VMO and VMAR passed the compilation

This commit is contained in:
Yuke Peng
2022-11-10 06:53:23 -08:00
parent 9480890e3c
commit 7be7775f97
18 changed files with 304 additions and 123 deletions

3
src/Cargo.lock generated
View File

@ -150,6 +150,9 @@ dependencies = [
"kxos-frame",
"kxos-frame-pod-derive",
"kxos-pci",
"kxos-rights-proc",
"kxos-typeflags",
"kxos-typeflags-util",
"kxos-virtio",
"lazy_static",
"spin 0.9.4",

View File

@ -10,6 +10,9 @@ kxos-frame = {path = "../kxos-frame"}
kxos-frame-pod-derive = {path = "../kxos-frame-pod-derive"}
kxos-pci = {path="../kxos-pci"}
kxos-virtio = {path="../kxos-virtio"}
kxos-typeflags = {path="../kxos-typeflags"}
kxos-typeflags-util = {path="../kxos-typeflags-util"}
kxos-rights-proc = {path="../kxos-rights-proc"}
# parse elf file
xmas-elf = "0.8.0"

View File

@ -8,6 +8,7 @@
#![feature(half_open_range_patterns)]
#![feature(exclusive_range_pattern)]
#![feature(btree_drain_filter)]
#![feature(const_option)]
use kxos_frame::{debug, info, println};
use process::Process;
@ -25,6 +26,8 @@ mod process;
pub mod syscall;
mod user_apps;
mod util;
pub mod vm;
pub mod rights;
#[macro_use]
extern crate kxos_frame_pod_derive;

View File

@ -1,4 +1,4 @@
use typeflags::typeflags;
use kxos_typeflags::type_flags;
use bitflags::bitflags;
bitflags! {
@ -10,38 +10,46 @@ bitflags! {
/// Here, we give some sensible semantics for each access right.
pub struct Rights: u32 {
/// Allows duplicating a capability.
const DUP: u32 = 1 << 0;
const DUP = 1 << 0;
/// Allows reading data from a data source (files, VM objects, etc.) or
/// creating readable memory mappings.
const READ: u32 = 1 << 1;
const READ = 1 << 1;
/// Allows writing data to a data sink (files, VM objects, etc.) or
/// creating writable memory mappings.
const WRITE: u32 = 1 << 2;
const WRITE = 1 << 2;
/// Allows creating executable memory mappings.
const EXEC: u32 = 1 << 3;
const EXEC = 1 << 3;
/// Allows sending notifications or signals.
const SIGNAL: u32 = 1 << 7;
const SIGNAL = 1 << 7;
}
}
typeflags! {
/// Type-based access rights.
///
/// Similar to value-based access rights (`Rights`), but represented in
/// types.
/// Type-based access rights.
///
/// Similar to value-based access rights (`Rights`), but represented in
/// types.
///
/// pub trait TRights: u32 {
/// /// Allows duplicating a capability.
/// struct Dup: u32 = Rights::DUP;
/// /// Allows reading data from a data source (files, VM objects, etc.) or
/// /// creating readable memory mappings.
/// struct Read: u32 = Rights::READ;
/// /// Allows writing data to a data sink (files, VM objects, etc.) or
/// /// creating writable memory mappings.
/// struct Write: u32 = Rights::WRITE;
/// /// Allows creating executable memory mappings.
/// struct Exec: u32 = Rights::EXEC;
/// /// Allows sending notifications or signals.
/// struct Signal: u32 = Rights::SIGNAL;
/// }
///
type_flags! {
pub trait TRights: u32 {
/// Allows duplicating a capability.
struct Dup: u32 = Rights::DUP;
/// Allows reading data from a data source (files, VM objects, etc.) or
/// creating readable memory mappings.
struct Read: u32 = Rights::READ;
/// Allows writing data to a data sink (files, VM objects, etc.) or
/// creating writable memory mappings.
struct Write: u32 = Rights::WRITE;
/// Allows creating executable memory mappings.
struct Exec: u32 = Rights::EXEC;
/// Allows sending notifications or signals.
struct Signal: u32 = Rights::SIGNAL;
pub struct Dup = 1 <<0;
pub struct Read = 1 <<1;
pub struct Write = 1 <<2;
pub struct Exec = 1 <<3;
pub struct Signal = 1 <<7;
}
}
@ -51,5 +59,5 @@ pub type Full = TRights![
Read,
Write,
Exec,
Signal,
Signal
];

View File

@ -2,7 +2,7 @@
//!
//! There are two primary VM abstractions:
//! * Virtual Memory Address Regions (VMARs) a type of capability that manages
/// user address spaces.
//! user address spaces.
//! * Virtual Memory Objects (VMOs) are are a type of capability that
//! represents a set of memory pages.
//!

