format files

This commit is contained in:
Yuke Peng
2022-11-10 18:14:42 -08:00
parent 7be7775f97
commit 40cbd93ae8
23 changed files with 450 additions and 426 deletions

View File

@ -1,6 +1,9 @@
use proc_macro2::TokenStream;
use quote::quote;
use syn::{parse_macro_input, Data, DataStruct, DeriveInput, Fields, DataEnum, punctuated::Punctuated, token::Comma, Field};
use syn::{
parse_macro_input, punctuated::Punctuated, token::Comma, Data, DataEnum, DataStruct,
DeriveInput, Field, Fields,
};
#[proc_macro_derive(Pod)]
pub fn derive_pod(input_token: proc_macro::TokenStream) -> proc_macro::TokenStream {
@ -16,9 +19,9 @@ fn expand_derive_pod(input: DeriveInput) -> TokenStream {
Fields::Unnamed(fields_unnamed) => fields_unnamed.unnamed,
Fields::Unit => Punctuated::new(),
},
Data::Enum(DataEnum{variants,..})=>{
let mut fields : Punctuated<Field,Comma> = Punctuated::new();
for var in variants{
Data::Enum(DataEnum { variants, .. }) => {
let mut fields: Punctuated<Field, Comma> = Punctuated::new();
for var in variants {
fields.extend(match var.fields {
Fields::Named(fields_named) => fields_named.named,
Fields::Unnamed(fields_unnamed) => fields_unnamed.unnamed,

View File

@ -3,12 +3,12 @@
pub mod framebuffer;
mod io_port;
pub mod pci;
pub mod serial;
mod pic;
pub mod serial;
pub use pic::{TimerCallback, TIMER_FREQ};
pub(crate) use pic::{add_timeout_list,TICK};
pub use self::io_port::IoPort;
pub(crate) use pic::{add_timeout_list, TICK};
pub use pic::{TimerCallback, TIMER_FREQ};
pub(crate) fn init(framebuffer: &'static mut bootloader::boot_info::FrameBuffer) {
framebuffer::init(framebuffer);

View File

@ -78,7 +78,7 @@ fn timer_callback(trap_frame: &TrapFrame) {
TICK += 1;
}
let timeout_list = TIMEOUT_LIST.get();
let mut callbacks : Vec<Arc<TimerCallback>>= Vec::new();
let mut callbacks: Vec<Arc<TimerCallback>> = Vec::new();
while let Some(t) = timeout_list.peek() {
if t.expire_ms <= current_ms {
callbacks.push(timeout_list.pop().unwrap());
@ -86,8 +86,8 @@ fn timer_callback(trap_frame: &TrapFrame) {
break;
}
}
for callback in callbacks{
if callback.is_enable(){
for callback in callbacks {
if callback.is_enable() {
callback.callback.call((&callback,));
}
}
@ -95,7 +95,7 @@ fn timer_callback(trap_frame: &TrapFrame) {
}
lazy_static! {
static ref TIMEOUT_LIST: Cell<BinaryHeap<Arc<TimerCallback>>> = Cell::new(BinaryHeap::new()) ;
static ref TIMEOUT_LIST: Cell<BinaryHeap<Arc<TimerCallback>>> = Cell::new(BinaryHeap::new());
}
pub struct TimerCallback {
@ -115,7 +115,7 @@ impl TimerCallback {
expire_ms: timeout_ms,
data,
callback,
enable:Cell::new(true),
enable: Cell::new(true),
}
}
@ -124,19 +124,18 @@ impl TimerCallback {
}
/// disable this timeout
pub fn disable(&self){
pub fn disable(&self) {
*self.enable.get() = false;
}
/// enable this timeout
pub fn enable(&self){
pub fn enable(&self) {
*self.enable.get() = true;
}
pub fn is_enable(&self) -> bool{
pub fn is_enable(&self) -> bool {
*self.enable
}
}
impl PartialEq for TimerCallback {
@ -166,15 +165,10 @@ impl Ord for TimerCallback {
pub fn add_timeout_list<F, T>(timeout: u64, data: T, callback: F) -> Arc<TimerCallback>
where
F: Fn(&TimerCallback) + Send + Sync + 'static,
T: Any + Send + Sync,
T: Any + Send + Sync,
{
unsafe {
let timer_callback = TimerCallback::new(
TICK + timeout,
Arc::new(data),
Box::new(callback),
);
let timer_callback = TimerCallback::new(TICK + timeout, Arc::new(data), Box::new(callback));
let arc = Arc::new(timer_callback);
TIMEOUT_LIST.get().push(arc.clone());
arc

View File

@ -1,8 +1,11 @@
//! Timer.
use crate::{prelude::*, device::{TimerCallback, TICK,TIMER_FREQ}};
use spin::Mutex;
use crate::{
device::{TimerCallback, TICK, TIMER_FREQ},
prelude::*,
};
use core::time::Duration;
use spin::Mutex;
/// A timer invokes a callback function after a specified span of time elapsed.
///
@ -13,57 +16,67 @@ use core::time::Duration;
/// Timers are one-shot. If the time is out, one has to set the timer again
/// in order to trigger the callback again.
pub struct Timer {
function: Arc<dyn Fn(Arc<Self>)+Send+Sync>,
function: Arc<dyn Fn(Arc<Self>) + Send + Sync>,
inner: Mutex<TimerInner>,
}
#[derive(Default)]
struct TimerInner{
struct TimerInner {
start_tick: u64,
timeout_tick:u64,
timer_callback:Option<Arc<TimerCallback>>,
timeout_tick: u64,
timer_callback: Option<Arc<TimerCallback>>,
}
fn timer_callback(callback:&TimerCallback){
fn timer_callback(callback: &TimerCallback) {
let data = callback.data();
if data.is::<Arc<Timer>>(){
if data.is::<Arc<Timer>>() {
let timer = data.downcast_ref::<Arc<Timer>>().unwrap();
timer.function.call((timer.clone(),));
}else{
} else {
panic!("the timer callback is not Timer structure");
}
}
const NANOS_DIVIDE : u64 = 1_000_000_000/TIMER_FREQ;
const NANOS_DIVIDE: u64 = 1_000_000_000 / TIMER_FREQ;
impl Timer {
/// Creates a new instance, given a callback function.
pub fn new<F>(f: F) -> Result<Arc<Self>>
where
F: Fn(Arc<Timer>) +Send+Sync+'static,
F: Fn(Arc<Timer>) + Send + Sync + 'static,
{
Ok(Arc::new(Self { function: Arc::new(f),inner:Mutex::new(TimerInner::default()) }))
Ok(Arc::new(Self {
function: Arc::new(f),
inner: Mutex::new(TimerInner::default()),
}))
}
/// Set a timeout value.
///
/// If a timeout value is already set, the timeout value will be refreshed.
///
pub fn set(self : Arc<Self>, timeout: Duration) {
///
pub fn set(self: Arc<Self>, timeout: Duration) {
let mut lock = self.inner.lock();
match &lock.timer_callback{
match &lock.timer_callback {
Some(callback) => {
callback.disable();
},
None => {},
}
None => {}
}
let tick_count = timeout.as_secs()*TIMER_FREQ
+ if timeout.subsec_nanos() !=0{(timeout.subsec_nanos() as u64 - 1)/NANOS_DIVIDE + 1} else {0};
unsafe{
let tick_count = timeout.as_secs() * TIMER_FREQ
+ if timeout.subsec_nanos() != 0 {
(timeout.subsec_nanos() as u64 - 1) / NANOS_DIVIDE + 1
} else {
0
};
unsafe {
lock.start_tick = TICK;
lock.timeout_tick = TICK+tick_count;
lock.timeout_tick = TICK + tick_count;
}
lock.timer_callback = Some(crate::device::add_timeout_list(tick_count, self.clone(), timer_callback));
lock.timer_callback = Some(crate::device::add_timeout_list(
tick_count,
self.clone(),
timer_callback,
));
}
/// Returns the remaining timeout value.
@ -72,22 +85,22 @@ impl Timer {
pub fn remain(&self) -> Duration {
let lock = self.inner.lock();
let tick_remain;
unsafe{
tick_remain = lock.timeout_tick as i64-TICK as i64;
unsafe {
tick_remain = lock.timeout_tick as i64 - TICK as i64;
}
if tick_remain<=0{
Duration::new(0,0)
}else{
let second_count = tick_remain as u64/TIMER_FREQ;
if tick_remain <= 0 {
Duration::new(0, 0)
} else {
let second_count = tick_remain as u64 / TIMER_FREQ;
let remain_count = tick_remain as u64 % TIMER_FREQ;
Duration::new(second_count,(remain_count * NANOS_DIVIDE) as u32)
Duration::new(second_count, (remain_count * NANOS_DIVIDE) as u32)
}
}
/// Clear the timeout value.
pub fn clear(&self) {
let mut lock = self.inner.lock();
if let Some(callback) = &lock.timer_callback{
if let Some(callback) = &lock.timer_callback {
callback.disable();
}
lock.timeout_tick = 0;

