Refactor project structure

This commit is contained in:
Zhang Junyang
2024-02-27 16:40:16 +08:00
committed by Tate, Hongliang Tian
parent bd878dd1c9
commit e3c227ae06
474 changed files with 77 additions and 77 deletions

View File

@ -0,0 +1,221 @@
// SPDX-License-Identifier: MPL-2.0
//! This module provides abstractions for hardware-assisted timing mechanisms, encapsulated by the `ClockSource` struct.
//! A `ClockSource` can be constructed from any counter with a stable frequency, enabling precise time measurements to be taken
//! by retrieving instances of `Instant`.
//!
//! The `ClockSource` module is a fundamental building block for timing in systems that require high precision and accuracy.
//! It can be integrated into larger systems to provide timing capabilities, or used standalone for time tracking and elapsed time measurements.
use alloc::sync::Arc;
use core::{cmp::max, ops::Add, time::Duration};
use aster_frame::sync::SpinLock;
use aster_util::coeff::Coeff;
use crate::NANOS_PER_SECOND;
/// `ClockSource` is an abstraction for hardware-assisted timing mechanisms.
/// A `ClockSource` can be created based on any counter that operates at a stable frequency.
/// Users are able to measure time by retrieving `Instant` from this source.
///
/// # Implementation
/// The `ClockSource` relies on obtaining the frequency of the counter and the method for reading the cycles in order to measure time.
/// The **cycles** here refer the counts of the base time counter.
/// Additionally, the `ClockSource` also holds a last recorded instant, which acts as a reference point for subsequent time retrieval.
/// To prevent numerical overflow during the calculation of `Instant`, this last recorded instant **must be periodically refreshed**.
/// The maximum interval for these updates must be determined at the time of the `ClockSource` initialization.
///
/// # Examples
/// Suppose we have a counter called `counter` which have the frequency `counter.freq`, and the method to read its cycles called `read_counter()`.
/// We can create a corresponding `ClockSource` and use it as follows:
///
/// ```rust
/// // here we set the max_delay_secs = 10
/// let max_delay_secs = 10;
/// // create a clocksource named counter_clock
/// let counter_clock = ClockSource::new(counter.freq, max_delay_secs, Arc::new(read_counter));
/// // read an instant.
/// let instant = counter_clock.read_instant();
/// ```
///
/// If using this `ClockSource`, you must ensure its internal instant will be updated
/// at least once within a time interval of not more than `max_delay_secs.
pub struct ClockSource {
read_cycles: Arc<dyn Fn() -> u64 + Sync + Send>,
base: ClockSourceBase,
coeff: Coeff,
last_instant: SpinLock<Instant>,
last_cycles: SpinLock<u64>,
}
impl ClockSource {
/// Create a new `ClockSource` instance.
/// Require basic information of based time counter, including the function for reading cycles, the frequency
/// and the maximum delay seconds to update this `ClockSource`.
/// The `ClockSource` also calculates a reliable `Coeff` based on the counter's frequency and the maximum delay seconds.
/// This `Coeff` is used to convert the number of cycles into the duration of time that has passed for those cycles.
pub fn new(
freq: u64,
max_delay_secs: u64,
read_cycles: Arc<dyn Fn() -> u64 + Sync + Send>,
) -> Self {
let base = ClockSourceBase::new(freq, max_delay_secs);
// Too big `max_delay_secs` will lead to a low resolution Coeff.
debug_assert!(max_delay_secs < 600);
let coeff = Coeff::new(NANOS_PER_SECOND as u64, freq, max_delay_secs * freq);
Self {
read_cycles,
base,
coeff,
last_instant: SpinLock::new(Instant::zero()),
last_cycles: SpinLock::new(0),
}
}
fn cycles_to_nanos(&self, cycles: u64) -> u64 {
self.coeff * cycles
}
