Remove the shim kernel crate

This commit is contained in:
Zhang Junyang
2024-08-19 19:15:22 +08:00
committed by Tate, Hongliang Tian
parent d76c7a5b1e
commit dafd16075f
416 changed files with 231 additions and 273 deletions

238
kernel/src/context.rs Normal file
View File

@ -0,0 +1,238 @@
// SPDX-License-Identifier: MPL-2.0
//! The context that can be accessed from the current task, thread or process.
use core::mem;
use ostd::{
mm::{Fallible, Infallible, VmReader, VmSpace, VmWriter},
task::Task,
};
use crate::{
prelude::*,
process::{posix_thread::PosixThread, Process},
thread::Thread,
};
/// The context that can be accessed from the current POSIX thread.
#[derive(Clone, Copy)]
pub struct Context<'a> {
pub process: &'a Process,
pub posix_thread: &'a PosixThread,
pub thread: &'a Thread,
pub task: &'a Task,
}
impl Context<'_> {
/// Gets the userspace of the current task.
pub fn get_user_space(&self) -> CurrentUserSpace {
CurrentUserSpace(self.task.user_space().unwrap().vm_space().clone())
}
}
/// The user's memory space of the current task.
///
/// It provides methods to read from or write to the user space efficiently.
pub struct CurrentUserSpace(Arc<VmSpace>);
impl !Sync for CurrentUserSpace {}
impl !Send for CurrentUserSpace {}
impl CurrentUserSpace {
/// Gets the `CurrentUserSpace` from the current task.
///
/// This is slower than [`Context::get_user_space`]. Don't use this getter
/// If you get the access to the [`Context`].
pub fn get() -> Self {
let vm_space = {
let current_task = Task::current().unwrap();
let user_space = current_task.user_space().unwrap();
user_space.vm_space().clone()
};
Self(vm_space)
}
/// Creates a reader to read data from the user space of the current task.
///
/// Returns `Err` if the `vaddr` and `len` do not represent a user space memory range.
pub fn reader(&self, vaddr: Vaddr, len: usize) -> Result<VmReader<'_, Fallible>> {
Ok(self.0.reader(vaddr, len)?)
}
/// Creates a writer to write data into the user space.
///
/// Returns `Err` if the `vaddr` and `len` do not represent a user space memory range.
pub fn writer(&self, vaddr: Vaddr, len: usize) -> Result<VmWriter<'_, Fallible>> {
Ok(self.0.writer(vaddr, len)?)
}
/// Reads bytes into the destination `VmWriter` from the user space of the
/// current process.
///
/// If the reading is completely successful, returns `Ok`. Otherwise, it
/// returns `Err`.
///
/// If the destination `VmWriter` (`dest`) is empty, this function still
/// checks if the current task and user space are available. If they are,
/// it returns `Ok`.
pub fn read_bytes(&self, src: Vaddr, dest: &mut VmWriter<'_, Infallible>) -> Result<()> {
let copy_len = dest.avail();
if copy_len > 0 {
check_vaddr(src)?;
}
let mut user_reader = self.reader(src, copy_len)?;
user_reader.read_fallible(dest).map_err(|err| err.0)?;
Ok(())
}
/// Reads a value typed `Pod` from the user space of the current process.
pub fn read_val<T: Pod>(&self, src: Vaddr) -> Result<T> {
if core::mem::size_of::<T>() > 0 {
check_vaddr(src)?;
}
let mut user_reader = self.reader(src, core::mem::size_of::<T>())?;
Ok(user_reader.read_val()?)
}
/// Writes bytes from the source `VmReader` to the user space of the current
/// process.
///
/// If the writing is completely successful, returns `Ok`. Otherwise, it
/// returns `Err`.
///
/// If the source `VmReader` (`src`) is empty, this function still checks if
/// the current task and user space are available. If they are, it returns
/// `Ok`.
pub fn write_bytes(&self, dest: Vaddr, src: &mut VmReader<'_, Infallible>) -> Result<()> {
let copy_len = src.remain();
if copy_len > 0 {
check_vaddr(dest)?;
}
let mut user_writer = self.writer(dest, copy_len)?;
user_writer.write_fallible(src).map_err(|err| err.0)?;
Ok(())
}
/// Writes `val` to the user space of the current process.