View File

@ -41,7 +41,7 @@ pub(crate) extern "C" fn trap_handler(f: &mut TrapFrame) {
}
}
} else {
if is_cpu_fault(f){
if is_cpu_fault(f) {
panic!("cannot handle kernel cpu fault now");
}
let irq_line = IRQ_LIST.get(f.id as usize).unwrap();

View File

@ -22,7 +22,7 @@ pub struct MSIXEntry {
pub irq_handle: IrqAllocateHandle,
}
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq,Pod)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, Pod)]
#[repr(C)]
pub struct MSIXTableEntry {
pub msg_addr: u32,

View File

@ -4,9 +4,9 @@ use crate::process::Process;
use alloc::sync::Arc;
use alloc::vec::Vec;
use kxos_frame::info;
use kxos_frame_pod_derive::Pod;
use kxos_pci::PCIDevice;
use kxos_virtio::PCIVirtioDevice;
use kxos_frame_pod_derive::Pod;
use lazy_static::lazy_static;
use spin::mutex::Mutex;
@ -19,7 +19,7 @@ pub struct VirtioBlockDevice {
}
#[repr(C)]
#[derive(Debug, Copy, Clone,Pod)]
#[derive(Debug, Copy, Clone, Pod)]
pub struct BlkReq {
pub type_: ReqType,
pub reserved: u32,
@ -28,13 +28,13 @@ pub struct BlkReq {
/// Response of a VirtIOBlk request.
#[repr(C)]
#[derive(Debug, Copy, Clone,Pod)]
#[derive(Debug, Copy, Clone, Pod)]
pub struct BlkResp {
pub status: RespStatus,
}
#[repr(u32)]
#[derive(Debug, Copy, Clone,Pod)]
#[derive(Debug, Copy, Clone, Pod)]
pub enum ReqType {
In = 0,
Out = 1,
@ -44,7 +44,7 @@ pub enum ReqType {
}
#[repr(u8)]
#[derive(Debug, Eq, PartialEq, Copy, Clone,Pod)]
#[derive(Debug, Eq, PartialEq, Copy, Clone, Pod)]
pub enum RespStatus {
/// Ok.
Ok = 0,

View File

@ -23,11 +23,11 @@ pub mod fs;
mod memory;
pub mod prelude;
mod process;
pub mod rights;
pub mod syscall;
mod user_apps;
mod util;
pub mod vm;
pub mod rights;
#[macro_use]
extern crate kxos_frame_pod_derive;

View File

@ -1,11 +1,11 @@
use kxos_typeflags::type_flags;
use bitflags::bitflags;
use kxos_typeflags::type_flags;
bitflags! {
/// Value-based access rights.
///
///
/// These access rights are provided to cover a wide range of use cases.
/// The access rights' semantics and how they would restrict the behaviors
/// The access rights' semantics and how they would restrict the behaviors
/// of a capability are decided by the capability's designer.
/// Here, we give some sensible semantics for each access right.
pub struct Rights: u32 {
@ -24,10 +24,10 @@ bitflags! {
}
}
/// Type-based access rights.
///
///
/// Similar to value-based access rights (`Rights`), but represented in
/// types.
///
///
/// pub trait TRights: u32 {
/// /// Allows duplicating a capability.
/// struct Dup: u32 = Rights::DUP;
@ -42,7 +42,7 @@ bitflags! {
/// /// Allows sending notifications or signals.
/// struct Signal: u32 = Rights::SIGNAL;
/// }
///
///
type_flags! {
pub trait TRights: u32 {
pub struct Dup = 1 <<0;
@ -54,10 +54,4 @@ type_flags! {
}
/// The full set of access rights.
pub type Full = TRights![
Dup,
Read,
Write,
Exec,
Signal
];
pub type Full = TRights![Dup, Read, Write, Exec, Signal];

View File

@ -1,18 +1,18 @@
//! Virtual memory (VM).
//!
//!
//! There are two primary VM abstractions:
//! * Virtual Memory Address Regions (VMARs) a type of capability that manages
//! user address spaces.
//! * Virtual Memory Objects (VMOs) are are a type of capability that
//! * Virtual Memory Objects (VMOs) are are a type of capability that
//! represents a set of memory pages.
//!
//!
//! The concepts of VMARs and VMOs are originally introduced by
//! [Zircon](https://fuchsia.dev/fuchsia-src/reference/kernel_objects/vm_object).
//! As capabilities, the two abstractions are aligned with our goal
//! of everything-is-a-capability, although their specifications and
//! of everything-is-a-capability, although their specifications and
//! implementations in C/C++ cannot apply directly to KxOS.
//! In KxOS, VMARs and VMOs, as well as other capabilities, are implemented
//! as zero-cost capabilities.
mod vmar;
mod vmo;
mod vmo;

View File

@ -1,12 +1,15 @@
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::{vm::VmIo, Error};
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use crate::{rights::Rights, vm::vmo::Vmo};
use super::{Vmar, VmPerms, options::{VmarChildOptions, VmarMapOptions}, Vmar_};
use super::{
options::{VmarChildOptions, VmarMapOptions},
VmPerms, Vmar, Vmar_,
};
impl Vmar<Rights> {
/// Creates a root VMAR.
@ -18,13 +21,13 @@ impl Vmar<Rights> {
}
/// Maps the given VMO into the VMAR through a set of VMAR mapping options.
///
///
/// # Example
///
///
/// ```
/// use kxos_std::prelude::*;
/// use kxos_std::vm::{PAGE_SIZE, Vmar, VmoOptions};
///
///
/// let vmar = Vmar::new().unwrap();
/// let vmo = VmoOptions::new(PAGE_SIZE).alloc().unwrap();
/// let target_vaddr = 0x1234000;
@ -37,44 +40,48 @@ impl Vmar<Rights> {
/// .unwrap();
/// assert!(real_vaddr == target_vaddr);
/// ```
///
///
/// For more details on the available options, see `VmarMapOptions`.
///
///
/// # Access rights
///
///
/// This method requires the following access rights:
/// 1. The VMAR contains the rights corresponding to the memory permissions of
/// the mapping. For example, if `perms` contains `VmPerm::WRITE`,
/// 1. The VMAR contains the rights corresponding to the memory permissions of
/// the mapping. For example, if `perms` contains `VmPerm::WRITE`,
/// then the VMAR must have the Write right.
/// 2. Similarly, the VMO contains the rights corresponding to the memory
/// 2. Similarly, the VMO contains the rights corresponding to the memory
/// permissions of the mapping.
///
///
/// Memory permissions may be changed through the `protect` method,
/// which ensures that any updated memory permissions do not go beyond
/// the access rights of the underlying VMOs.
pub fn new_map(&self, vmo: Vmo<Rights>, perms: VmPerms) -> Result<VmarMapOptions<Rights,Rights>> {
pub fn new_map(
&self,
vmo: Vmo<Rights>,
perms: VmPerms,
) -> Result<VmarMapOptions<Rights, Rights>> {
let dup_self = self.dup()?;
Ok(VmarMapOptions::new(dup_self, vmo, perms))
}
/// Creates a new child VMAR through a set of VMAR child options.
///
///
/// # Example
///
///
/// ```
/// let parent = Vmar::new().unwrap();
/// let child_size = 10 * PAGE_SIZE;
/// let child = parent.new_child(child_size).alloc().unwrap();
/// assert!(child.size() == child_size);
/// ```
///
/// ```
///
/// For more details on the available options, see `VmarChildOptions`.
///
///
/// # Access rights
///
///
/// This method requires the Dup right.
///
/// The new VMAR child will be of the same capability class and
///
/// The new VMAR child will be of the same capability class and
/// access rights as the parent.
pub fn new_child(&self, size: usize) -> Result<VmarChildOptions<Rights>> {
let dup_self = self.dup()?;
@ -82,25 +89,25 @@ impl Vmar<Rights> {
}
/// Change the permissions of the memory mappings in the specified range.
///
///
/// The range's start and end addresses must be page-aligned.
/// Also, the range must be completely mapped.
///
///
/// # Access rights
///
///
/// The VMAR must have the rights corresponding to the specified memory
/// permissions.
///
///
/// The mappings overlapped with the specified range must be backed by
/// VMOs whose rights contain the rights corresponding to the specified
/// memory permissions.
/// memory permissions.
pub fn protect(&self, perms: VmPerms, range: Range<usize>) -> Result<()> {
self.check_rights(perms.into())?;
self.0.protect(perms, range)
}
/// Destroy a VMAR, including all its mappings and children VMARs.
///
///
/// After being destroyed, the VMAR becomes useless and returns errors
/// for most of its methods.
pub fn destroy_all(&self) -> Result<()> {
@ -109,10 +116,10 @@ impl Vmar<Rights> {
/// Destroy all mappings and children VMARs that fall within the specified
/// range in bytes.
///
///
/// The range's start and end addresses must be page-aligned.
///
/// Mappings may fall partially within the range; only the overlapped
///
/// Mappings may fall partially within the range; only the overlapped
/// portions of the mappings are unmapped.
/// As for children VMARs, they must be fully within the range.
/// All children VMARs that fall within the range get their `destroy` methods
@ -122,10 +129,10 @@ impl Vmar<Rights> {
}
/// Duplicates the capability.
///
///
/// # Access rights
///
/// The method requires the Dup right.
/// The method requires the Dup right.
pub fn dup(&self) -> Result<Self> {
self.check_rights(Rights::DUP)?;
todo!()
@ -143,7 +150,6 @@ impl Vmar<Rights> {
Err(Error::AccessDenied)
}
}
}
impl VmIo for Vmar<Rights> {
@ -156,4 +162,4 @@ impl VmIo for Vmar<Rights> {
self.check_rights(Rights::WRITE)?;
self.0.write(offset, buf)
}
}
}

