Move Pauser's functionality to Waiter/WaiterQueue and add the per-thread signalled waker

This commit is contained in:
Chen Chengjun
2024-09-13 20:29:43 +08:00
committed by Tate, Hongliang Tian
parent 1873bb7a3f
commit 822caf34f4
6 changed files with 225 additions and 301 deletions

View File

@ -54,6 +54,7 @@ pub(crate) use crate::{
current, current_thread, current, current_thread,
error::{Errno, Error}, error::{Errno, Error},
print, println, print, println,
process::signal::Pause,
time::{wait::WaitTimeout, Clock}, time::{wait::WaitTimeout, Clock},
}; };
pub(crate) type Result<T> = core::result::Result<T, Error>; pub(crate) type Result<T> = core::result::Result<T, Error>;

View File

@ -103,6 +103,7 @@ impl PosixThreadBuilder {
sig_queues, sig_queues,
sig_context: Mutex::new(None), sig_context: Mutex::new(None),
sig_stack: Mutex::new(None), sig_stack: Mutex::new(None),
signalled_waker: SpinLock::new(None),
robust_list: Mutex::new(None), robust_list: Mutex::new(None),
prof_clock, prof_clock,
virtual_timer_manager, virtual_timer_manager,

View File

@ -5,6 +5,7 @@
use core::sync::atomic::Ordering; use core::sync::atomic::Ordering;
use aster_rights::{ReadOp, WriteOp}; use aster_rights::{ReadOp, WriteOp};
use ostd::sync::Waker;
use super::{ use super::{
kill::SignalSenderIds, kill::SignalSenderIds,
@ -41,7 +42,6 @@ pub use robust_list::RobustListHead;
pub struct PosixThread { pub struct PosixThread {
// Immutable part // Immutable part
process: Weak<Process>, process: Weak<Process>,
// Mutable part // Mutable part
name: Mutex<Option<ThreadName>>, name: Mutex<Option<ThreadName>>,
@ -64,6 +64,9 @@ pub struct PosixThread {
/// FIXME: This field may be removed. For glibc applications with RESTORER flag set, the sig_context is always equals with rsp. /// FIXME: This field may be removed. For glibc applications with RESTORER flag set, the sig_context is always equals with rsp.
sig_context: Mutex<Option<Vaddr>>, sig_context: Mutex<Option<Vaddr>>,
sig_stack: Mutex<Option<SigStack>>, sig_stack: Mutex<Option<SigStack>>,
/// The per-thread signal [`Waker`], which will be used to wake up the thread
/// when enqueuing a signal.
signalled_waker: SpinLock<Option<Arc<Waker>>>,
/// A profiling clock measures the user CPU time and kernel CPU time in the thread. /// A profiling clock measures the user CPU time and kernel CPU time in the thread.
prof_clock: Arc<ProfClock>, prof_clock: Arc<ProfClock>,
@ -171,10 +174,33 @@ impl PosixThread {
return_errno_with_message!(Errno::EPERM, "sending signal to the thread is not allowed."); return_errno_with_message!(Errno::EPERM, "sending signal to the thread is not allowed.");
} }
/// Sets the input [`Waker`] as the signalled waker of this thread.
///
/// This approach can collaborate with signal-aware wait methods.
/// Once a signalled waker is set for a thread, it cannot be reset until it is cleared.
///
/// # Panics
///
/// If setting a new waker before clearing the current thread's signalled waker
/// this method will panic.
pub fn set_signalled_waker(&self, waker: Arc<Waker>) {
let mut signalled_waker = self.signalled_waker.lock();
assert!(signalled_waker.is_none());
*signalled_waker = Some(waker);
}
/// Clears the signalled waker of this thread.
pub fn clear_signalled_waker(&self) {
*self.signalled_waker.lock() = None;
}
/// Enqueues a thread-directed signal. This method should only be used for enqueue kernel /// Enqueues a thread-directed signal. This method should only be used for enqueue kernel
/// signal and fault signal. /// signal and fault signal.
pub fn enqueue_signal(&self, signal: Box<dyn Signal>) { pub fn enqueue_signal(&self, signal: Box<dyn Signal>) {
self.sig_queues.enqueue(signal); self.sig_queues.enqueue(signal);
if let Some(waker) = &*self.signalled_waker.lock() {
waker.wake_up();
}
} }
/// Returns a reference to the profiling clock of the current thread. /// Returns a reference to the profiling clock of the current thread.
@ -216,7 +242,7 @@ impl PosixThread {
self.sig_queues.register_observer(observer, filter); self.sig_queues.register_observer(observer, filter);
} }
pub fn unregiser_sigqueue_observer(&self, observer: &Weak<dyn Observer<SigEvents>>) { pub fn unregister_sigqueue_observer(&self, observer: &Weak<dyn Observer<SigEvents>>) {
self.sig_queues.unregister_observer(observer); self.sig_queues.unregister_observer(observer);
} }

