Add a new ring buffer backed by a Segment

This commit is contained in:
Shaowei Song
2024-08-26 16:33:09 +00:00
committed by Tate, Hongliang Tian
parent 59b7a9397f
commit 923b3704d7
2 changed files with 592 additions and 0 deletions

View File

@ -3,5 +3,6 @@
mod iovec; mod iovec;
pub mod net; pub mod net;
pub mod random; pub mod random;
pub mod ring_buffer;
pub use iovec::{copy_iovs_from_user, IoVec}; pub use iovec::{copy_iovs_from_user, IoVec};

View File

@ -0,0 +1,591 @@
// SPDX-License-Identifier: MPL-2.0
use core::{
marker::PhantomData,
ops::Deref,
sync::atomic::{AtomicUsize, Ordering},
};
use align_ext::AlignExt;
use inherit_methods_macro::inherit_methods;
use ostd::mm::{FrameAllocOptions, Segment, VmIo};
use crate::prelude::*;
/// A lock-free SPSC FIFO ring buffer backed by a [`Segment`].
///
/// The ring buffer supports `push`/`pop` any `T: Pod` items, also
/// supports `write`/`read` any bytes data based on [`VmReader`]/[`VmWriter`].
///
/// The ring buffer returns immediately after processing without any blocking.
/// The ring buffer can be shared between threads.
///
/// # Example
///
/// ```
/// use ostd_pod::Pod;
/// use ring_buffer::RingBuffer;
///
/// #[derive(Pod)]
/// struct Item {
/// a: u32,
/// b: u32,
/// }
///
/// let rb = RingBuffer::<Item>::new(10);
/// let (producer, consumer) = rb.split();
///
/// for i in 0..10 {
/// producer.push(Item { a: i, b: i }).unwrap();
/// }
///
/// for _ in 0..10 {
/// let item = consumer.pop().unwrap();
/// assert_eq!(item.a, item.b);
/// }
/// ```
pub struct RingBuffer<T> {
segment: Segment,
capacity: usize,
tail: AtomicUsize,
head: AtomicUsize,
len: AtomicUsize,
phantom: PhantomData<T>,
}
/// A producer of a [`RingBuffer`].
pub struct Producer<T, R: Deref<Target = RingBuffer<T>>> {
rb: R,
phantom: PhantomData<T>,
}
/// A consumer of a [`RingBuffer`].
pub struct Consumer<T, R: Deref<Target = RingBuffer<T>>> {
rb: R,
phantom: PhantomData<T>,
}
pub type RbProducer<T> = Producer<T, Arc<RingBuffer<T>>>;
pub type RbConsumer<T> = Consumer<T, Arc<RingBuffer<T>>>;
impl<T> RingBuffer<T> {
const T_SIZE: usize = core::mem::size_of::<T>();
/// Creates a new [`RingBuffer`] with the given capacity.
pub fn new(capacity: usize) -> Self {
assert!(
capacity.is_power_of_two(),
"capacity must be a power of two"
);
let nframes = capacity.saturating_mul(Self::T_SIZE).align_up(PAGE_SIZE) / PAGE_SIZE;
let segment = FrameAllocOptions::new(nframes).alloc_contiguous().unwrap();
Self {
segment,
capacity,
tail: AtomicUsize::new(0),
head: AtomicUsize::new(0),
len: AtomicUsize::new(0),
phantom: PhantomData,
}
}
/// Splits the [`RingBuffer`] into a producer and a consumer.
pub fn split(self) -> (RbProducer<T>, RbConsumer<T>) {
let producer = Producer {
rb: Arc::new(self),
phantom: PhantomData,
};
let consumer = Consumer {
rb: Arc::clone(&producer.rb),
phantom: PhantomData,
};
(producer, consumer)
}
/// Gets the capacity of the `RingBuffer`.
pub fn capacity(&self) -> usize {
self.capacity
}
/// Gets the number of items in the `RingBuffer`.
pub fn len(&self) -> usize {
self.len.load(Ordering::Acquire)
}
/// Checks if the `RingBuffer` is empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Checks if the `RingBuffer` is full.
pub fn is_full(&self) -> bool {
self.len() == self.capacity
}
/// Gets the number of free items in the `RingBuffer`.
fn free_len(&self) -> usize {
self.capacity - self.len()
}
}
impl<T: Pod> RingBuffer<T> {
/// Pushes an item to the `RingBuffer`.