View File

@ -1,46 +1,46 @@
//! Virtual Memory Address Regions (VMARs).
mod static_cap;
mod dyn_cap;
mod options;
mod static_cap;
use core::ops::Range;
use kxos_frame::vm::VmSpace;
use kxos_frame::vm::Vaddr;
use spin::Mutex;
use alloc::sync::Arc;
use kxos_frame::prelude::Result;
use kxos_frame::Error;
use crate::rights::Rights;
use alloc::sync::Arc;
use bitflags::bitflags;
use core::ops::Range;
use kxos_frame::prelude::Result;
use kxos_frame::vm::Vaddr;
use kxos_frame::vm::VmSpace;
use kxos_frame::Error;
use spin::Mutex;
/// Virtual Memory Address Regions (VMARs) are a type of capability that manages
/// user address spaces.
///
///
/// # Capabilities
///
/// As a capability, each VMAR is associated with a set of access rights,
///
/// As a capability, each VMAR is associated with a set of access rights,
/// whose semantics are explained below.
///
///
/// The semantics of each access rights for VMARs are described below:
/// * The Dup right allows duplicating a VMAR and creating children out of
/// * The Dup right allows duplicating a VMAR and creating children out of
/// a VMAR.
/// * The Read, Write, Exec rights allow creating memory mappings with
/// * The Read, Write, Exec rights allow creating memory mappings with
/// readable, writable, and executable access permissions, respectively.
/// * The Read and Write rights allow the VMAR to be read from and written to
/// directly.
///
///
/// VMARs are implemented with two flavors of capabilities:
/// the dynamic one (`Vmar<Rights>`) and the static one (`Vmar<R: TRights>).
///
///
/// # Implementation
///
/// `Vmar` provides high-level APIs for address space management by wrapping
///
/// `Vmar` provides high-level APIs for address space management by wrapping
/// around its low-level counterpart `kx_frame::vm::VmFrames`.
/// Compared with `VmFrames`,
/// `Vmar` is easier to use (by offering more powerful APIs) and
/// `Vmar` is easier to use (by offering more powerful APIs) and
/// harder to misuse (thanks to its nature of being capability).
///
///
pub struct Vmar<R = Rights>(Arc<Vmar_>, R);
// TODO: how page faults can be delivered to and handled by the current VMAR.
@ -86,13 +86,11 @@ impl Vmar_ {
impl<R> Vmar<R> {
/// The base address, i.e., the offset relative to the root VMAR.
///
///
/// The base address of a root VMAR is zero.
pub fn base(&self) -> Vaddr {
self.0.base
}
}
bitflags! {