View File

@ -1,7 +1,17 @@
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::{vm::VmIo, Error};
use kxos_frame::prelude::Result;
use crate::{rights::Rights, vm::vmo::Vmo};
use super::{Vmar, VmPerms, options::{VmarChildOptions, VmarMapOptions}, Vmar_};
impl Vmar<Rights> {
/// Creates a root VMAR.
pub fn new() -> Result<Self> {
let inner = Arc::new(Vmar_::new());
let inner = Arc::new(Vmar_::new()?);
let rights = Rights::all();
let new_self = Self(inner, rights);
Ok(new_self)
@ -42,9 +52,9 @@ impl Vmar<Rights> {
/// Memory permissions may be changed through the `protect` method,
/// which ensures that any updated memory permissions do not go beyond
/// the access rights of the underlying VMOs.
pub fn new_map(&self, vmo: Vmo, perms: VmPerms) -> VmarMapOptions<'_, Rights> {
pub fn new_map(&self, vmo: Vmo<Rights>, perms: VmPerms) -> Result<VmarMapOptions<Rights,Rights>> {
let dup_self = self.dup()?;
VmarMapOptions::new(dup_self, vmo, perms)
Ok(VmarMapOptions::new(dup_self, vmo, perms))
}
/// Creates a new child VMAR through a set of VMAR child options.
@ -66,9 +76,9 @@ impl Vmar<Rights> {
///
/// The new VMAR child will be of the same capability class and
/// access rights as the parent.
pub fn new_child(&self, size: usize) -> VmarChildOptions<'a, Rights> {
pub fn new_child(&self, size: usize) -> Result<VmarChildOptions<Rights>> {
let dup_self = self.dup()?;
VmarChildOptions::new(dup_self, size)
Ok(VmarChildOptions::new(dup_self, size))
}
/// Change the permissions of the memory mappings in the specified range.
@ -107,24 +117,43 @@ impl Vmar<Rights> {
/// As for children VMARs, they must be fully within the range.
/// All children VMARs that fall within the range get their `destroy` methods
/// called.
pub fn destroy(&self, range: &Range<usize>) -> Result<()> {
pub fn destroy(&self, range: Range<usize>) -> Result<()> {
self.0.destroy(range)
}
/// Duplicates the capability.
///
/// # Access rights
///
/// The method requires the Dup right.
pub fn dup(&self) -> Result<Self> {
self.check_rights(Rights::DUP)?;
todo!()
}
/// Returns the access rights.
pub fn rights(&self) -> Rights {
self.1
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.1.contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}
impl<R> VmIo for Vmar<Rights> {
impl VmIo for Vmar<Rights> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
self.check_rights!(Rights::READ)?;
self.check_rights(Rights::READ)?;
self.0.read(offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
self.check_rights!(Rights::WRITE)?;
self.check_rights(Rights::WRITE)?;
self.0.write(offset, buf)
}
}

View File

@ -4,6 +4,16 @@ mod static_cap;
mod dyn_cap;
mod options;
use core::ops::Range;
use kxos_frame::vm::VmSpace;
use kxos_frame::vm::Vaddr;
use spin::Mutex;
use alloc::sync::Arc;
use kxos_frame::prelude::Result;
use kxos_frame::Error;
use crate::rights::Rights;
use bitflags::bitflags;
/// Virtual Memory Address Regions (VMARs) are a type of capability that manages
/// user address spaces.
///
@ -79,32 +89,32 @@ impl<R> Vmar<R> {
///
/// The base address of a root VMAR is zero.
pub fn base(&self) -> Vaddr {
self.base
self.0.base
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights.contains(rights) {
Ok(())
} else {
Err(EACCESS)
}
}
}
bitflags! {
/// The memory access permissions of memory mappings.
pub struct VmPerms: u32 {
/// Readable.
const READ: u32 = 1 << 0;
const READ = 1 << 0;
/// Writable.
const WRITE: u32 = 1 << 1;
const WRITE = 1 << 1;
/// Executable.
const EXEC: u32 = 1 << 2;
const EXEC = 1 << 2;
}
}
impl From<Rights> for VmPerms {
fn from(perms: VmPerms) -> Rights {
fn from(rights: Rights) -> VmPerms {
todo!()
}
}
}
impl From<VmPerms> for Rights {
fn from(vm_perms: VmPerms) -> Rights {
todo!()
}
}