View File

@ -3,7 +3,7 @@
pub mod c_types; pub mod c_types;
pub mod constants; pub mod constants;
mod events; mod events;
mod pauser; mod pause;
mod poll; mod poll;
pub mod sig_action; pub mod sig_action;
pub mod sig_disposition; pub mod sig_disposition;
@ -19,7 +19,7 @@ use align_ext::AlignExt;
use c_types::{siginfo_t, ucontext_t}; use c_types::{siginfo_t, ucontext_t};
pub use events::{SigEvents, SigEventsFilter}; pub use events::{SigEvents, SigEventsFilter};
use ostd::{cpu::UserContext, user::UserContextApi}; use ostd::{cpu::UserContext, user::UserContextApi};
pub use pauser::Pauser; pub use pause::{with_signal_blocked, Pause};
pub use poll::{Pollable, Pollee, Poller}; pub use poll::{Pollable, Pollee, Poller};
use sig_action::{SigAction, SigActionFlags, SigDefaultAction}; use sig_action::{SigAction, SigActionFlags, SigDefaultAction};
use sig_mask::SigMask; use sig_mask::SigMask;

View File

@ -0,0 +1,193 @@
// SPDX-License-Identifier: MPL-2.0
use core::{sync::atomic::Ordering, time::Duration};
use ostd::sync::{WaitQueue, Waiter};
use super::sig_mask::SigMask;
use crate::{
prelude::*, process::posix_thread::PosixThreadExt, thread::Thread, time::wait::WaitTimeout,
};
/// `Pause` is an extension trait to make [`Waiter`] and [`WaitQueue`] signal aware.
///
/// The original methods of `Waiter` and `WaitQueue` only allow a thread
/// to wait (via `wait`) until it is woken up (via `wake_up`, `wake_one`, or `wake_all`)
/// or a condition is met (via `wait_until`).
/// The `WaitTimeout` extension trait grants the extra ability
/// to wait until a timeout (via `wait_until_or_timeout`).
/// On top of `WaitTimeout`, this `Pause` trait provides the `pause`-family methods,
/// which are similar to the `wait`-family methods except that the methods also return
/// when the waiting thread is interrupted by a POSIX signal.
/// When this happens, the `pause`-family methods return `Err(EINTR)`.
pub trait Pause: WaitTimeout {
/// Pauses the execution of the current thread until the `cond` is met ( i.e., `cond()`
/// returns `Some(_)` ), or some signals are received by the current thread or process.
///
/// # Errors
///
/// If some signals are received before `cond` is met, this method will return `Err(EINTR)`.
///
/// [`EINTR`]: crate::error::Errno::EINTR
fn pause_until<F, R>(&self, cond: F) -> Result<R>
where
F: FnMut() -> Option<R>,
{
self.pause_until_or_timeout_opt(cond, None)
}
/// Pauses the execution of the current thread until the `cond` is met ( i.e., `cond()`
/// returns `Some(_)` ), or some signals are received by the current thread or process,
/// or the given `timeout` is expired.
///
/// # Errors
///
/// If `timeout` is expired before the `cond` is met or some signals are received,
/// this method will return `Err(ETIME)`. If the pausing is interrupted by some signals,
/// this method will return `Err(EINTR)`
///
/// [`ETIME`]: crate::error::Errno::ETIME
/// [`EINTR`]: crate::error::Errno::EINTR
fn pause_until_or_timeout<F, R>(&self, mut cond: F, timeout: &Duration) -> Result<R>
where
F: FnMut() -> Option<R>,
{
if *timeout == Duration::ZERO {
return cond()
.ok_or_else(|| Error::with_message(Errno::ETIME, "the time limit is reached"));
}