View File

@ -1,23 +1,23 @@
//! Options for allocating child VMARs and creating mappings.
use kxos_frame::{config::PAGE_SIZE, vm::Vaddr};
use kxos_frame::prelude::Result;
use kxos_frame::{config::PAGE_SIZE, vm::Vaddr};
use crate::vm::vmo::Vmo;
use super::{Vmar, VmPerms};
use super::{VmPerms, Vmar};
/// Options for allocating a child VMAR, which must not overlap with any
/// existing mappings or child VMARs.
///
///
/// # Examples
///
///
/// A child VMAR created from a parent VMAR of _dynamic_ capability is also a
/// _dynamic_ capability.
/// ```
/// use kxo_std::vm::{PAGE_SIZE, Vmar};
///
/// let parent_vmar = Vmar::new();
/// let parent_vmar = Vmar::new();
/// let child_size = 10 * PAGE_SIZE;
/// let child_vmar = parent_vmar
/// .new_child(child_size)
@ -26,14 +26,14 @@ use super::{Vmar, VmPerms};
/// assert!(child_vmar.rights() == parent_vmo.rights());
/// assert!(child_vmar.size() == child_size);
/// ```
///
///
/// A child VMO created from a parent VMO of _static_ capability is also a
/// _static_ capability.
/// ```
/// use kxos_std::prelude::*;
/// use kxos_std::vm::{PAGE_SIZE, Vmar};
///
/// let parent_vmar: Vmar<Full> = Vmar::new();
///
/// let parent_vmar: Vmar<Full> = Vmar::new();
/// let child_size = 10 * PAGE_SIZE;
/// let child_vmar = parent_vmar
/// .new_child(child_size)
@ -46,13 +46,13 @@ pub struct VmarChildOptions<R> {
parent: Vmar<R>,
size: usize,
offset: usize,
align:usize,
align: usize,
}
impl<R> VmarChildOptions<R> {
/// Creates a default set of options with the specified size of the VMAR
/// (in bytes).
///
///
/// The size of the VMAR will be rounded up to align with the page size.
pub fn new(parent: Vmar<R>, size: usize) -> Self {
Self {
@ -64,9 +64,9 @@ impl<R> VmarChildOptions<R> {
}
/// Set the alignment of the child VMAR.
///
///
/// By default, the alignment is the page size.
///
///
/// The alignment must be a power of two and a multiple of the page size.
pub fn align(mut self, align: usize) -> Self {
todo!()
@ -75,34 +75,34 @@ impl<R> VmarChildOptions<R> {
/// Sets the offset of the child VMAR.
///
/// If not set, the system will choose an offset automatically.
///
///
/// The offset must satisfy the alignment requirement.
/// Also, the child VMAR's range `[offset, offset + size)` must be within
/// the VMAR.
///
/// If not specified,
///
///
/// If not specified,
///
/// The offset must be page-aligned.
pub fn offset(mut self, offset: usize) -> Self {
todo!()
}
/// Allocates the child VMAR according to the specified options.
///
/// The new child VMAR
///
///
/// The new child VMAR
///
/// # Access rights
///
///
/// The child VMAR is initially assigned all the parent's access rights.
pub fn alloc(mut self) -> Result<Vmar<R>> {
todo!()
}
}
/// Options for creating a new mapping. The mapping is not allowed to overlap
/// with any child VMARs. And unless specified otherwise, it is not allowed
/// Options for creating a new mapping. The mapping is not allowed to overlap
/// with any child VMARs. And unless specified otherwise, it is not allowed
/// to overlap with any existing mapping, either.
pub struct VmarMapOptions<R1,R2> {
pub struct VmarMapOptions<R1, R2> {
parent: Vmar<R1>,
vmo: Vmo<R2>,
perms: VmPerms,
@ -113,10 +113,10 @@ pub struct VmarMapOptions<R1,R2> {
can_overwrite: bool,
}
impl<R1,R2> VmarMapOptions<R1,R2> {
/// Creates a default set of options with the VMO and the memory access
/// permissions.
///
impl<R1, R2> VmarMapOptions<R1, R2> {
/// Creates a default set of options with the VMO and the memory access
/// permissions.
///
/// The VMO must have access rights that correspond to the memory
/// access permissions. For example, if `perms` contains `VmPerm::Write`,
/// then `vmo.rights()` should contain `Rights::WRITE`.
@ -136,9 +136,9 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
/// Sets the offset of the first memory page in the VMO that is to be
/// mapped into the VMAR.
///
///
/// The offset must be page-aligned and within the VMO.
///
///
/// The default value is zero.
pub fn vmo_offset(mut self, offset: usize) -> Self {
self.vmo_offset = offset;
@ -146,12 +146,12 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
}
/// Sets the size of the mapping.
///
///
/// The size of a mapping may not be equal to that of the VMO.
/// For example, it is ok to create a mapping whose size is larger than
/// that of the VMO, although one cannot read from or write to the
/// part of the mapping that is not backed by the VMO.
/// So you may wonder: what is the point of supporting such _oversized_
/// that of the VMO, although one cannot read from or write to the
/// part of the mapping that is not backed by the VMO.
/// So you may wonder: what is the point of supporting such _oversized_
/// mappings? The reason is two-fold.
/// 1. VMOs are resizable. So even if a mapping is backed by a VMO whose
/// size is equal to that of the mapping initially, we cannot prevent
@ -159,7 +159,7 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
/// 2. Mappings are not allowed to overlap by default. As a result,
/// oversized mappings can serve as a placeholder to prevent future
/// mappings from occupying some particular address ranges accidentally.
///
///
/// The default value is the size of the VMO.
pub fn size(mut self, size: usize) -> Self {
self.size = size;
@ -167,9 +167,9 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
}
/// Sets the mapping's alignment.
///
///
/// The default value is the page size.
///
///
/// The provided alignment must be a power of two and a multiple of the
/// page size.
pub fn align(mut self, align: usize) -> Self {
@ -178,11 +178,11 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
}
/// Sets the mapping's offset inside the VMAR.
///
///
/// The offset must satisfy the alignment requirement.
/// Also, the mapping's range `[offset, offset + size)` must be within
/// the VMAR.
///
///
/// If not set, the system will choose an offset automatically.
pub fn offset(mut self, offset: usize) -> Self {
self.offset = Some(offset);
@ -190,9 +190,9 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
}
/// Sets whether the mapping can overwrite existing mappings.
///
///
/// The default value is false.
///
///
/// If this option is set to true, then the `offset` option must be
/// set.
pub fn can_overwrite(mut self, can_overwrite: bool) -> Self {
@ -201,9 +201,9 @@ impl<R1,R2> VmarMapOptions<R1,R2> {
}
/// Creates the mapping.
///
///
/// All options will be checked at this point.
///
///
/// On success, the virtual address of the new mapping is returned.
pub fn build(mut self) -> Result<Vaddr> {
todo!()

View File

@ -1,19 +1,22 @@
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use kxos_rights_proc::require;
use kxos_frame::prelude::Result;
use crate::{rights::*, vm::vmo::Vmo};
use super::{Vmar, Vmar_, VmPerms, options::{VmarMapOptions, VmarChildOptions}};
use super::{
options::{VmarChildOptions, VmarMapOptions},
VmPerms, Vmar, Vmar_,
};
impl<R: TRights> Vmar<R> {
/// Creates a root VMAR.
///
///
/// # Access rights
///
///
/// A root VMAR is initially given full access rights.
pub fn new() -> Result<Self> {
let inner = Arc::new(Vmar_::new()?);
@ -23,13 +26,13 @@ impl<R: TRights> Vmar<R> {
}
/// Maps the given VMO into the VMAR through a set of VMAR mapping options.
///
///
/// # Example
///
///
/// ```
/// use kxos_std::prelude::*;
/// use kxos_std::vm::{PAGE_SIZE, Vmar, VmoOptions};
///
///
/// let vmar = Vmar::<Full>::new().unwrap();
/// let vmo = VmoOptions::new(PAGE_SIZE).alloc().unwrap();
/// let target_vaddr = 0x1234000;
@ -42,45 +45,45 @@ impl<R: TRights> Vmar<R> {
/// .unwrap();
/// assert!(real_vaddr == target_vaddr);
/// ```
///
///
/// For more details on the available options, see `VmarMapOptions`.
///
///
/// # Access rights
///
///
/// This method requires the following access rights:
/// 1. The VMAR contains the rights corresponding to the memory permissions of
/// the mapping. For example, if `perms` contains `VmPerm::WRITE`,
/// 1. The VMAR contains the rights corresponding to the memory permissions of
/// the mapping. For example, if `perms` contains `VmPerm::WRITE`,
/// then the VMAR must have the Write right.
/// 2. Similarly, the VMO contains the rights corresponding to the memory
/// 2. Similarly, the VMO contains the rights corresponding to the memory
/// permissions of the mapping.
///
///
/// Memory permissions may be changed through the `protect` method,
/// which ensures that any updated memory permissions do not go beyond
/// the access rights of the underlying VMOs.
#[require(R > Dup)]
pub fn new_map(&self, vmo: Vmo<Rights>, perms: VmPerms) -> Result<VmarMapOptions<R,Rights>> {
pub fn new_map(&self, vmo: Vmo<Rights>, perms: VmPerms) -> Result<VmarMapOptions<R, Rights>> {
let dup_self = self.dup()?;
Ok(VmarMapOptions::new(dup_self, vmo,perms))
Ok(VmarMapOptions::new(dup_self, vmo, perms))
}
/// Creates a new child VMAR through a set of VMAR child options.
///
///
/// # Example
///
///
/// ```
/// let parent = Vmar::new().unwrap();
/// let child_size = 10 * PAGE_SIZE;
/// let child = parent.new_child(child_size).alloc().unwrap();
/// assert!(child.size() == child_size);
/// ```
///
/// ```
///
/// For more details on the available options, see `VmarChildOptions`.
///
///
/// # Access rights
///
///
/// This method requires the Dup right.
///
/// The new VMAR child will be of the same capability class and
///
/// The new VMAR child will be of the same capability class and
/// access rights as the parent.
#[require(R > Dup)]
pub fn new_child(&self, size: usize) -> Result<VmarChildOptions<R>> {
@ -89,25 +92,25 @@ impl<R: TRights> Vmar<R> {
}
/// Change the permissions of the memory mappings in the specified range.
///
///
/// The range's start and end addresses must be page-aligned.
/// Also, the range must be completely mapped.
///
///
/// # Access rights
///
///
/// The VMAR must have the rights corresponding to the specified memory
/// permissions.
///
///
/// The mappings overlapped with the specified range must be backed by
/// VMOs whose rights contain the rights corresponding to the specified
/// memory permissions.
/// memory permissions.
pub fn protect(&self, perms: VmPerms, range: Range<usize>) -> Result<()> {
self.check_rights(perms.into())?;
self.0.protect(perms, range)
}
/// Destroy a VMAR, including all its mappings and children VMARs.
///
///
/// After being destroyed, the VMAR becomes useless and returns errors
/// for most of its methods.
pub fn destroy_all(&self) -> Result<()> {
@ -116,10 +119,10 @@ impl<R: TRights> Vmar<R> {
/// Destroy all mappings and children VMARs that fall within the specified
/// range in bytes.
///
///
/// The range's start and end addresses must be page-aligned.
///
/// Mappings may fall partially within the range; only the overlapped
///
/// Mappings may fall partially within the range; only the overlapped
/// portions of the mappings are unmapped.
/// As for children VMARs, they must be fully within the range.
/// All children VMARs that fall within the range get their `destroy` methods
@ -129,10 +132,10 @@ impl<R: TRights> Vmar<R> {
}
/// Duplicate the capability.
///
///
/// # Access rights
///
/// The method requires the Dup right.
/// The method requires the Dup right.
#[require(R > Dup)]
pub fn dup(&self) -> Result<Self> {
todo!()
@ -156,10 +159,9 @@ impl<R: TRights> Vmar<R> {
Err(Error::AccessDenied)
}
}
}
impl<R:TRights> VmIo for Vmar<R> {
impl<R: TRights> VmIo for Vmar<R> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
// self.check_rights!(Rights::READ)?;
self.0.read(offset, buf)
@ -169,4 +171,4 @@ impl<R:TRights> VmIo for Vmar<R> {
// self.check_rights!(Rights::WRITE)?;
self.0.write(offset, buf)
}
}
}

