessVm,
ldso: Option<(Arc<Dentry>, Elf)>, ldso: Option<(Arc<Dentry>, Elf)>,
elf: &Elf, parsed_elf: &Elf,
elf_file: &Dentry, elf_file: &Dentry,
argv: Vec<CString>, ) -> Result<(Vaddr, AuxVec)> {
envp: Vec<CString>,
vdso_text_base: Vaddr,
) -> Result<ElfLoadInfo> {
let root_vmar = process_vm.root_vmar(); let root_vmar = process_vm.root_vmar();
// After we clear process vm, if any error happens, we must call exit_group instead of return to user space. // After we clear process vm, if any error happens, we must call exit_group instead of return to user space.
@ -120,23 +134,27 @@ fn init_and_map_vmos(
None None
}; };
let map_addr = map_segment_vmos(elf, root_vmar, elf_file)?; let elf_map_addr = map_segment_vmos(parsed_elf, root_vmar, elf_file)?;
let mut aux_vec = init_aux_vec(elf, map_addr, vdso_text_base)?;
let mut init_stack = InitStack::new_default_config(argv, envp); let aux_vec = {
init_stack.init(root_vmar, elf, &ldso_load_info, &mut aux_vec)?; let ldso_base = ldso_load_info
.as_ref()
.map(|load_info| load_info.base_addr());
init_aux_vec(parsed_elf, elf_map_addr, ldso_base)?
};
let entry_point = if let Some(ldso_load_info) = ldso_load_info { let entry_point = if let Some(ldso_load_info) = ldso_load_info {
// Normal shared object // Normal shared object
ldso_load_info.entry_point() ldso_load_info.entry_point()
} else if elf.is_shared_object() { } else if parsed_elf.is_shared_object() {
// ldso itself // ldso itself
elf.entry_point() + map_addr parsed_elf.entry_point() + elf_map_addr
} else { } else {
// statically linked executable // statically linked executable
elf.entry_point() parsed_elf.entry_point()
}; };
let elf_load_info = ElfLoadInfo::new(entry_point, init_stack.user_stack_top()); Ok((entry_point, aux_vec))
Ok(elf_load_info)
} }
pub struct LdsoLoadInfo { pub struct LdsoLoadInfo {
@ -371,3 +389,51 @@ fn check_segment_align(program_header: &ProgramHeader64) -> Result<()> {
} }
Ok(()) Ok(())
} }
pub fn init_aux_vec(elf: &Elf, elf_map_addr: Vaddr, ldso_base: Option<Vaddr>) -> Result<AuxVec> {
let mut aux_vec = AuxVec::new();
aux_vec.set(AuxKey::AT_PAGESZ, PAGE_SIZE as _)?;
let ph_addr = if elf.is_shared_object() {
elf.ph_addr()? + elf_map_addr
} else {
elf.ph_addr()?
};
aux_vec.set(AuxKey::AT_PHDR, ph_addr as u64)?;
aux_vec.set(AuxKey::AT_PHNUM, elf.ph_count() as u64)?;
aux_vec.set(AuxKey::AT_PHENT, elf.ph_ent() as u64)?;
let elf_entry = if elf.is_shared_object() {
let base_load_offset = elf.base_load_address_offset();
elf.entry_point() + elf_map_addr - base_load_offset as usize
} else {
elf.entry_point()
};
aux_vec.set(AuxKey::AT_ENTRY, elf_entry as u64)?;
if let Some(ldso_base) = ldso_base {
aux_vec.set(AuxKey::AT_BASE, ldso_base as u64)?;
}
Ok(aux_vec)
}
/// Map the vdso vmo to the corresponding virtual memory address.
fn map_vdso_to_vm(process_vm: &ProcessVm) -> Option<Vaddr> {
let root_vmar = process_vm.root_vmar();
let vdso_vmo = vdso_vmo()?;
let options = root_vmar
.new_map(vdso_vmo.dup().unwrap(), VmPerms::empty())
.unwrap()
.size(5 * PAGE_SIZE);
let vdso_data_base = options.build().unwrap();
let vdso_text_base = vdso_data_base + 0x4000;
let data_perms = VmPerms::READ | VmPerms::WRITE;
let text_perms = VmPerms::READ | VmPerms::EXEC;
root_vmar
.protect(data_perms, vdso_data_base..vdso_data_base + PAGE_SIZE)
.unwrap();
root_vmar
.protect(text_perms, vdso_text_base..vdso_text_base + PAGE_SIZE)
.unwrap();
Some(vdso_text_base)
}