/// Use the instant cycles to calculate the instant.
/// It first calculates the difference between the instant cycles and the last recorded cycles stored in the clocksource.
/// Then `ClockSource` will convert the passed cycles into passed time and calculate the current instant.
fn calculate_instant(&self, instant_cycles: u64) -> Instant {
let delta_nanos = {
let delta_cycles = instant_cycles - self.last_cycles();
self.cycles_to_nanos(delta_cycles)
};
let duration = Duration::from_nanos(delta_nanos);
self.last_instant() + duration
}
/// Use an input instant to update the internal instant in the `ClockSource`.
fn update_last_instant(&self, instant: &Instant) {
*self.last_instant.lock() = *instant;
}
/// Use an input cycles to update the internal instant in the `ClockSource`.
fn update_last_cycles(&self, cycles: u64) {
*self.last_cycles.lock() = cycles;
}
/// read current cycles of the `ClockSource`.
pub fn read_cycles(&self) -> u64 {
(self.read_cycles)()
}
/// Return the last instant recorded in the `ClockSource`.
pub fn last_instant(&self) -> Instant {
return *self.last_instant.lock();
}
/// Return the last cycles recorded in the `ClockSource`.
pub fn last_cycles(&self) -> u64 {
return *self.last_cycles.lock();
}
/// Return the maximum delay seconds for updating of the `ClockSource`.
pub fn max_delay_secs(&self) -> u64 {
self.base.max_delay_secs()
}
/// Return the reference to the generated cycles coeff of the `ClockSource`.
pub fn coeff(&self) -> &Coeff {
&self.coeff
}
/// Return the frequency of the counter used in the `ClockSource`.
pub fn freq(&self) -> u64 {
self.base.freq()
}
/// Calibrate the recorded `Instant` to zero, and record the instant cycles.
pub(crate) fn calibrate(&self, instant_cycles: u64) {
self.update_last_cycles(instant_cycles);
self.update_last_instant(&Instant::zero());
}
/// Get the instant to update the internal instant in the `ClockSource`.
pub(crate) fn update(&self) {
let instant_cycles = self.read_cycles();
let instant = self.calculate_instant(instant_cycles);
self.update_last_cycles(instant_cycles);
self.update_last_instant(&instant);
}
/// Read the instant corresponding to the current time.
/// When trying to read an instant from the clocksource, it will use the reading method to read instant cycles.
/// Then leverage it to calculate the instant.
pub(crate) fn read_instant(&self) -> Instant {
let instant_cycles = self.read_cycles();
self.calculate_instant(instant_cycles)
}
}
/// `Instant` captures a specific moment, storing the duration of time
/// elapsed since a reference point (typically the system boot time).
/// The `Instant` is expressed in seconds and the fractional part is expressed in nanoseconds.
#[derive(Debug, Default, Copy, Clone)]
pub struct Instant {
secs: u64,
nanos: u32,
}
impl Instant {
pub const fn zero() -> Self {
Self { secs: 0, nanos: 0 }
}
pub fn new(secs: u64, nanos: u32) -> Self {
Self { secs, nanos }
}
/// Return the seconds recorded in the Instant.
pub fn secs(&self) -> u64 {
self.secs
}
/// Return the nanoseconds recorded in the Instant.
pub fn nanos(&self) -> u32 {
self.nanos
}
}
impl Add<Duration> for Instant {
type Output = Instant;
fn add(self, other: Duration) -> Self::Output {
let mut secs = self.secs + other.as_secs();
let mut nanos = self.nanos + other.subsec_nanos();
if nanos >= NANOS_PER_SECOND {
secs += 1;
nanos -= NANOS_PER_SECOND;
}
Instant::new(secs, nanos)
}
}
/// The basic properties of `ClockSource`.
#[derive(Debug, Copy, Clone)]
struct ClockSourceBase {
freq: u64,
max_delay_secs: u64,
}
impl ClockSourceBase {
fn new(freq: u64, max_delay_secs: u64) -> Self {
let max_delay_secs = max(2, max_delay_secs);
ClockSourceBase {
freq,
max_delay_secs,
}
}
fn max_delay_secs(&self) -> u64 {
self.max_delay_secs
}
fn freq(&self) -> u64 {
self.freq
}
}