View File

@ -1,119 +1,128 @@
use core::ops::Range;
use kxos_frame::{vm::VmIo, Error};
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use crate::rights::{Rights, TRights};
use super::{VmoChildOptions, options::{VmoSliceChild, VmoCowChild}, Vmo};
use super::{
options::{VmoCowChild, VmoSliceChild},
Vmo, VmoChildOptions,
};
impl Vmo<Rights> {
/// Creates a new slice VMO through a set of VMO child options.
///
///
/// # Example
///
///
/// ```
/// let parent = VmoOptions::new(PAGE_SIZE).alloc().unwrap();
/// let child_size = parent.size();
/// let child = parent.new_slice_child(0..child_size).alloc().unwrap();
/// assert!(child.size() == child_size);
/// ```
///
/// ```
///
/// For more details on the available options, see `VmoChildOptions`.
///
///
/// # Access rights
///
///
/// This method requires the Dup right.
///
///
/// The new VMO child will be of the same capability flavor as the parent;
/// so are the access rights.
pub fn new_slice_child(&self, range: Range<usize>) -> Result<VmoChildOptions<Rights, VmoSliceChild>> {
pub fn new_slice_child(
&self,
range: Range<usize>,
) -> Result<VmoChildOptions<Rights, VmoSliceChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_slice_rights(dup_self, range))
}
/// Creates a new COW VMO through a set of VMO child options.
///
///
/// # Example
///
///
/// ```
/// let parent = VmoOptions::new(PAGE_SIZE).alloc().unwrap();
/// let child_size = 2 * parent.size();
/// let child = parent.new_cow_child(0..child_size).alloc().unwrap();
/// assert!(child.size() == child_size);
/// ```
///
/// ```
///
/// For more details on the available options, see `VmoChildOptions`.
///
///
/// # Access rights
///
///
/// This method requires the Dup right.
///
///
/// The new VMO child will be of the same capability flavor as the parent.
/// The child will be given the access rights of the parent
/// plus the Write right.
pub fn new_cow_child(&self, range: Range<usize>) -> Result<VmoChildOptions<Rights, VmoCowChild>> {
pub fn new_cow_child(
&self,
range: Range<usize>,
) -> Result<VmoChildOptions<Rights, VmoCowChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_cow(dup_self, range))
}
/// Commits the pages specified in the range (in bytes).
///
///
/// The range must be within the size of the VMO.
///
///
/// The start and end addresses will be rounded down and up to page boundaries.
///
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
pub fn commit(&self, range: Range<usize>) -> Result<()> {
self.check_rights(Rights::WRITE)?;
self.0.commit(range)
}
/// Decommits the pages specified in the range (in bytes).
///
///
/// The range must be within the size of the VMO.
///
///
/// The start and end addresses will be rounded down and up to page boundaries.
///
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
pub fn decommit(&self, range: Range<usize>) -> Result<()> {
self.check_rights(Rights::WRITE)?;
self.0.decommit(range)
}
/// Resizes the VMO by giving a new size.
///
///
/// The VMO must be resizable.
///
///
/// The new size will be rounded up to page boundaries.
///
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
pub fn resize(&self, new_size: usize) -> Result<()> {
self.check_rights(Rights::WRITE)?;
self.0.resize(new_size)
}
/// Clears the specified range by writing zeros.
///
/// Clears the specified range by writing zeros.
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
pub fn clear(&self, range: Range<usize>) -> Result<()> {
self.check_rights(Rights::WRITE)?;
self.0.clear(range)
self.0.clear(range)
}
/// Duplicates the capability.
///
///
/// # Access rights
///
/// The method requires the Dup right.
/// The method requires the Dup right.
pub fn dup(&self) -> Result<Self> {
self.check_rights(Rights::DUP)?;
todo!()
@ -137,7 +146,7 @@ impl Vmo<Rights> {
pub fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
Ok(())
} else {
Err(Error::AccessDenied)
}
@ -154,4 +163,4 @@ impl VmIo for Vmo<Rights> {
self.check_rights(Rights::WRITE)?;
self.0.write_bytes(offset, buf)
}
}
}

View File

@ -2,30 +2,28 @@
use core::ops::Range;
use kxos_frame::{prelude::Result, vm::Paddr, Error};
use crate::rights::Rights;
use alloc::sync::Arc;
use bitflags::bitflags;
use kxos_frame::{prelude::Result, vm::Paddr, Error};
mod static_cap;
mod dyn_cap;
mod options;
mod pager;
mod static_cap;
pub use options::{VmoOptions, VmoChildOptions};
pub use options::{VmoChildOptions, VmoOptions};
pub use pager::Pager;
use spin::Mutex;
/// Virtual Memory Objects (VMOs) are a type of capability that represents a
/// Virtual Memory Objects (VMOs) are a type of capability that represents a
/// range of memory pages.
///
///
/// # Features
///
///
/// * **I/O interface.** A VMO provides read and write methods to access the
/// memory pages that it contain.
/// * **On-demand paging.** The memory pages of a VMO (except for _contiguous_
/// * **On-demand paging.** The memory pages of a VMO (except for _contiguous_
/// VMOs) are allocated lazily when the page is first accessed.
/// * **Tree structure.** Given a VMO, one can create a child VMO from it.
/// The child VMO can only access a subset of the parent's memory,
@ -33,46 +31,46 @@ use spin::Mutex;
/// * **Copy-on-write (COW).** A child VMO may be created with COW semantics,
/// which prevents any writes on the child from affecting the parent
/// by duplicating memory pages only upon the first writes.
/// * **Access control.** As capabilities, VMOs restrict the
/// * **Access control.** As capabilities, VMOs restrict the
/// accessible range of memory and the allowed I/O operations.
/// * **Device driver support.** If specified upon creation, VMOs will be
/// backed by physically contiguous memory pages starting at a target address.
/// * **File system support.** By default, a VMO's memory pages are initially
/// all zeros. But if a VMO is attached to a pager (`Pager`) upon creation,
/// all zeros. But if a VMO is attached to a pager (`Pager`) upon creation,
/// then its memory pages will be populated by the pager.
/// With this pager mechanism, file systems can easily implement page caches
/// with VMOs by attaching the VMOs to pagers backed by inodes.
///
///
/// # Capabilities
///
/// As a capability, each VMO is associated with a set of access rights,
///
/// As a capability, each VMO is associated with a set of access rights,
/// whose semantics are explained below.
///
/// * The Dup right allows duplicating a VMO and creating children out of
///
/// * The Dup right allows duplicating a VMO and creating children out of
/// a VMO.
/// * The Read, Write, Exec rights allow creating memory mappings with
/// * The Read, Write, Exec rights allow creating memory mappings with
/// readable, writable, and executable access permissions, respectively.
/// * The Read and Write rights allow the VMO to be read from and written to
/// directly.
/// * The Write right allows resizing a resizable VMO.
///
///
/// VMOs are implemented with two flavors of capabilities:
/// the dynamic one (`Vmo<Rights>`) and the static one (`Vmo<R: TRights>).
///
///
/// # Examples
///
///
/// For creating root VMOs, see `VmoOptions`.`
///
///
/// For creating child VMOs, see `VmoChildOptions`.
///
///
/// # Implementation
///
/// `Vmo` provides high-level APIs for address space management by wrapping
///
/// `Vmo` provides high-level APIs for address space management by wrapping
/// around its low-level counterpart `kx_frame::vm::VmFrames`.
/// Compared with `VmFrames`,
/// `Vmo` is easier to use (by offering more powerful APIs) and
/// `Vmo` is easier to use (by offering more powerful APIs) and
/// harder to misuse (thanks to its nature of being capability).
///
///
pub struct Vmo<R>(Arc<Vmo_>, R);
bitflags! {
@ -80,13 +78,13 @@ bitflags! {
pub struct VmoFlags: u32 {
/// Set this flag if a VMO is resizable.
const RESIZABLE = 1 << 0;
/// Set this flags if a VMO is backed by physically contiguous memory
/// Set this flags if a VMO is backed by physically contiguous memory
/// pages.
///
///
/// To ensure the memory pages to be contiguous, these pages
/// are allocated upon the creation of the VMO, rather than on demands.
/// are allocated upon the creation of the VMO, rather than on demands.
const CONTIGUOUS = 1 << 1;
/// Set this flag if a VMO is backed by memory pages that supports
/// Set this flag if a VMO is backed by memory pages that supports
/// Direct Memory Access (DMA) by devices.
const DMA = 1 << 2;
}
@ -94,7 +92,7 @@ bitflags! {
struct Vmo_ {
flags: VmoFlags,
inner: Mutex<VmoInner>,
inner: Mutex<VmoInner>,
parent: Option<Arc<Vmo_>>,
}
@ -148,7 +146,6 @@ impl Vmo_ {
}
}
impl<R> Vmo<R> {
/// Returns the size (in bytes) of a VMO.
pub fn size(&self) -> usize {
@ -165,5 +162,4 @@ impl<R> Vmo<R> {
pub fn flags(&self) -> VmoFlags {
self.0.flags()
}
}
}