View File

@ -1,5 +1,12 @@
//! Options for allocating child VMARs and creating mappings.
use kxos_frame::{config::PAGE_SIZE, vm::Vaddr};
use kxos_frame::prelude::Result;
use crate::vm::vmo::Vmo;
use super::{Vmar, VmPerms};
/// Options for allocating a child VMAR, which must not overlap with any
/// existing mappings or child VMARs.
///
@ -39,6 +46,7 @@ pub struct VmarChildOptions<R> {
parent: Vmar<R>,
size: usize,
offset: usize,
align:usize,
}
impl<R> VmarChildOptions<R> {
@ -94,9 +102,9 @@ impl<R> VmarChildOptions<R> {
/// Options for creating a new mapping. The mapping is not allowed to overlap
/// with any child VMARs. And unless specified otherwise, it is not allowed
/// to overlap with any existing mapping, either.
pub struct VmarMapOptions<R> {
parent: Vmar<R>,
vmo: Vmo,
pub struct VmarMapOptions<R1,R2> {
parent: Vmar<R1>,
vmo: Vmo<R2>,
perms: VmPerms,
vmo_offset: usize,
size: usize,
@ -105,20 +113,21 @@ pub struct VmarMapOptions<R> {
can_overwrite: bool,
}
impl<R> VmarMapOptions<'a, R> {
impl<R1,R2> VmarMapOptions<R1,R2> {
/// Creates a default set of options with the VMO and the memory access
/// permissions.
///
/// The VMO must have access rights that correspond to the memory
/// access permissions. For example, if `perms` contains `VmPerm::Write`,
/// then `vmo.rights()` should contain `Rights::WRITE`.
pub fn new(parent: Vmar<R>, vmo: Vmo, perms: VmPerms) -> Self {
pub fn new(parent: Vmar<R1>, vmo: Vmo<R2>, perms: VmPerms) -> Self {
let size = vmo.size();
Self {
parent,
vmo,
perms,
vmo_offset: 0,
size: vmo.size(),
size,
offset: None,
align: PAGE_SIZE,
can_overwrite: false,
@ -176,7 +185,7 @@ impl<R> VmarMapOptions<'a, R> {
///
/// If not set, the system will choose an offset automatically.
pub fn offset(mut self, offset: usize) -> Self {
self.offset = offset;
self.offset = Some(offset);
self
}

