Include the 100 lines kernel in CI

This commit is contained in:
Jianfeng Jiang
2024-06-20 02:50:23 +00:00
committed by Tate, Hongliang Tian
parent cd2b305fa8
commit 72e726295f
7 changed files with 242 additions and 152 deletions

View File

@ -7,23 +7,7 @@ we will show a new kernel in about 100 lines of safe Rust.
Our new kernel will be able to run the following Hello World program.
```s
.global _start # entry point
.section .text # code section
_start:
mov $1, %rax # syscall number of write
mov $1, %rdi # stdout
mov $message, %rsi # address of message
mov $message_end, %rdx
sub %rsi, %rdx # calculate message len
syscall
mov $60, %rax # syscall number of exit, move it to rax
mov $0, %rdi # exit code, move it to rdi
syscall
.section .rodata # read only data section
message:
.ascii "Hello, world\n"
message_end:
{{#include ../../../osdk/tests/examples_in_book/write_a_kernel_in_100_lines_templates/hello.S}}
```
The assembly program above can be compiled with the following command.
@ -42,131 +26,5 @@ Comments are added
to highlight how the APIs of Asterinas OSTD enable safe kernel development.
```rust
#![no_std]
extern crate alloc;
use align_ext::AlignExt;
use core::str;
use alloc::sync::Arc;
use alloc::vec;
use ostd::cpu::UserContext;
use ostd::prelude::*;
use ostd::task::{Task, TaskOptions};
use ostd::user::{ReturnReason, UserMode, UserSpace};
use ostd::mm::{PageFlags, PAGE_SIZE, Vaddr, FrameAllocOptions, VmIo, VmMapOptions, VmSpace};
/// The kernel's boot and initialization process is managed by Asterinas OSTD.
/// After the process is done, the kernel's execution environment
/// (e.g., stack, heap, tasks) will be ready for use and the entry function
/// labeled as `#[ostd::main]` will be called.
#[ostd::main]
pub fn main() {
let program_binary = include_bytes!("../hello_world");
let user_space = create_user_space(program_binary);
let user_task = create_user_task(Arc::new(user_space));
user_task.run();
}
fn create_user_space(program: &[u8]) -> UserSpace {
let user_pages = {
let nframes = program.len().align_up(PAGE_SIZE) / PAGE_SIZE;
let vm_frames = FrameAllocOptions::new(nframes).alloc().unwrap();
// Phyiscal memory pages can be only accessed
// via the Frame abstraction.
vm_frames.write_bytes(0, program).unwrap();
vm_frames
};
let user_address_space = {
const MAP_ADDR: Vaddr = 0x0040_0000; // The map addr for statically-linked executable
// The page table of the user space can be
// created and manipulated safely through
// the VmSpace abstraction.
let vm_space = VmSpace::new();
let mut options = VmMapOptions::new();
options.addr(Some(MAP_ADDR)).flags(PageFlags::RWX);
vm_space.map(user_pages, &options).unwrap();
vm_space
};
let user_cpu_state = {
const ENTRY_POINT: Vaddr = 0x0040_1000; // The entry point for statically-linked executable
// The user-space CPU states can be initialized
// to arbitrary values via the UserContext
// abstraction.
let mut user_cpu_state = UserContext::default();
user_cpu_state.set_rip(ENTRY_POINT);
user_cpu_state
};
UserSpace::new(user_address_space, user_cpu_state)
}
fn create_user_task(user_space: Arc<UserSpace>) -> Arc<Task> {
fn user_task() {
let current = Task::current();
// Switching between user-kernel space is
// performed via the UserMode abstraction.
let mut user_mode = {
let user_space = current.user_space().unwrap();
UserMode::new(user_space)
};
loop {
// The execute method returns when system
// calls or CPU exceptions occur or some
// events specified by the kernel occur.
let return_reason = user_mode.execute(|| false);
// The CPU registers of the user space
// can be accessed and manipulated via
// the `UserContext` abstraction.
let user_context = user_mode.context_mut();
if ReturnReason::UserSyscall == return_reason {
handle_syscall(user_context, current.user_space().unwrap());
}
}
}
// Kernel tasks are managed by OSTD,
// while scheduling algorithms for them can be
// determined by the users of OSTD.
TaskOptions::new(user_task)
.user_space(Some(user_space))
.data(0)
.build()
.unwrap()
}
fn handle_syscall(user_context: &mut UserContext, user_space: &UserSpace) {
const SYS_WRITE: usize = 1;
const SYS_EXIT: usize = 60;
match user_context.rax() {
SYS_WRITE => {
// Access the user-space CPU registers safely.
let (_, buf_addr, buf_len) =
(user_context.rdi(), user_context.rsi(), user_context.rdx());
let buf = {
let mut buf = vec![0u8; buf_len];
// Copy data from the user space without
// unsafe pointer dereferencing.
user_space
.vm_space()
.read_bytes(buf_addr, &mut buf)
.unwrap();
buf
};
// Use the console for output safely.
println!("{}", str::from_utf8(&buf).unwrap());
// Manipulate the user-space CPU registers safely.
user_context.set_rax(buf_len);
}
SYS_EXIT => Task::current().exit(),
_ => unimplemented!(),
}
}
{{#include ../../../osdk/tests/examples_in_book/write_a_kernel_in_100_lines_templates/lib.rs}}
```