self.pause_until_or_timeout_opt(cond, Some(timeout))
}
/// Pauses the execution of the current thread until the `cond` is met ( i.e., `cond()`
/// returns `Some(_)` ), or some signals are received by the current thread or process.
/// If the input `timeout` is set, the pausing will finish when the `timeout` is expired.
///
/// # Errors
///
/// If `timeout` is expired before the `cond` is met or some signals are received,
/// this method will return `Err(ETIME)`. If the pausing is interrupted by some signals,
/// this method will return `Err(EINTR)`
///
/// [`ETIME`]: crate::error::Errno::ETIME
/// [`EINTR`]: crate::error::Errno::EINTR
#[doc(hidden)]
fn pause_until_or_timeout_opt<F, R>(&self, cond: F, timeout: Option<&Duration>) -> Result<R>
where
F: FnMut() -> Option<R>;
}
impl Pause for Waiter {
fn pause_until_or_timeout_opt<F, R>(&self, mut cond: F, timeout: Option<&Duration>) -> Result<R>
where
F: FnMut() -> Option<R>,
{
if let Some(res) = cond() {
return Ok(res);
}
let current_thread = self
.task()
.data()
.downcast_ref::<Weak<Thread>>()
.and_then(|thread| thread.upgrade());
let Some(posix_thread) = current_thread
.as_ref()
.and_then(|thread| thread.as_posix_thread())
else {
if let Some(timeout) = timeout {
return self.wait_until_or_timeout(cond, timeout);
} else {
return self.wait_until_or_cancelled(cond, || Ok(()));
}
};
let cancel_cond = || {
if posix_thread.has_pending() {
return Err(Error::with_message(
Errno::EINTR,
"the current thread is interrupted by a signal",
));
}
Ok(())
};
posix_thread.set_signalled_waker(self.waker());
let res = if let Some(timeout) = timeout {
self.wait_until_or_timeout_cancelled(cond, cancel_cond, timeout)
} else {
self.wait_until_or_cancelled(cond, cancel_cond)
};
posix_thread.clear_signalled_waker();
res
}
}
impl Pause for WaitQueue {
fn pause_until_or_timeout_opt<F, R>(&self, mut cond: F, timeout: Option<&Duration>) -> Result<R>
where
F: FnMut() -> Option<R>,
{
if let Some(res) = cond() {
return Ok(res);
}
let (waiter, _) = Waiter::new_pair();
let cond = || {
self.enqueue(waiter.waker());
cond()
};
waiter.pause_until_or_timeout_opt(cond, timeout)
}
}
/// Executes a closure while temporarily blocking some signals for the current POSIX thread.
pub fn with_signal_blocked<R>(ctx: &Context, mask: SigMask, operate: impl FnOnce() -> R) -> R {
let posix_thread = ctx.posix_thread;
let sig_mask = posix_thread.sig_mask();
let old_mask = sig_mask.load(Ordering::Relaxed);
sig_mask.store(old_mask + mask, Ordering::Relaxed);
let res = operate();
sig_mask.store(old_mask, Ordering::Relaxed);
res
}
#[cfg(ktest)]
mod test {
use core::sync::atomic::AtomicBool;
use ostd::prelude::*;
use super::*;
use crate::thread::{
kernel_thread::{KernelThreadExt, ThreadOptions},
Thread,
};
#[ktest]
fn test_waiter_pause() {
let wait_queue = Arc::new(WaitQueue::new());
let wait_queue_cloned = wait_queue.clone();
let boolean = Arc::new(AtomicBool::new(false));
let boolean_cloned = boolean.clone();
let thread = Thread::spawn_kernel_thread(ThreadOptions::new(move || {
Thread::yield_now();
boolean_cloned.store(true, Ordering::Relaxed);
wait_queue_cloned.wake_all();
}));
wait_queue
.pause_until(|| boolean.load(Ordering::Relaxed).then_some(()))
.unwrap();
thread.join();
}
}