View File

@ -1,9 +1,6 @@
// SPDX-License-Identifier: MPL-2.0 // SPDX-License-Identifier: MPL-2.0
mod aux_vec;
mod elf_file; mod elf_file;
mod init_stack;
mod load_elf; mod load_elf;
pub use init_stack::INIT_STACK_SIZE;
pub use load_elf::{load_elf_to_vm, ElfLoadInfo}; pub use load_elf::{load_elf_to_vm, ElfLoadInfo};

View File

@ -14,33 +14,8 @@ use crate::{
utils::Dentry, utils::Dentry,
}, },
prelude::*, prelude::*,
vdso::vdso_vmo,
vm::perms::VmPerms,
}; };
/// Map the vdso vmo to the corresponding virtual memory address.
pub fn map_vdso_to_vm(process_vm: &ProcessVm) -> Vaddr {
let root_vmar = process_vm.root_vmar();
let vdso_vmo = vdso_vmo();
let options = root_vmar
.new_map(vdso_vmo.dup().unwrap(), VmPerms::empty())
.unwrap()
.size(5 * PAGE_SIZE);
let vdso_data_base = options.build().unwrap();
let vdso_text_base = vdso_data_base + 0x4000;
let data_perms = VmPerms::READ | VmPerms::WRITE;
let text_perms = VmPerms::READ | VmPerms::EXEC;
root_vmar
.protect(data_perms, vdso_data_base..vdso_data_base + PAGE_SIZE)
.unwrap();
root_vmar
.protect(text_perms, vdso_text_base..vdso_text_base + PAGE_SIZE)
.unwrap();
vdso_text_base
}
/// Load an executable to root vmar, including loading programe image, preparing heap and stack, /// Load an executable to root vmar, including loading programe image, preparing heap and stack,
/// initializing argv, envp and aux tables. /// initializing argv, envp and aux tables.
/// About recursion_limit: recursion limit is used to limit th recursion depth of shebang executables. /// About recursion_limit: recursion limit is used to limit th recursion depth of shebang executables.
@ -84,17 +59,11 @@ pub fn load_program_to_vm(
recursion_limit - 1, recursion_limit - 1,
); );
} }
process_vm.clear();
let vdso_text_base = map_vdso_to_vm(process_vm); process_vm.clear_and_map();
let elf_load_info = load_elf_to_vm(
process_vm, let elf_load_info =
&*file_header, load_elf_to_vm(process_vm, &*file_header, elf_file, fs_resolver, argv, envp)?;
elf_file,
fs_resolver,
argv,
envp,
vdso_text_base,
)?;
Ok((abs_path, elf_load_info)) Ok((abs_path, elf_load_info))
} }

View File

@ -2,7 +2,7 @@
#![allow(non_camel_case_types)] #![allow(non_camel_case_types)]
use super::{process_vm::user_heap::USER_HEAP_SIZE_LIMIT, program_loader::elf::INIT_STACK_SIZE}; use super::process_vm::{INIT_STACK_SIZE, USER_HEAP_SIZE_LIMIT};
use crate::prelude::*; use crate::prelude::*;
pub struct ResourceLimits { pub struct ResourceLimits {

View File

@ -16,7 +16,7 @@ pub fn sys_brk(heap_end: u64) -> Result<SyscallReturn> {
}; };
debug!("new heap end = {:x?}", heap_end); debug!("new heap end = {:x?}", heap_end);
let current = current!(); let current = current!();
let user_heap = current.user_heap(); let user_heap = current.heap();
let new_heap_end = user_heap.brk(new_heap_end)?; let new_heap_end = user_heap.brk(new_heap_end)?;
Ok(SyscallReturn::Return(new_heap_end as _)) Ok(SyscallReturn::Return(new_heap_end as _))

View File

@ -4,7 +4,3 @@
/// LONGEST ALLOWED FILENAME /// LONGEST ALLOWED FILENAME
pub const MAX_FILENAME_LEN: usize = 4096; pub const MAX_FILENAME_LEN: usize = 4096;
pub const MAX_ARGV_NUMBER: usize = 128;
pub const MAX_ENVP_NUMBER: usize = 128;
pub const MAX_ARG_LEN: usize = 2048;
pub const MAX_ENV_LEN: usize = 128;