View File

@ -4,43 +4,43 @@ use core::marker::PhantomData;
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::vm::Paddr;
use kxos_frame::prelude::Result;
use kxos_frame::vm::Paddr;
use kxos_rights_proc::require;
use crate::rights::{Dup,TRights,Rights};
use crate::rights::{Dup, Rights, TRights};
use super::{Vmo, VmoFlags, Pager};
use super::{Pager, Vmo, VmoFlags};
/// Options for allocating a root VMO.
///
///
/// # Examples
///
///
/// Creating a VMO as a _dynamic_ capability with full access rights:
/// ```
/// use kxo_std::vm::{PAGE_SIZE, VmoOptions};
///
///
/// let vmo = VmoOptions::new(PAGE_SIZE)
/// .alloc()
/// .unwrap();
/// ```
///
///
/// Creating a VMO as a _static_ capability with all access rights:
/// ```
/// use kxos_std::prelude::*;
/// use kxo_std::vm::{PAGE_SIZE, VmoOptions};
///
///
/// let vmo = VmoOptions::<Full>::new(PAGE_SIZE)
/// .alloc()
/// .unwrap();
/// ```
///
/// Creating a resizable VMO backed by 10 memory pages that may not be
///
/// Creating a resizable VMO backed by 10 memory pages that may not be
/// physically contiguous:
///
///
/// ```
/// use kxos_std::vm::{PAGE_SIZE, VmoOptions, VmoFlags};
///
///
/// let vmo = VmoOptions::new(10 * PAGE_SIZE)
/// .flags(VmoFlags::RESIZABLE)
/// .alloc()
@ -55,18 +55,18 @@ pub struct VmoOptions<R = Rights> {
}
impl<R> VmoOptions<R> {
/// Creates a default set of options with the specified size of the VMO
/// Creates a default set of options with the specified size of the VMO
/// (in bytes).
///
///
/// The size of the VMO will be rounded up to align with the page size.
pub fn new(size: usize) -> Self {
todo!()
}
/// Sets the starting physical address of the VMO.
///
///
/// By default, this option is not set.
///
///
/// If this option is set, then the underlying pages of VMO must be contiguous.
/// So `VmoFlags::IS_CONTIGUOUS` will be set automatically.
pub fn paddr(mut self, paddr: Paddr) -> Self {
@ -74,9 +74,9 @@ impl<R> VmoOptions<R> {
}
/// Sets the VMO flags.
///
///
/// The default value is `VmoFlags::empty()`.
///
///
/// For more information about the flags, see `VmoFlags`.
pub fn flags(mut self, flags: VmoFlags) -> Self {
todo!()
@ -90,10 +90,10 @@ impl<R> VmoOptions<R> {
impl VmoOptions<Rights> {
/// Allocates the VMO according to the specified options.
///
///
/// # Access rights
///
/// The VMO is initially assigned full access rights.
///
/// The VMO is initially assigned full access rights.
pub fn alloc(mut self) -> Result<Vmo<Rights>> {
todo!()
}
@ -101,10 +101,10 @@ impl VmoOptions<Rights> {
impl<R: TRights> VmoOptions<R> {
/// Allocates the VMO according to the specified options.
///
///
/// # Access rights
///
/// The VMO is initially assigned the access rights represented
///
/// The VMO is initially assigned the access rights represented
/// by `R: TRights`.
pub fn alloc(mut self) -> Result<Vmo<R>> {
todo!()
@ -112,14 +112,14 @@ impl<R: TRights> VmoOptions<R> {
}
/// Options for allocating a child VMO out of a parent VMO.
///
///
/// # Examples
///
///
/// A child VMO created from a parent VMO of _dynamic_ capability is also a
/// _dynamic_ capability.
/// ```
/// use kxo_std::vm::{PAGE_SIZE, VmoOptions};
///
///
/// let parent_vmo = VmoOptions::new(PAGE_SIZE)
/// .alloc()
/// .unwrap();
@ -128,13 +128,13 @@ impl<R: TRights> VmoOptions<R> {
/// .unwrap();
/// assert!(parent_vmo.rights() == child_vmo.rights());
/// ```
///
///
/// A child VMO created from a parent VMO of _static_ capability is also a
/// _static_ capability.
/// ```
/// use kxos_std::prelude::*;
/// use kxos_std::vm::{PAGE_SIZE, VmoOptions, VmoChildOptions};
///
///
/// let parent_vmo: Vmo<Full> = VmoOptions::new(PAGE_SIZE)
/// .alloc()
/// .unwrap();
@ -143,15 +143,15 @@ impl<R: TRights> VmoOptions<R> {
/// .unwrap();
/// assert!(parent_vmo.rights() == child_vmo.rights());
/// ```
///
/// Normally, a child VMO is initially given the same set of access rights
/// as its parent (as shown above). But there is one exception:
///
/// Normally, a child VMO is initially given the same set of access rights
/// as its parent (as shown above). But there is one exception:
/// if the child VMO is created as a COW child, then it is granted the Write
/// right regardless of whether the parent is writable or not.
///
///
/// ```
/// use kxo_std::vm::{PAGE_SIZE, VmoOptions, VmoChildOptions};
///
///
/// let parent_vmo = VmoOptions::new(PAGE_SIZE)
/// .alloc()
/// .unwrap()
@ -162,11 +162,11 @@ impl<R: TRights> VmoOptions<R> {
/// assert!(child_vmo.rights().contains(Rights::WRITE));
/// ```
///
/// The above rule for COW VMO children also applies to static capabilities.
///
/// The above rule for COW VMO children also applies to static capabilities.
///
/// ```
/// use kxos_std::vm::{PAGE_SIZE, VmoOptions, VmoChildOptions};
///
///
/// let parent_vmo = VmoOptions::<TRights![Read, Dup]>::new(PAGE_SIZE)
/// .alloc()
/// .unwrap();
@ -175,14 +175,14 @@ impl<R: TRights> VmoOptions<R> {
/// .unwrap();
/// assert!(child_vmo.rights().contains(Rights::WRITE));
/// ```
///
///
/// One can set VMO flags for a child VMO. Currently, the only flag that is
/// valid when creating VMO children is `VmoFlags::RESIZABLE`.
/// Note that a slice VMO child and its parent cannot not be resizable.
///
///
/// ```rust
/// use kxo_std::vm::{PAGE_SIZE, VmoOptions};
///
///
/// let parent_vmo = VmoOptions::new(PAGE_SIZE)
/// .alloc()
/// .unwrap();
@ -201,13 +201,13 @@ pub struct VmoChildOptions<R, C> {
marker: PhantomData<C>,
}
impl<R:TRights> VmoChildOptions<R, VmoSliceChild> {
impl<R: TRights> VmoChildOptions<R, VmoSliceChild> {
/// Creates a default set of options for creating a slice VMO child.
///
///
/// A slice child of a VMO, which has direct access to a range of memory
/// pages in the parent VMO. In other words, any updates of the parent will
/// reflect on the child, and vice versa.
///
///
/// The range of a child must be within that of the parent.
#[require(R > Dup)]
pub fn new_slice(parent: Vmo<R>, range: Range<usize>) -> Self {
@ -222,16 +222,18 @@ impl<R:TRights> VmoChildOptions<R, VmoSliceChild> {
impl VmoChildOptions<Rights, VmoSliceChild> {
/// Creates a default set of options for creating a slice VMO child.
///
///
/// User should ensure parent have dup rights, otherwise this function will panic
///
///
/// A slice child of a VMO, which has direct access to a range of memory
/// pages in the parent VMO. In other words, any updates of the parent will
/// reflect on the child, and vice versa.
///
///
/// The range of a child must be within that of the parent.
pub fn new_slice_rights(parent: Vmo<Rights>, range: Range<usize>) -> Self {
parent.check_rights(Rights::DUP).expect("function new_slice_rights should called with rights Dup");
parent
.check_rights(Rights::DUP)
.expect("function new_slice_rights should called with rights Dup");
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
@ -242,38 +244,39 @@ impl VmoChildOptions<Rights, VmoSliceChild> {
}
impl<R> VmoChildOptions<R, VmoCowChild> {
/// Creates a default set of options for creating a copy-on-write (COW)
/// Creates a default set of options for creating a copy-on-write (COW)
/// VMO child.
///
/// A COW VMO child behaves as if all its
///
/// A COW VMO child behaves as if all its
/// memory pages are copied from the parent VMO upon creation, although
/// the copying is done lazily when the parent's memory pages are updated.
///
///
/// The range of a child may go beyond that of the parent.
/// Any pages that are beyond the parent's range are initially all zeros.
/// Any pages that are beyond the parent's range are initially all zeros.
pub fn new_cow(parent: Vmo<R>, range: Range<usize>) -> Self {
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
marker: PhantomData,
marker: PhantomData,
}
}
}
impl<R, C> VmoChildOptions<R, C> {
/// Flags that a VMO child inherits from its parent.
pub const PARENT_FLAGS_MASK: VmoFlags = VmoFlags::from_bits(VmoFlags::CONTIGUOUS.bits | VmoFlags::DMA.bits).unwrap();
pub const PARENT_FLAGS_MASK: VmoFlags =
VmoFlags::from_bits(VmoFlags::CONTIGUOUS.bits | VmoFlags::DMA.bits).unwrap();
/// Flags that a VMO child may differ from its parent.
pub const CHILD_FLAGS_MASK: VmoFlags = VmoFlags::RESIZABLE;
/// Sets the VMO flags.
///
///
/// Only the flags among `Self::CHILD_FLAGS_MASK` may be set through this
/// method.
///
///
/// To set `VmoFlags::RESIZABLE`, the child must be COW.
///
///
/// The default value is `VmoFlags::empty()`.
pub fn flags(mut self, flags: VmoFlags) -> Self {
self.flags = flags & Self::CHILD_FLAGS_MASK;
@ -283,7 +286,7 @@ impl<R, C> VmoChildOptions<R, C> {
impl<C> VmoChildOptions<Rights, C> {
/// Allocates the child VMO.
///
///
/// # Access rights
///
/// The child VMO is initially assigned all the parent's access rights.
@ -294,7 +297,7 @@ impl<C> VmoChildOptions<Rights, C> {
impl<R: TRights> VmoChildOptions<R, VmoSliceChild> {
/// Allocates the child VMO.
///
///
/// # Access rights
///
/// The child VMO is initially assigned all the parent's access rights.
@ -305,14 +308,13 @@ impl<R: TRights> VmoChildOptions<R, VmoSliceChild> {
impl<R: TRights> VmoChildOptions<R, VmoCowChild> {
/// Allocates the child VMO.
///
///
/// # Access rights
///
/// The child VMO is initially assigned all the parent's access rights
/// plus the Write right.
pub fn alloc<TRights>(mut self) -> Result<Vmo<TRights>>
where
// TODO: R1 must contain the Write right. To do so at the type level,
// TODO: R1 must contain the Write right. To do so at the type level,
// we need to implement a type-level operator
// (say, `TRightsExtend(L, F)`)
// that may extend a list (`L`) of type-level flags with an extra flag `F`.
@ -323,7 +325,7 @@ impl<R: TRights> VmoChildOptions<R, VmoCowChild> {
// original:
// pub fn alloc<R1>(mut self) -> Result<Vmo<R1>>
// where
// where
// // TODO: R1 must contain the Write right. To do so at the type level,
// // we need to implement a type-level operator
// // (say, `TRightsExtend(L, F)`)