View File

@ -1,297 +0,0 @@
// SPDX-License-Identifier: MPL-2.0
#![allow(unused_variables)]
use core::{
sync::atomic::{AtomicBool, Ordering},
time::Duration,
};
use ostd::sync::WaitQueue;
use super::{sig_mask::SigMask, SigEvents, SigEventsFilter};
use crate::{
events::Observer,
prelude::*,
process::posix_thread::{PosixThread, PosixThreadExt},
thread::Thread,
time::wait::WaitTimeout,
};
/// A `Pauser` allows pausing the execution of the current thread until certain conditions are reached.
///
/// Behind the scene, `Pauser` is implemented with [`Waiter`] and [`WaitQueue`].
/// But unlike its [`Waiter`] relatives, `Pauser` is aware of POSIX signals:
/// if a thread paused by a `Pauser` receives a signal, then the thread will resume its execution.
///
/// Another key difference is that `Pauser` combines the two roles of [`Waiter`] and [`WaitQueue`]
/// into one. Both putting the current thread to sleep and waking it up can be done through the
/// same `Pauser` object, using its `pause`- and `resume`-family methods.
///
/// [`Waiter`]: ostd::sync::Waiter
///
/// # Example
///
/// Here is how the current thread can be put to sleep with a `Pauser`.
///
/// ```no_run
/// let pauser = Pauser::new(SigMask::new_full());
/// // Pause the execution of the current thread until a user-given condition is met
/// // or the current thread is interrupted by a signal.
/// let res = pauser.pause_until(|| {
/// if cond() {
/// Some(())
/// } else {
/// None
/// }
/// });
/// match res {
/// Ok(_) => {
/// // The user-given condition is met...
/// }
/// Err(EINTR) => {
/// // A signal is received...
/// }
/// _ => unreachable!()
/// }
/// ```
///
/// Let's assume that another thread has access to the same object of `Arc<Pauser>`.
/// Then, this second thread can resume the execution of the first thread
/// even when `cond()` does not return `true`.
///
/// ```no_run
/// pauser.resume_all();
/// ```
pub struct Pauser {
wait_queue: WaitQueue,
sig_mask: SigMask,
}
impl Pauser {
/// Creates a new `Pauser`.
///
/// The `Pauser` can be interrupted by all signals
/// except that are blocked by current thread.
pub fn new() -> Arc<Self> {
Self::new_with_mask(SigMask::new_empty())
}
/// Creates a new `Pauser` with specified `sig_mask`.
///
/// The `Pauser` will ignore signals that are in `sig_mask`
/// or blocked by current thread.
pub fn new_with_mask(sig_mask: SigMask) -> Arc<Self> {
let wait_queue = WaitQueue::new();
Arc::new(Self {
wait_queue,
sig_mask,
})
}
/// Pauses the execution of current thread until the `cond` is met ( i.e., `cond()`
/// returns `Some(_)` ), or some signal is received by current thread or process.
///
/// # Errors
///
/// If some signal is received before `cond` is met, this method will returns `Err(EINTR)`.
pub fn pause_until<F, R>(self: &Arc<Self>, cond: F) -> Result<R>
where
F: FnMut() -> Option<R>,
{
self.do_pause(cond, None)
}
/// Pauses the execution of current thread until the `cond` is met ( i.e., `cond()` returns
/// `Some(_)` ), or some signal is received by current thread or process, or the given
/// `timeout` is expired.
///
/// # Errors
///
/// If `timeout` is expired before the `cond` is met or some signal is received,
/// it will returns [`ETIME`].
///
/// [`ETIME`]: crate::error::Errno::ETIME
pub fn pause_until_or_timeout<F, R>(self: &Arc<Self>, cond: F, timeout: &Duration) -> Result<R>
where
F: FnMut() -> Option<R>,
{
self.do_pause(cond, Some(timeout))
}
fn do_pause<F, R>(self: &Arc<Self>, mut cond: F, timeout: Option<&Duration>) -> Result<R>
where
F: FnMut() -> Option<R>,
{