///
/// Returns `Some` on success. Returns `None` if
/// the ring buffer is full.
pub fn push(&mut self, item: T) -> Option<()> {
let mut producer = Producer {
rb: self,
phantom: PhantomData,
};
producer.push(item)
}
/// Pushes a slice of items to the `RingBuffer`.
///
/// Returns `Some` on success, all items are pushed to the ring buffer.
/// Returns `None` if the ring buffer is full or cannot fit all items.
pub fn push_slice(&mut self, items: &[T]) -> Option<()> {
let mut producer = Producer {
rb: self,
phantom: PhantomData,
};
producer.push_slice(items)
}
/// Pushes an item to the ring buffer. The next item
/// will be overwritten if the buffer is full.
///
/// Returns the overwritten item if any.
pub fn push_overwrite(&mut self, item: T) -> Option<T> {
let ret = if self.is_full() { self.pop() } else { None };
self.push(item).unwrap();
ret
}
/// Pops an item from the `RingBuffer`.
///
/// Returns `Some` with the popped item on success.
/// Returns `None` if the ring buffer is empty.
pub fn pop(&mut self) -> Option<T> {
let mut consumer = Consumer {
rb: self,
phantom: PhantomData,
};
consumer.pop()
}
/// Pops a slice of items from the `RingBuffer`.
///
/// Returns `Some` on success, all items are popped from the ring buffer.
/// Returns `None` if the ring buffer is empty or cannot fill all items.
pub fn pop_slice(&mut self, items: &mut [T]) -> Option<()> {
let mut consumer = Consumer {
rb: self,
phantom: PhantomData,
};
consumer.pop_slice(items)
}
/// Clears the `RingBuffer`.
pub fn clear(&mut self) {
self.tail.store(0, Ordering::Relaxed);
self.head.store(0, Ordering::Relaxed);
self.len.store(0, Ordering::Release);
}
fn tail(&self) -> usize {
self.tail.load(Ordering::Acquire)
}
fn head(&self) -> usize {
self.head.load(Ordering::Acquire)
}
fn advance_tail(&self, curr_pos: usize, len: usize) {
let next_pos = (curr_pos + len) & (self.capacity - 1);
self.tail.store(next_pos, Ordering::Release);
self.len.fetch_add(len, Ordering::Release);
}
fn advance_head(&self, curr_pos: usize, len: usize) {
let next_pos = (curr_pos + len) & (self.capacity - 1);
self.head.store(next_pos, Ordering::Release);
self.len.fetch_sub(len, Ordering::Release);
}
}
impl RingBuffer<u8> {
/// Writes data from the `VmReader` to the `RingBuffer`.
///
/// Returns the number of bytes written.
pub fn write_fallible(
&mut self,
reader: &mut VmReader,
) -> core::result::Result<usize, (Error, usize)> {
let mut producer = Producer {
rb: self,
phantom: PhantomData,
};
producer.write_fallible(reader)
}
/// Reads data from the `VmWriter` to the `RingBuffer`.
///
/// Returns the number of bytes read.
pub fn read_fallible(
&mut self,
writer: &mut VmWriter,
) -> core::result::Result<usize, (Error, usize)> {
let mut consumer = Consumer {
rb: self,
phantom: PhantomData,
};
consumer.read_fallible(writer)
}
}
impl<T: Pod, R: Deref<Target = RingBuffer<T>>> Producer<T, R> {
const T_SIZE: usize = core::mem::size_of::<T>();
/// Pushes an item to the `RingBuffer`.
///
/// Returns `Some` on success. Returns `None` if
/// the ring buffer is full.
pub fn push(&mut self, item: T) -> Option<()> {
let rb = &self.rb;
if rb.is_full() {
return None;
}
let tail = rb.tail();
debug_assert!(tail < rb.capacity);
let segment_offset = tail * Self::T_SIZE;
let mut writer = rb.segment.writer().skip(segment_offset);
writer.write_val(&item).unwrap();
rb.advance_tail(tail, 1);
Some(())
}
/// Pushes a slice of items to the `RingBuffer`.
///
/// Returns `Some` on success, all items are pushed to the ring buffer.
/// Returns `None` if the ring buffer is full or cannot fit all items.
pub fn push_slice(&mut self, items: &[T]) -> Option<()> {
let nitems = items.len();
let rb = &self.rb;
let free_len = rb.free_len();
if free_len < nitems {
return None;
}
let tail = rb.tail();
debug_assert!(tail < rb.capacity);
let segment_offset = tail * Self::T_SIZE;
if tail + nitems > rb.capacity {
// Write into two separate parts
rb.segment
.write_slice(segment_offset, &items[..rb.capacity - tail])
.unwrap();
rb.segment
.write_slice(0, &items[rb.capacity - tail..])