View File

@ -1,3 +1,14 @@
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::{vm::VmIo, Error};
use kxos_rights_proc::require;
use kxos_frame::prelude::Result;
use crate::{rights::*, vm::vmo::Vmo};
use super::{Vmar, Vmar_, VmPerms, options::{VmarMapOptions, VmarChildOptions}};
impl<R: TRights> Vmar<R> {
/// Creates a root VMAR.
///
@ -5,7 +16,7 @@ impl<R: TRights> Vmar<R> {
///
/// A root VMAR is initially given full access rights.
pub fn new() -> Result<Self> {
let inner = Arc::new(Vmar_::new());
let inner = Arc::new(Vmar_::new()?);
let rights = R::new();
let new_self = Self(inner, rights);
Ok(new_self)
@ -46,9 +57,10 @@ impl<R: TRights> Vmar<R> {
/// Memory permissions may be changed through the `protect` method,
/// which ensures that any updated memory permissions do not go beyond
/// the access rights of the underlying VMOs.
pub fn new_map(&self, vmo: Vmo, perms: VmPerms) -> VmarMapOptions<'_, Rights> {
let dup_self = self.dup();
VmarMapOptions::new(dup_self, vmo_ref)
#[require(R > Dup)]
pub fn new_map(&self, vmo: Vmo<Rights>, perms: VmPerms) -> Result<VmarMapOptions<R,Rights>> {
let dup_self = self.dup()?;
Ok(VmarMapOptions::new(dup_self, vmo,perms))
}
/// Creates a new child VMAR through a set of VMAR child options.
@ -71,9 +83,9 @@ impl<R: TRights> Vmar<R> {
/// The new VMAR child will be of the same capability class and
/// access rights as the parent.
#[require(R > Dup)]
pub fn new_child(&self, size: usize) -> VmarChildOptions<'a, R> {
let dup_self = self.dup();
VmarChildOptions::new(dup_self, size)
pub fn new_child(&self, size: usize) -> Result<VmarChildOptions<R>> {
let dup_self = self.dup()?;
Ok(VmarChildOptions::new(dup_self, size))
}
/// Change the permissions of the memory mappings in the specified range.
@ -112,24 +124,49 @@ impl<R: TRights> Vmar<R> {
/// As for children VMARs, they must be fully within the range.
/// All children VMARs that fall within the range get their `destroy` methods
/// called.
pub fn destroy(&self, range: &Range<usize>) -> Result<()> {
pub fn destroy(&self, range: Range<usize>) -> Result<()> {
self.0.destroy(range)
}
/// Duplicate the capability.
///
/// # Access rights
///
/// The method requires the Dup right.
#[require(R > Dup)]
pub fn dup(&self) -> Result<Self> {
todo!()
}
/// Strict the access rights.
#[require(R > R1)]
pub fn restrict<R1>(mut self) -> Vmo<R1> {
todo!()
}
/// Returns the access rights.
pub const fn rights(&self) -> Rights {
R::BITS
Rights::from_bits(R::BITS).unwrap()
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}
impl<R> VmIo for Vmar<Rights> {
impl<R:TRights> VmIo for Vmar<R> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
self.check_rights!(Rights::READ)?;
// self.check_rights!(Rights::READ)?;
self.0.read(offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
self.check_rights!(Rights::WRITE)?;
// self.check_rights!(Rights::WRITE)?;
self.0.write(offset, buf)
}
}

View File

@ -1,3 +1,12 @@
use core::ops::Range;
use kxos_frame::{vm::VmIo, Error};
use kxos_frame::prelude::Result;
use crate::rights::{Rights, TRights};
use super::{VmoChildOptions, options::{VmoSliceChild, VmoCowChild}, Vmo};
impl Vmo<Rights> {
/// Creates a new slice VMO through a set of VMO child options.
///
@ -18,9 +27,9 @@ impl Vmo<Rights> {
///
/// The new VMO child will be of the same capability flavor as the parent;
/// so are the access rights.
pub fn new_slice_child(&self, range: Range<usize>) -> VmoChildOptions<'_, Rights, VmoSliceChild> {
pub fn new_slice_child(&self, range: Range<usize>) -> Result<VmoChildOptions<Rights, VmoSliceChild>> {
let dup_self = self.dup()?;
VmoChildOptions::new_slice(dup_self, range)
Ok(VmoChildOptions::new_slice_rights(dup_self, range))
}
/// Creates a new COW VMO through a set of VMO child options.
@ -43,9 +52,9 @@ impl Vmo<Rights> {
/// The new VMO child will be of the same capability flavor as the parent.
/// The child will be given the access rights of the parent
/// plus the Write right.
pub fn new_cow_child(&self, range: Range<usize>) -> VmoChildOptions<'_, Rights, VmoCowChild> {
pub fn new_cow_child(&self, range: Range<usize>) -> Result<VmoChildOptions<Rights, VmoCowChild>> {
let dup_self = self.dup()?;
VmoChildOptions::new_cow(dup_self, range)
Ok(VmoChildOptions::new_cow(dup_self, range))
}
/// Commits the pages specified in the range (in bytes).
@ -117,7 +126,7 @@ impl Vmo<Rights> {
/// Converts to a static capability.
pub fn to_static<R1: TRights>(self) -> Result<Vmo<R1>> {
self.check_rights(R1::BITS)?;
self.check_rights(Rights::from_bits(R1::BITS).ok_or(Error::InvalidArgs)?)?;
todo!()
}
@ -125,16 +134,24 @@ impl Vmo<Rights> {
pub fn rights(&self) -> Rights {
self.1
}
pub fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}
impl VmIo for Vmo<Rights> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
self.check_rights(Rights::READ)?;
self.0.read(offset, buf)
self.0.read_bytes(offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
self.check_rights(Rights::WRITE)?;
self.0.write(offset, buf)
self.0.write_bytes(offset, buf)
}
}