let current_thread = Thread::current();
let sig_queue_waiter =
SigObserverRegistrar::new(current_thread.as_ref(), self.sig_mask, self.clone());
let cond = || {
if let Some(res) = cond() {
return Some(Ok(res));
}
if sig_queue_waiter.is_interrupted() {
return Some(Err(Error::with_message(
Errno::EINTR,
"the current thread is interrupted by a signal",
)));
}
None
};
if let Some(timeout) = timeout {
self.wait_queue
.wait_until_or_timeout(cond, timeout)
.ok_or_else(|| Error::with_message(Errno::ETIME, "the time limit is reached"))?
} else {
self.wait_queue.wait_until(cond)
}
}
/// Resumes all paused threads on this pauser.
pub fn resume_all(&self) {
self.wait_queue.wake_all();
}
/// Resumes one paused thread on this pauser.
pub fn resume_one(&self) {
self.wait_queue.wake_one();
}
}
enum SigObserverRegistrar<'a> {
// A POSIX thread may be interrupted by a signal if the signal is not masked.
PosixThread {
thread: &'a PosixThread,
old_mask: SigMask,
observer: Arc<SigQueueObserver>,
},
// A kernel thread ignores all signals. It is not necessary to wait for them.
KernelThread,
}
impl<'a> SigObserverRegistrar<'a> {
fn new(
current_thread: Option<&'a Arc<Thread>>,
sig_mask: SigMask,
pauser: Arc<Pauser>,
) -> Self {
let Some(thread) = current_thread.and_then(|thread| thread.as_posix_thread()) else {
return Self::KernelThread;
};
// Block `sig_mask`.
let (old_mask, filter) = {
let old_mask = thread.sig_mask().load(Ordering::Relaxed);
let new_mask = old_mask + sig_mask;
thread.sig_mask().store(new_mask, Ordering::Relaxed);
(old_mask, SigEventsFilter::new(new_mask))
};
// Register `SigQueueObserver`.
let observer = SigQueueObserver::new(pauser);
thread.register_sigqueue_observer(Arc::downgrade(&observer) as _, filter);
// Check pending signals after registering the observer to avoid race conditions.
if thread.has_pending() {
observer.set_interrupted();
}
Self::PosixThread {
thread,
old_mask,
observer,
}
}
fn is_interrupted(&self) -> bool {
match self {
Self::PosixThread { observer, .. } => observer.is_interrupted(),
Self::KernelThread => false,
}
}
}
impl<'a> Drop for SigObserverRegistrar<'a> {
fn drop(&mut self) {
let Self::PosixThread {
thread,
old_mask,
observer,
} = self
else {
return;
};
// Restore the state, assuming no one else can modify the current thread's signal mask
// during the pause.
thread.unregiser_sigqueue_observer(&(Arc::downgrade(observer) as _));
thread.sig_mask().store(*old_mask, Ordering::Relaxed);
}
}
struct SigQueueObserver {
is_interrupted: AtomicBool,
pauser: Arc<Pauser>,
}
impl SigQueueObserver {
fn new(pauser: Arc<Pauser>) -> Arc<Self> {
Arc::new(Self {
is_interrupted: AtomicBool::new(false),
pauser,
})
}
fn is_interrupted(&self) -> bool {
self.is_interrupted.load(Ordering::Acquire)
}
fn set_interrupted(&self) {
self.is_interrupted.store(true, Ordering::Release);
}
}
impl Observer<SigEvents> for SigQueueObserver {
fn on_events(&self, _: &SigEvents) {
self.set_interrupted();
self.pauser.wait_queue.wake_all();
}
}
#[cfg(ktest)]
mod test {
use ostd::prelude::*;
use super::*;
use crate::thread::{
kernel_thread::{KernelThreadExt, ThreadOptions},
Thread,
};
#[ktest]
fn test_pauser() {
let pauser = Pauser::new();
let pauser_cloned = pauser.clone();
let boolean = Arc::new(AtomicBool::new(false));
let boolean_cloned = boolean.clone();
let thread = Thread::spawn_kernel_thread(ThreadOptions::new(move || {
Thread::yield_now();
boolean_cloned.store(true, Ordering::Relaxed);
pauser_cloned.resume_all();
}));
pauser
.pause_until(|| boolean.load(Ordering::Relaxed).then_some(()))
.unwrap();
thread.join();
}
}