View File

@ -1,58 +1,58 @@
use kxos_frame::vm::VmFrame;
use kxos_frame::prelude::Result;
use kxos_frame::vm::VmFrame;
/// Pagers provide frame to a VMO.
///
/// A `Pager` object can be attached to a VMO. Whenever the
/// A `Pager` object can be attached to a VMO. Whenever the
/// VMO needs more frames (i.e., on commits), it will turn to the pager,
/// which should then provide frames whose data have been initialized properly.
/// Any time a frame is updated through the VMO, the VMO will
/// Any time a frame is updated through the VMO, the VMO will
/// notify the attached pager that the frame has been updated.
/// Finally, when a frame is no longer needed (i.e., on decommits),
/// the frame pager will also be notified.
pub trait Pager {
/// Ask the pager to provide a frame at a specified offset (in bytes).
///
///
/// After a page of a VMO is committed, the VMO shall not call this method
/// again until the page is decommitted. But a robust implementation of
/// `Pager` should not rely on this behavior for its correctness;
/// instead, it should returns the _same_ frame.
///
///
/// If a VMO page has been previously committed and decommited,
/// and is to be committed again, then the pager is free to return
/// and is to be committed again, then the pager is free to return
/// whatever frame that may or may not be the same as the last time.
///
///
/// It is up to the pager to decide the range of valid offsets.
///
///
/// The offset will be rounded down to page boundary.
fn commit_page(&self, offset: usize) -> Result<VmFrame>;
/// Notify the pager that the frame at a specified offset (in bytes)
/// Notify the pager that the frame at a specified offset (in bytes)
/// has been updated.
///
/// Being aware of the updates allow the pager (e.g., an inode) to
/// know which pages are dirty and only write back the _dirty_ pages back
///
/// Being aware of the updates allow the pager (e.g., an inode) to
/// know which pages are dirty and only write back the _dirty_ pages back
/// to disk.
///
///
/// The VMO will not call this method for an uncommitted page.
/// But a robust implementation of `Pager` should not make
/// such an assumption for its correctness; instead, it should simply ignore the
/// such an assumption for its correctness; instead, it should simply ignore the
/// call or return an error.
///
///
/// The offset will be rounded down to page boundary.
fn update_page(&self, offset: usize) -> Result<()>;
/// Notify the pager that the frame at the specified offset (in bytes)
/// Notify the pager that the frame at the specified offset (in bytes)
/// has been decommitted.
///
///
/// Knowing that a frame is no longer needed, the pager (e.g., an inode)
/// can free the frame after writing back its data to the disk.
///
///
/// The VMO will not call this method for an uncommitted page.
/// But a robust implementation of `Pager` should not make
/// such an assumption for its correctness; instead, it should simply ignore the
/// such an assumption for its correctness; instead, it should simply ignore the
/// call or return an error.
///
///
/// The offset will be rounded down to page boundary.
fn decommit_page(&self, offset: usize) -> Result<()>;
}
}