View File

@ -1,8 +1,11 @@
//! Virtual Memory Objects (VMOs).
use kx_frame::vm::VmIo;
use core::ops::Range;
use crate::rights::{Rights, TRights};
use kxos_frame::{prelude::Result, vm::Paddr, Error};
use crate::rights::Rights;
use alloc::sync::Arc;
use bitflags::bitflags;
mod static_cap;
mod dyn_cap;
@ -11,6 +14,9 @@ mod pager;
pub use options::{VmoOptions, VmoChildOptions};
pub use pager::Pager;
use spin::Mutex;
/// Virtual Memory Objects (VMOs) are a type of capability that represents a
/// range of memory pages.
@ -73,16 +79,16 @@ bitflags! {
/// VMO flags.
pub struct VmoFlags: u32 {
/// Set this flag if a VMO is resizable.
const RESIZABLE: u32 = 1 << 0;
const RESIZABLE = 1 << 0;
/// Set this flags if a VMO is backed by physically contiguous memory
/// pages.
///
/// To ensure the memory pages to be contiguous, these pages
/// are allocated upon the creation of the VMO, rather than on demands.
const CONTIGUOUS: u32 = 1 << 1;
const CONTIGUOUS = 1 << 1;
/// Set this flag if a VMO is backed by memory pages that supports
/// Direct Memory Access (DMA) by devices.
const DMA: u32 = 1 << 2;
const DMA = 1 << 2;
}
}
@ -126,7 +132,7 @@ impl Vmo_ {
}
pub fn size(&self) -> usize {
self.0.size()
todo!()
}
pub fn resize(&self, new_size: usize) -> Result<()> {
@ -160,11 +166,4 @@ impl<R> Vmo<R> {
self.0.flags()
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}