View File

@ -15,7 +15,7 @@ use crate::{
process::{ process::{
check_executable_file, credentials_mut, load_program_to_vm, check_executable_file, credentials_mut, load_program_to_vm,
posix_thread::{PosixThreadExt, ThreadName}, posix_thread::{PosixThreadExt, ThreadName},
Credentials, Credentials, MAX_ARGV_NUMBER, MAX_ARG_LEN, MAX_ENVP_NUMBER, MAX_ENV_LEN,
}, },
syscall::{SYS_EXECVE, SYS_EXECVEAT}, syscall::{SYS_EXECVE, SYS_EXECVEAT},
util::{read_cstring_from_user, read_val_from_user}, util::{read_cstring_from_user, read_val_from_user},

View File

@ -3,8 +3,9 @@
use core::mem; use core::mem;
use aster_frame::vm::VmIo; use aster_frame::vm::VmIo;
use aster_rights::Full;
use crate::prelude::*; use crate::{prelude::*, vm::vmar::Vmar};
pub mod net; pub mod net;
/// Read bytes into the `dest` buffer /// Read bytes into the `dest` buffer
@ -50,13 +51,20 @@ pub fn write_val_to_user<T: Pod>(dest: Vaddr, val: &T) -> Result<()> {
/// The original Linux implementation can be found at: /// The original Linux implementation can be found at:
/// <https://elixir.bootlin.com/linux/v6.0.9/source/lib/strncpy_from_user.c#L28> /// <https://elixir.bootlin.com/linux/v6.0.9/source/lib/strncpy_from_user.c#L28>
pub fn read_cstring_from_user(addr: Vaddr, max_len: usize) -> Result<CString> { pub fn read_cstring_from_user(addr: Vaddr, max_len: usize) -> Result<CString> {
let current = current!();
let vmar = current.root_vmar();
read_cstring_from_vmar(vmar, addr, max_len)
}
/// Read CString from `vmar`. If possible, use `read_cstring_from_user` instead.
pub fn read_cstring_from_vmar(vmar: &Vmar<Full>, addr: Vaddr, max_len: usize) -> Result<CString> {
let mut buffer: Vec<u8> = Vec::with_capacity(max_len); let mut buffer: Vec<u8> = Vec::with_capacity(max_len);
let mut cur_addr = addr; let mut cur_addr = addr;
macro_rules! read_one_byte_at_a_time_while { macro_rules! read_one_byte_at_a_time_while {
($cond:expr) => { ($cond:expr) => {
while $cond { while $cond {
let byte = read_val_from_user::<u8>(cur_addr)?; let byte = vmar.read_val::<u8>(cur_addr)?;
buffer.push(byte); buffer.push(byte);
if byte == 0 { if byte == 0 {
return Ok(CString::from_vec_with_nul(buffer) return Ok(CString::from_vec_with_nul(buffer)
@ -74,7 +82,7 @@ pub fn read_cstring_from_user(addr: Vaddr, max_len: usize) -> Result<CString> {
// Handle the rest of the bytes in bulk // Handle the rest of the bytes in bulk
while (buffer.len() + mem::size_of::<usize>()) <= max_len { while (buffer.len() + mem::size_of::<usize>()) <= max_len {
let Ok(word) = read_val_from_user::<usize>(cur_addr) else { let Ok(word) = vmar.read_val::<usize>(cur_addr) else {
break; break;
}; };

View File

@ -258,6 +258,7 @@ pub(super) fn init() {
} }
/// Return the vdso vmo. /// Return the vdso vmo.
pub(crate) fn vdso_vmo() -> Arc<Vmo> { pub(crate) fn vdso_vmo() -> Option<Arc<Vmo>> {
VDSO.get().unwrap().vmo().clone() // We allow that vdso does not exist
VDSO.get().map(|vdso| vdso.vmo())
} }

View File

@ -56,6 +56,12 @@ pub trait VmarRightsOp {
fn check_rights(&self, rights: Rights) -> Result<()>; fn check_rights(&self, rights: Rights) -> Result<()>;
} }
impl<R> PartialEq for Vmar<R> {
fn eq(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.0, &other.0)
}
}
impl<R> VmarRightsOp for Vmar<R> { impl<R> VmarRightsOp for Vmar<R> {
default fn rights(&self) -> Rights { default fn rights(&self) -> Rights {
unimplemented!() unimplemented!()