View File

@ -0,0 +1,160 @@
// SPDX-License-Identifier: MPL-2.0
//! The system time of Asterinas.
#![no_std]
#![forbid(unsafe_code)]
extern crate alloc;
use alloc::sync::Arc;
use core::{sync::atomic::Ordering::Relaxed, time::Duration};
use aster_frame::sync::Mutex;
use clocksource::ClockSource;
pub use clocksource::Instant;
use component::{init_component, ComponentInitError};
use rtc::{get_cmos, is_updating, CENTURY_REGISTER};
use spin::Once;
mod clocksource;
mod rtc;
mod tsc;
pub const NANOS_PER_SECOND: u32 = 1_000_000_000;
pub static VDSO_DATA_UPDATE: Once<Arc<dyn Fn(Instant, u64) + Sync + Send>> = Once::new();
#[init_component]
fn time_init() -> Result<(), ComponentInitError> {
rtc::init();
tsc::init();
Ok(())
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct SystemTime {
century: u8,
pub year: u16,
pub month: u8,
pub day: u8,
pub hour: u8,
pub minute: u8,
pub second: u8,
pub nanos: u64,
}
impl SystemTime {
pub(crate) const fn zero() -> Self {
Self {
century: 0,
year: 0,
month: 0,
day: 0,
hour: 0,
minute: 0,
second: 0,
nanos: 0,
}
}
pub(crate) fn update_from_rtc(&mut self) {
while is_updating() {}
self.second = get_cmos(0x00);
self.minute = get_cmos(0x02);
self.hour = get_cmos(0x04);
self.day = get_cmos(0x07);
self.month = get_cmos(0x08);
self.year = get_cmos(0x09) as u16;
let century_register = CENTURY_REGISTER.load(Relaxed);
if century_register != 0 {
self.century = get_cmos(century_register);
}
}
/// convert BCD to binary values
/// ref:https://wiki.osdev.org/CMOS#Reading_All_RTC_Time_and_Date_Registers
pub(crate) fn convert_bcd_to_binary(&mut self, register_b: u8) {
if register_b & 0x04 == 0 {
self.second = (self.second & 0x0F) + ((self.second / 16) * 10);
self.minute = (self.minute & 0x0F) + ((self.minute / 16) * 10);
self.hour =
((self.hour & 0x0F) + (((self.hour & 0x70) / 16) * 10)) | (self.hour & 0x80);
self.day = (self.day & 0x0F) + ((self.day / 16) * 10);
self.month = (self.month & 0x0F) + ((self.month / 16) * 10);
self.year = (self.year & 0x0F) + ((self.year / 16) * 10);
if CENTURY_REGISTER.load(Relaxed) != 0 {
self.century = (self.century & 0x0F) + ((self.century / 16) * 10);
} else {
// 2000 ~ 2099
const DEFAULT_21_CENTURY: u8 = 20;
self.century = DEFAULT_21_CENTURY;
}
}
}
/// convert 12 hour clock to 24 hour clock
pub(crate) fn convert_12_hour_to_24_hour(&mut self, register_b: u8) {
// bit1 in register_b is not set if 12 hour format is enable
// if highest bit in hour is set, then it is pm
if ((register_b & 0x02) == 0) && ((self.hour & 0x80) != 0) {
self.hour = ((self.hour & 0x7F) + 12) % 24;
}
}
/// convert raw year (10, 20 etc.) to real year (2010, 2020 etc.)
pub(crate) fn modify_year(&mut self) {
self.year += self.century as u16 * 100;
}
}
pub(crate) static READ_TIME: Mutex<SystemTime> = Mutex::new(SystemTime::zero());
pub(crate) static START_TIME: Once<SystemTime> = Once::new();
/// get real time
pub fn get_real_time() -> SystemTime {
read()
}
pub fn read() -> SystemTime {
update_time();
*READ_TIME.lock()
}
/// read year,month,day and other data
/// ref: https://wiki.osdev.org/CMOS#Reading_All_RTC_Time_and_Date_Registers
fn update_time() {
let mut last_time: SystemTime;
let mut lock = READ_TIME.lock();
lock.update_from_rtc();
last_time = *lock;
lock.update_from_rtc();
while *lock != last_time {
last_time = *lock;
lock.update_from_rtc();
}
let register_b: u8 = get_cmos(0x0B);
lock.convert_bcd_to_binary(register_b);
lock.convert_12_hour_to_24_hour(register_b);
lock.modify_year();
}
/// Return the `START_TIME`, which is the actual time when doing calibrate.
pub fn read_start_time() -> SystemTime {
*START_TIME.get().unwrap()
}
/// Return the monotonic time from the tsc clocksource.
pub fn read_monotonic_time() -> Duration {
let instant = tsc::read_instant();
Duration::new(instant.secs(), instant.nanos())
}
/// Return the tsc clocksource.
pub fn default_clocksource() -> Arc<ClockSource> {
tsc::CLOCK.get().unwrap().clone()
}