View File

@ -1,5 +1,17 @@
//! Options for allocating root and child VMOs.
use core::marker::PhantomData;
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::vm::Paddr;
use kxos_frame::prelude::Result;
use kxos_rights_proc::require;
use crate::rights::{Dup,TRights,Rights};
use super::{Vmo, VmoFlags, Pager};
/// Options for allocating a root VMO.
///
/// # Examples
@ -38,7 +50,8 @@ pub struct VmoOptions<R = Rights> {
size: usize,
paddr: Option<Paddr>,
flags: VmoFlags,
supplier: Option<Arc<dyn FrameSupplier>>,
rights: R,
// supplier: Option<Arc<dyn FrameSupplier>>,
}
impl<R> VmoOptions<R> {
@ -81,7 +94,7 @@ impl VmoOptions<Rights> {
/// # Access rights
///
/// The VMO is initially assigned full access rights.
pub fn alloc(mut self) -> Result<Vmo<R>> {
pub fn alloc(mut self) -> Result<Vmo<Rights>> {
todo!()
}
}
@ -185,10 +198,10 @@ pub struct VmoChildOptions<R, C> {
range: Range<usize>,
flags: VmoFlags,
// Specifies whether the child is a slice or a COW
child_marker: PhantomData<C>,
marker: PhantomData<C>,
}
impl<R> VmoChildOptions<R, VmoSliceChild> {
impl<R:TRights> VmoChildOptions<R, VmoSliceChild> {
/// Creates a default set of options for creating a slice VMO child.
///
/// A slice child of a VMO, which has direct access to a range of memory
@ -199,9 +212,30 @@ impl<R> VmoChildOptions<R, VmoSliceChild> {
#[require(R > Dup)]
pub fn new_slice(parent: Vmo<R>, range: Range<usize>) -> Self {
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
marker: PhantomData,
}
}
}
impl VmoChildOptions<Rights, VmoSliceChild> {
/// Creates a default set of options for creating a slice VMO child.
///
/// User should ensure parent have dup rights, otherwise this function will panic
///
/// A slice child of a VMO, which has direct access to a range of memory
/// pages in the parent VMO. In other words, any updates of the parent will
/// reflect on the child, and vice versa.
///
/// The range of a child must be within that of the parent.
pub fn new_slice_rights(parent: Vmo<Rights>, range: Range<usize>) -> Self {
parent.check_rights(Rights::DUP).expect("function new_slice_rights should called with rights Dup");
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
flags: parent.flags & Self::PARENT_FLAGS_MASK,
marker: PhantomData,
}
}
@ -219,9 +253,9 @@ impl<R> VmoChildOptions<R, VmoCowChild> {
/// Any pages that are beyond the parent's range are initially all zeros.
pub fn new_cow(parent: Vmo<R>, range: Range<usize>) -> Self {
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
flags: parent.flags & Self::PARENT_FLAGS_MASK,
marker: PhantomData,
}
}
@ -229,10 +263,9 @@ impl<R> VmoChildOptions<R, VmoCowChild> {
impl<R, C> VmoChildOptions<R, C> {
/// Flags that a VMO child inherits from its parent.
pub const PARENT_FLAGS_MASK: VmoFlags = VmoFlags::CONTIGUOUS.bits |
VmoFlags::DMA.bits;
pub const PARENT_FLAGS_MASK: VmoFlags = VmoFlags::from_bits(VmoFlags::CONTIGUOUS.bits | VmoFlags::DMA.bits).unwrap();
/// Flags that a VMO child may differ from its parent.
pub const CHILD_FLAGS_MASK: VmoFlags = VmoFlags::RESIZABLE.bits;
pub const CHILD_FLAGS_MASK: VmoFlags = VmoFlags::RESIZABLE;
/// Sets the VMO flags.
///
@ -248,7 +281,7 @@ impl<R, C> VmoChildOptions<R, C> {
}
}
impl<'a, C> VmoChildOptions<'a, Rights, C> {
impl<C> VmoChildOptions<Rights, C> {
/// Allocates the child VMO.
///
/// # Access rights
@ -259,7 +292,7 @@ impl<'a, C> VmoChildOptions<'a, Rights, C> {
}
}
impl<'a, R: TRights> VmoChildOptions<'a, R, VmoSliceChild> {
impl<R: TRights> VmoChildOptions<R, VmoSliceChild> {
/// Allocates the child VMO.
///
/// # Access rights
@ -270,23 +303,35 @@ impl<'a, R: TRights> VmoChildOptions<'a, R, VmoSliceChild> {
}
}
impl<'a, R: TRights> VmoChildOptions<'a, R, VmoCowChild> {
impl<R: TRights> VmoChildOptions<R, VmoCowChild> {
/// Allocates the child VMO.
///
/// # Access rights
///
/// The child VMO is initially assigned all the parent's access rights
/// plus the Write right.
pub fn alloc<R1>(mut self) -> Result<Vmo<R1>>
pub fn alloc<TRights>(mut self) -> Result<Vmo<TRights>>
where
// TODO: R1 must contain the Write right. To do so at the type level,
// we need to implement a type-level operator
// (say, `TRightsExtend(L, F)`)
// that may extend a list (`L`) of type-level flags with an extra flag `F`.
R1: R // TRightsExtend<R, Write>
// TRightsExtend<R, Write>
{
todo!()
}
// original:
// pub fn alloc<R1>(mut self) -> Result<Vmo<R1>>
// where
// // TODO: R1 must contain the Write right. To do so at the type level,
// // we need to implement a type-level operator
// // (say, `TRightsExtend(L, F)`)
// // that may extend a list (`L`) of type-level flags with an extra flag `F`.
// R1: R // TRightsExtend<R, Write>
// {
// todo!()
// }
}
/// A type to specify the "type" of a child, which is either a slice or a COW.
@ -295,9 +340,9 @@ pub trait VmoChildType {}
/// A type to mark a child is slice.
#[derive(Copy, Clone, Debug)]
pub struct VmoSliceChild;
impl VmoChildType for VmoSliceChild {};
impl VmoChildType for VmoSliceChild {}
/// A type to mark a child is COW.
#[derive(Copy, Clone, Debug)]
pub struct VmoCowChild;
impl VmoChildType for VmoCowChild {};
impl VmoChildType for VmoCowChild {}