pub fn write_val<T: Pod>(&self, dest: Vaddr, val: &T) -> Result<()> {
if core::mem::size_of::<T>() > 0 {
check_vaddr(dest)?;
}
let mut user_writer = self.writer(dest, core::mem::size_of::<T>())?;
Ok(user_writer.write_val(val)?)
}
/// Reads a C string from the user space of the current process.
/// The length of the string should not exceed `max_len`,
/// including the final `\0` byte.
pub fn read_cstring(&self, vaddr: Vaddr, max_len: usize) -> Result<CString> {
if max_len > 0 {
check_vaddr(vaddr)?;
}
let mut user_reader = self.reader(vaddr, max_len)?;
user_reader.read_cstring()
}
}
/// A trait providing the ability to read a C string from the user space
/// of the current process specifically for [`VmReader<'_, UserSpace>`], which
/// should reading the bytes iteratively in the reader until encountering
/// the end of the reader or reading a `\0` (is also included into the final C String).
pub trait ReadCString {
fn read_cstring(&mut self) -> Result<CString>;
}
impl<'a> ReadCString for VmReader<'a, Fallible> {
/// This implementation is inspired by
/// the `do_strncpy_from_user` function in Linux kernel.
/// The original Linux implementation can be found at:
/// <https://elixir.bootlin.com/linux/v6.0.9/source/lib/strncpy_from_user.c#L28>
fn read_cstring(&mut self) -> Result<CString> {
let max_len = self.remain();
let mut buffer: Vec<u8> = Vec::with_capacity(max_len);
macro_rules! read_one_byte_at_a_time_while {
($cond:expr) => {
while $cond {
let byte = self.read_val::<u8>()?;
buffer.push(byte);
if byte == 0 {
return Ok(CString::from_vec_with_nul(buffer)
.expect("We provided 0 but no 0 is found"));
}
}
};
}
// Handle the first few bytes to make `cur_addr` aligned with `size_of::<usize>`
read_one_byte_at_a_time_while!(
(self.cursor() as usize) % mem::size_of::<usize>() != 0 && buffer.len() < max_len
);
// Handle the rest of the bytes in bulk
while (buffer.len() + mem::size_of::<usize>()) <= max_len {
let Ok(word) = self.read_val::<usize>() else {
break;
};
if has_zero(word) {
for byte in word.to_ne_bytes() {
buffer.push(byte);
if byte == 0 {
return Ok(CString::from_vec_with_nul(buffer)
.expect("We provided 0 but no 0 is found"));
}
}
unreachable!("The branch should never be reached unless `has_zero` has bugs.")
}
buffer.extend_from_slice(&word.to_ne_bytes());
}
// Handle the last few bytes that are not enough for a word
read_one_byte_at_a_time_while!(buffer.len() < max_len);
// Maximum length exceeded before finding the null terminator
return_errno_with_message!(Errno::EFAULT, "Fails to read CString from user");
}
}
/// Determines whether the value contains a zero byte.
///
/// This magic algorithm is from the Linux `has_zero` function:
/// <https://elixir.bootlin.com/linux/v6.0.9/source/include/asm-generic/word-at-a-time.h#L93>
const fn has_zero(value: usize) -> bool {
const ONE_BITS: usize = usize::from_le_bytes([0x01; mem::size_of::<usize>()]);
const HIGH_BITS: usize = usize::from_le_bytes([0x80; mem::size_of::<usize>()]);
value.wrapping_sub(ONE_BITS) & !value & HIGH_BITS != 0
}
/// Checks if the user space pointer is below the lowest userspace address.
///
/// If a pointer is below the lowest userspace address, it is likely to be a
/// NULL pointer. Reading from or writing to a NULL pointer should trigger a
/// segmentation fault.
///
/// If it is not checked here, a kernel page fault will happen and we would
/// deny the access in the page fault handler either. It may save a page fault
/// in some occasions. More importantly, double page faults may not be handled
/// quite well on some platforms.
fn check_vaddr(va: Vaddr) -> Result<()> {
if va < crate::vm::vmar::ROOT_VMAR_LOWEST_ADDR {
Err(Error::with_message(
Errno::EFAULT,
"Bad user space pointer specified",
))
} else {
Ok(())
}
}