View File

@ -0,0 +1,24 @@
// SPDX-License-Identifier: MPL-2.0
use core::sync::atomic::{AtomicU8, Ordering::Relaxed};
use aster_frame::arch::x86::device::cmos::{get_century_register, CMOS_ADDRESS, CMOS_DATA};
pub(crate) static CENTURY_REGISTER: AtomicU8 = AtomicU8::new(0);
pub fn init() {
let Some(century_register) = get_century_register() else {
return;
};
CENTURY_REGISTER.store(century_register, Relaxed);
}
pub fn get_cmos(reg: u8) -> u8 {
CMOS_ADDRESS.write(reg);
CMOS_DATA.read()
}
pub fn is_updating() -> bool {
CMOS_ADDRESS.write(0x0A);
CMOS_DATA.read() & 0x80 != 0
}

View File

@ -0,0 +1,80 @@
// SPDX-License-Identifier: MPL-2.0
//! This module provide a instance of `ClockSource` based on TSC.
//!
//! Use `init` to initialize this module.
use alloc::sync::Arc;
use core::time::Duration;
use aster_frame::{
arch::{read_tsc, x86::tsc_freq},
timer::Timer,
};
use spin::Once;
use crate::{
clocksource::{ClockSource, Instant},
START_TIME, VDSO_DATA_UPDATE,
};
/// A instance of TSC clocksource.
pub static CLOCK: Once<Arc<ClockSource>> = Once::new();
const MAX_DELAY_SECS: u64 = 100;
/// Init tsc clocksource module.
pub(super) fn init() {
init_clock();
calibrate();
init_timer();
}
fn init_clock() {
CLOCK.call_once(|| {
Arc::new(ClockSource::new(
tsc_freq(),
MAX_DELAY_SECS,
Arc::new(read_tsc),
))
});
}
/// Calibrate the TSC and system time based on the RTC time.
fn calibrate() {
let clock = CLOCK.get().unwrap();
let cycles = clock.read_cycles();
clock.calibrate(cycles);
START_TIME.call_once(crate::read);
}
/// Read an `Instant` of tsc clocksource.
pub(super) fn read_instant() -> Instant {
let clock = CLOCK.get().unwrap();
clock.read_instant()
}
fn update_clocksource(timer: Arc<Timer>) {
let clock = CLOCK.get().unwrap();
clock.update();
// Update vdso data.
if VDSO_DATA_UPDATE.is_completed() {
VDSO_DATA_UPDATE.get().unwrap()(clock.last_instant(), clock.last_cycles());
}
// Setting the timer as `clock.max_delay_secs() - 1` is to avoid
// the actual delay time is greater than the maximum delay seconds due to the latency of execution.
timer.set(Duration::from_secs(clock.max_delay_secs() - 1));
}
fn init_timer() {
let timer = Timer::new(update_clocksource).unwrap();
// The initial timer should be set as `clock.max_delay_secs() >> 1` or something much smaller than `max_delay_secs`.
// This is because the initialization of this timer occurs during system startup,
// and the system will also undergo other initialization processes, during which time interrupts are disabled.
// This results in the actual trigger time of the timer being delayed by about 5 seconds compared to the set time.
// If without KVM, the delayed time will be larger.
// TODO: This is a temporary solution, and should be modified in the future.
timer.set(Duration::from_secs(
CLOCK.get().unwrap().max_delay_secs() >> 1,
));
}