View File

@ -1,56 +1,62 @@
use core::ops::Range;
use kxos_frame::{vm::VmIo, Error};
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use kxos_rights_proc::require;
use crate::rights::*;
use super::{Vmo, VmoChildOptions, options::{VmoSliceChild, VmoCowChild}};
use super::{
options::{VmoCowChild, VmoSliceChild},
Vmo, VmoChildOptions,
};
impl<R: TRights> Vmo<R> {
/// Creates a new slice VMO through a set of VMO child options.
///
///
/// # Example
///
///
/// ```
/// let parent = VmoOptions::new(PAGE_SIZE).alloc().unwrap();
/// let child_size = parent.size();
/// let child = parent.new_slice_child(0..child_size).alloc().unwrap();
/// assert!(child.size() == child_size);
/// ```
///
/// ```
///
/// For more details on the available options, see `VmoChildOptions`.
///
///
/// # Access rights
///
///
/// This method requires the Dup right.
///
///
/// The new VMO child will be of the same capability flavor as the parent;
/// so are the access rights.
#[require(R > Dup)]
pub fn new_slice_child(&self, range: Range<usize>) -> Result<VmoChildOptions<R, VmoSliceChild>> {
pub fn new_slice_child(
&self,
range: Range<usize>,
) -> Result<VmoChildOptions<R, VmoSliceChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_slice(dup_self, range))
}
/// Creates a new COW VMO through a set of VMO child options.
///
///
/// # Example
///
///
/// ```
/// let parent = VmoOptions::new(PAGE_SIZE).alloc().unwrap();
/// let child_size = 2 * parent.size();
/// let child = parent.new_cow_child(0..child_size).alloc().unwrap();
/// assert!(child.size() == child_size);
/// ```
///
/// ```
///
/// For more details on the available options, see `VmoChildOptions`.
///
///
/// # Access rights
///
///
/// This method requires the Dup right.
///
///
/// The new VMO child will be of the same capability flavor as the parent.
/// The child will be given the access rights of the parent
/// plus the Write right.
@ -61,62 +67,62 @@ impl<R: TRights> Vmo<R> {
}
/// Commit the pages specified in the range (in bytes).
///
///
/// The range must be within the size of the VMO.
///
///
/// The start and end addresses will be rounded down and up to page boundaries.
///
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
#[require(R > Write)]
pub fn commit(&self, range: Range<usize>) -> Result<()> {
self.0.commit(range)
}
/// Decommit the pages specified in the range (in bytes).
///
///
/// The range must be within the size of the VMO.
///
///
/// The start and end addresses will be rounded down and up to page boundaries.
///
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
#[require(R > Write)]
pub fn decommit(&self, range: Range<usize>) -> Result<()> {
self.0.decommit(range)
}
/// Resize the VMO by giving a new size.
///
///
/// The VMO must be resizable.
///
///
/// The new size will be rounded up to page boundaries.
///
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
#[require(R > Write)]
pub fn resize(&self, new_size: usize) -> Result<()> {
self.0.resize(new_size)
}
/// Clear the specified range by writing zeros.
///
/// Clear the specified range by writing zeros.
///
/// # Access rights
///
/// The method requires the Write right.
/// The method requires the Write right.
#[require(R > Write)]
pub fn clear(&self, range: Range<usize>) -> Result<()> {
self.0.clear(range)
self.0.clear(range)
}
/// Duplicate the capability.
///
///
/// # Access rights
///
/// The method requires the Dup right.
/// The method requires the Dup right.
#[require(R > Dup)]
pub fn dup(&self) -> Result<Self> {
todo!()
@ -140,7 +146,7 @@ impl<R: TRights> Vmo<R> {
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
Ok(())
} else {
Err(Error::AccessDenied)
}
@ -157,4 +163,4 @@ impl<R: TRights> VmIo for Vmo<R> {
self.check_rights(Rights::WRITE)?;
self.0.write_bytes(offset, buf)
}
}
}

View File

@ -1,12 +1,12 @@
use kxos_frame::Pod;
use kxos_frame_pod_derive::Pod;
use kxos_pci::capability::vendor::virtio::CapabilityVirtioData;
use kxos_pci::util::BAR;
use kxos_util::frame_ptr::InFramePtr;
use kxos_frame_pod_derive::Pod;
pub const BLK_SIZE: usize = 512;
#[derive(Debug, Copy, Clone,Pod)]
#[derive(Debug, Copy, Clone, Pod)]
#[repr(C)]
pub struct VirtioBLKConfig {
capacity: u64,
@ -25,7 +25,7 @@ pub struct VirtioBLKConfig {
unused1: [u8; 3],
}
#[derive(Debug, Copy, Clone,Pod)]
#[derive(Debug, Copy, Clone, Pod)]
#[repr(C)]
pub struct VirtioBLKGeometry {
cylinders: u16,
@ -33,7 +33,7 @@ pub struct VirtioBLKGeometry {
sectors: u8,
}
#[derive(Debug, Copy, Clone,Pod)]
#[derive(Debug, Copy, Clone, Pod)]
#[repr(C)]
pub struct VirtioBLKTopology {
physical_block_exp: u8,

View File

@ -7,13 +7,12 @@ extern crate alloc;
use alloc::{sync::Arc, vec::Vec};
use bitflags::bitflags;
use kxos_frame::{info, offset_of, TrapFrame};
use kxos_frame_pod_derive::Pod;
use kxos_pci::util::{PCIDevice, BAR};
use kxos_util::frame_ptr::InFramePtr;
use kxos_frame_pod_derive::Pod;
use spin::{mutex::Mutex, MutexGuard};
use self::{block::VirtioBLKConfig, queue::VirtQueue};
use kxos_frame::Pod;
@ -57,7 +56,7 @@ bitflags! {
}
}
#[derive(Debug, Default, Copy, Clone,Pod)]
#[derive(Debug, Default, Copy, Clone, Pod)]
#[repr(C)]
pub struct VitrioPciCommonCfg {
device_feature_select: u32,

View File

@ -6,8 +6,8 @@ use bitflags::bitflags;
use core::sync::atomic::{fence, Ordering};
use kxos_frame::offset_of;
use kxos_frame::Pod;
use kxos_util::frame_ptr::InFramePtr;
use kxos_frame_pod_derive::Pod;
use kxos_util::frame_ptr::InFramePtr;
#[derive(Debug)]
pub enum QueueError {
InvalidArgs,
@ -231,7 +231,7 @@ impl VirtQueue {
}
#[repr(C, align(16))]
#[derive(Debug, Default, Copy, Clone,Pod)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct Descriptor {
addr: u64,
len: u32,
@ -274,7 +274,7 @@ impl Default for DescFlags {
/// each ring entry refers to the head of a descriptor chain.
/// It is only written by the driver and read by the device.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone,Pod)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct AvailRing {
flags: u16,
/// A driver MUST NOT decrement the idx.
@ -286,7 +286,7 @@ struct AvailRing {
/// The used ring is where the device returns buffers once it is done with them:
/// it is only written to by the device, and read by the driver.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone,Pod)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct UsedRing {
flags: u16,
idx: u16,
@ -295,7 +295,7 @@ struct UsedRing {
}
#[repr(C)]
#[derive(Debug, Default, Copy, Clone,Pod)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct UsedElem {
id: u32,
len: u32,

View File

@ -7,8 +7,8 @@ use bootloader::{entry_point, BootInfo};
use kxos_frame::timer::Timer;
extern crate alloc;
use alloc::sync::Arc;
use core::time::Duration;
use core::panic::PanicInfo;
use core::time::Duration;
use kxos_frame::println;
static mut TICK: usize = 0;
@ -28,7 +28,9 @@ fn panic(info: &PanicInfo) -> ! {
#[test_case]
fn test_timer() {
println!("If you want to pass this test, you may need to enable the interrupt in kxos_frame/lib.rs");
println!(
"If you want to pass this test, you may need to enable the interrupt in kxos_frame/lib.rs"
);
println!("make sure the Timer irq number 32 handler won't panic");
unsafe {
let timer = Timer::new(timer_callback).unwrap();
@ -39,8 +41,8 @@ fn test_timer() {
pub fn timer_callback(timer: Arc<Timer>) {
unsafe {
TICK+=1;
println!("TICK:{}",TICK);
TICK += 1;
println!("TICK:{}", TICK);
timer.set(Duration::from_secs(1));
}
}