View File

@ -1,3 +1,6 @@
use kxos_frame::vm::VmFrame;
use kxos_frame::prelude::Result;
/// Pagers provide frame to a VMO.
///
/// A `Pager` object can be attached to a VMO. Whenever the

View File

@ -1,3 +1,13 @@
use core::ops::Range;
use kxos_frame::{vm::VmIo, Error};
use kxos_frame::prelude::Result;
use kxos_rights_proc::require;
use crate::rights::*;
use super::{Vmo, VmoChildOptions, options::{VmoSliceChild, VmoCowChild}};
impl<R: TRights> Vmo<R> {
/// Creates a new slice VMO through a set of VMO child options.
///
@ -19,9 +29,9 @@ impl<R: TRights> Vmo<R> {
/// The new VMO child will be of the same capability flavor as the parent;
/// so are the access rights.
#[require(R > Dup)]
pub fn new_slice_child(&self, range: Range<usize>) -> VmoChildOptions<'_, R, VmoSliceChild> {
let dup_self = self.dup();
VmoChildOptions::new_slice(dup_self, range)
pub fn new_slice_child(&self, range: Range<usize>) -> Result<VmoChildOptions<R, VmoSliceChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_slice(dup_self, range))
}
/// Creates a new COW VMO through a set of VMO child options.
@ -45,9 +55,9 @@ impl<R: TRights> Vmo<R> {
/// The child will be given the access rights of the parent
/// plus the Write right.
#[require(R > Dup)]
pub fn new_cow_child(&self, range: Range<usize>) -> VmoChildOptions<'_, R, VmoCowChild> {
let dup_self = self.dup();
VmoChildOptions::new_cow(dup_self, range)
pub fn new_cow_child(&self, range: Range<usize>) -> Result<VmoChildOptions<R, VmoCowChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_cow(dup_self, range))
}
/// Commit the pages specified in the range (in bytes).
@ -102,11 +112,6 @@ impl<R: TRights> Vmo<R> {
self.0.clear(range)
}
/// Returns the size of the VMO in bytes.
pub fn size(&self) -> usize {
self.0.size()
}
/// Duplicate the capability.
///
/// # Access rights
@ -124,13 +129,21 @@ impl<R: TRights> Vmo<R> {
}
/// Converts to a dynamic capability.
pub fn to_dyn(self) -> Vmo {
pub fn to_dyn(self) -> Vmo<Rights> {
todo!()
}
/// Returns the access rights.
pub const fn rights(&self) -> Rights {
R::BITS
Rights::from_bits(R::BITS).unwrap()
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}

View File

@ -1,8 +1,9 @@
//! Type level bools
pub use std::ops::BitAnd as And;
pub use std::ops::BitOr as Or;
pub use std::ops::Not;
pub use core::ops::BitAnd as And;
pub use core::ops::BitOr as Or;
pub use core::ops::Not;
use core::unimplemented;
pub trait Bool {}

View File

@ -2,7 +2,7 @@
//! This crate defines common type level operations, like SameAsOp, and Bool type operations.
//! Besides, this crate defines operations to deal with type sets, like SetContain and SetInclude.
//! When use kxos-typeflags or kxos-rights-poc, this crate should also be added as a dependency.
#![no_std]
pub mod assert;
pub mod bool;
pub mod if_;

View File

@ -1,13 +1,13 @@
//! Common types and traits to deal with type-level sets
use std::marker::PhantomData;
use core::marker::PhantomData;
use crate::{
if_::{If, IfOp},
And, AndOp, False, OrOp, SameAs, SameAsOp, True,
};
use std::ops::BitOr as Or;
use core::ops::BitOr as Or;
/// A marker trait for type-level sets.
pub trait Set {}

View File

@ -65,11 +65,12 @@ impl TypeFlagDef {
let ident = self.ident.clone();
let type_ = self.type_.clone();
quote!(
#vis trait #ident {
#vis trait #ident : Sync + Send{
const BITS: #type_;
fn new() -> Self;
}
)
}