.unwrap();
} else {
rb.segment.write_slice(segment_offset, items).unwrap();
}
rb.advance_tail(tail, nitems);
Some(())
}
}
impl<R: Deref<Target = RingBuffer<u8>>> Producer<u8, R> {
/// Writes data from the `VmReader` to the `RingBuffer`.
///
/// Returns the number of bytes written.
pub fn write_fallible(
&mut self,
reader: &mut VmReader,
) -> core::result::Result<usize, (Error, usize)> {
let rb = &self.rb;
let free_len = rb.free_len();
if free_len == 0 {
return Ok(0);
}
let write_len = reader.remain().min(free_len);
let tail = rb.tail();
let write_len = if tail + write_len > rb.capacity {
// Write into two separate parts
let mut writer = rb.segment.writer().skip(tail).limit(rb.capacity - tail);
let mut len = writer.write_fallible(reader).map_err(|(e, l1)| {
rb.advance_tail(tail, l1);
(e.into(), l1)
})?;
let mut writer = rb.segment.writer().limit(write_len - (rb.capacity - tail));
len += writer.write_fallible(reader).map_err(|(e, l2)| {
rb.advance_tail(tail, len + l2);
(e.into(), len + l2)
})?;
len
} else {
let mut writer = rb.segment.writer().skip(tail).limit(write_len);
writer.write_fallible(reader).map_err(|(e, len)| {
rb.advance_tail(tail, len);
(e.into(), len)
})?
};
rb.advance_tail(tail, write_len);
Ok(write_len)
}
}
#[inherit_methods(from = "self.rb")]
impl<T, R: Deref<Target = RingBuffer<T>>> Producer<T, R> {
pub fn capacity(&self) -> usize;
pub fn is_empty(&self) -> bool;
pub fn is_full(&self) -> bool;
pub fn len(&self) -> usize;
pub fn free_len(&self) -> usize;
}
impl<T: Pod, R: Deref<Target = RingBuffer<T>>> Consumer<T, R> {
const T_SIZE: usize = core::mem::size_of::<T>();
/// Pops an item from the `RingBuffer`.
///
/// Returns `Some` with the popped item on success.
/// Returns `None` if the ring buffer is empty.
pub fn pop(&mut self) -> Option<T> {
let rb = &self.rb;
if rb.is_empty() {
return None;
}
let head = rb.head();
debug_assert!(head < rb.capacity);
let segment_offset = head * Self::T_SIZE;
let mut reader = rb.segment.reader().skip(segment_offset);
let item = reader.read_val::<T>().unwrap();
rb.advance_head(head, 1);
Some(item)
}
/// Pops a slice of items from the `RingBuffer`.
///
/// Returns `Some` on success, all items are popped from the ring buffer.
/// Returns `None` if the ring buffer is empty or cannot fill all items.
pub fn pop_slice(&mut self, items: &mut [T]) -> Option<()> {
let nitems = items.len();
let rb = &self.rb;
if nitems > rb.len() {
return None;
}
let head = rb.head();
debug_assert!(head < rb.capacity);
let segment_offset = head * Self::T_SIZE;
if head + nitems > rb.capacity {
// Read from two separate parts
rb.segment
.read_slice(segment_offset, &mut items[..rb.capacity - head])
.unwrap();
rb.segment
.read_slice(0, &mut items[rb.capacity - head..])
.unwrap();
} else {
rb.segment.read_slice(segment_offset, items).unwrap();
}
rb.advance_head(head, nitems);
Some(())
}
}
impl<R: Deref<Target = RingBuffer<u8>>> Consumer<u8, R> {
/// Reads data from the `VmWriter` to the `RingBuffer`.
///
/// Returns the number of bytes read.
pub fn read_fallible(
&mut self,
writer: &mut VmWriter,
) -> core::result::Result<usize, (Error, usize)> {
let rb = &self.rb;
let len = rb.len();
if len == 0 {
return Ok(0);
}
let read_len = writer.avail().min(len);
let head = rb.head();
let read_len = if head + read_len > rb.capacity {
// Read from two separate parts
let mut reader = rb.segment.reader().skip(head).limit(rb.capacity - head);
let mut len = reader.read_fallible(writer).map_err(|(e, l1)| {
rb.advance_head(head, l1);
(e.into(), l1)
})?;
let mut reader = rb.segment.reader().limit(read_len - (rb.capacity - head));
len += reader.read_fallible(writer).map_err(|(e, l2)| {
rb.advance_head(head, len + l2);
(e.into(), len + l2)
})?;
len
} else {
let mut reader = rb.segment.reader().skip(head).limit(read_len);
reader.read_fallible(writer).map_err(|(e, len)| {
rb.advance_head(head, len);
(e.into(), len)
})?
};
rb.advance_head(head, read_len);
Ok(read_len)
}
}
#[inherit_methods(from = "self.rb")]
impl<T, R: Deref<Target = RingBuffer<T>>> Consumer<T, R> {
pub fn capacity(&self) -> usize;
pub fn is_empty(&self) -> bool;
pub fn is_full(&self) -> bool;
pub fn len(&self) -> usize;
pub fn free_len(&self) -> usize;
}
#[cfg(ktest)]
mod test {
use ostd::prelude::*;
use super::*;
#[ktest]
fn test_rb_basics() {
let mut rb = RingBuffer::<i32>::new(4);
rb.push(-100).unwrap();
rb.push_slice(&[-1]).unwrap();
assert_eq!(rb.len(), 2);
let mut popped = [0i32; 2];
rb.pop_slice(&mut popped).unwrap();
assert_eq!(popped, [-100i32, -1]);
assert!(rb.is_empty());
rb.push_slice(&[i32::MAX, 1, -2, 100]).unwrap();
assert!(rb.is_full());
let popped = rb.push_overwrite(i32::MIN);
assert_eq!(popped, Some(i32::MAX));
assert!(rb.is_full());
let mut popped = [0i32; 3];
rb.pop_slice(&mut popped).unwrap();
assert_eq!(popped, [1i32, -2, 100]);
assert_eq!(rb.free_len(), 3);
let popped = rb.pop().unwrap();
assert_eq!(popped, i32::MIN);
assert!(rb.is_empty());
}
#[ktest]
fn test_rb_write_read_one() {
let rb = RingBuffer::<u8>::new(1);
let (mut prod, mut cons) = rb.split();
assert_eq!(prod.capacity(), 1);
assert_eq!(cons.capacity(), 1);
assert!(cons.pop().is_none());
assert!(prod.push(1).is_some());
assert!(prod.is_full());
assert!(prod.push(2).is_none());
assert!(prod.push_slice(&[2]).is_none());
assert_eq!(cons.pop().unwrap(), 1u8);
assert!(cons.is_empty());
let input = [u8::MAX];
assert_eq!(
prod.write_fallible(&mut reader_from(input.as_slice()))
.unwrap(),
1
);
assert_eq!(
prod.write_fallible(&mut reader_from(input.as_slice()))
.unwrap(),
0
);
assert_eq!(prod.len(), 1);
let mut output = [0u8];
assert_eq!(
cons.read_fallible(&mut writer_from(output.as_mut_slice()))
.unwrap(),
1
);
assert_eq!(
cons.read_fallible(&mut writer_from(output.as_mut_slice()))
.unwrap(),
0
);
assert_eq!(cons.free_len(), 1);
assert_eq!(output, input);
}
#[ktest]
fn test_rb_write_read_all() {
let rb = RingBuffer::<u8>::new(4 * PAGE_SIZE);
assert_eq!(rb.capacity(), 4 * PAGE_SIZE);
let (mut prod, mut cons) = rb.split();
prod.push(u8::MIN).unwrap();
assert_eq!(cons.pop().unwrap(), u8::MIN);
prod.push_slice(&[u8::MAX]).unwrap();
let mut popped = [0u8];
cons.pop_slice(&mut popped).unwrap();
assert_eq!(popped, [u8::MAX]);
let step = 128;
let mut input = vec![0u8; step];
for i in (0..4 * PAGE_SIZE).step_by(step) {
input.fill(i as _);
let write_len = prod
.write_fallible(&mut reader_from(input.as_slice()))
.unwrap();
assert_eq!(write_len, step);
}
assert!(cons.is_full());
let mut output = vec![0u8; step];
for i in (0..4 * PAGE_SIZE).step_by(step) {
let read_len = cons
.read_fallible(&mut writer_from(output.as_mut_slice()))
.unwrap();
assert_eq!(read_len, step);
assert_eq!(output[0], i as u8);
assert_eq!(output[step - 1], i as u8);
}
assert!(prod.is_empty());
}
fn reader_from(buf: &[u8]) -> VmReader {
VmReader::from(buf).to_fallible()
}
fn writer_from(buf: &mut [u8]) -> VmWriter {
VmWriter::from(buf).to_fallible()
}
}