Rename trojan to wrapper and add docs

This commit is contained in:
Zhang Junyang
2023-12-03 00:07:58 +08:00
committed by Tate, Hongliang Tian
parent 12d01ca1e4
commit e71c2701d6
31 changed files with 134 additions and 87 deletions

View File

@ -0,0 +1,16 @@
[package]
name = "aster-boot-wrapper-builder"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bytemuck = { version = "1.14.0", features = ["derive"] }
bitflags = "1.3"
serde = { version = "1.0.192", features = ["derive"] }
xmas-elf = "0.9.1"
[features]
default = ["trojan64"]
trojan64 = []

View File

@ -0,0 +1,220 @@
//! The linux boot wrapper builder.
//!
//! This crate is responsible for building the bzImage. It contains methods to build
//! the wrapper binary and methods to build the bzImage.
//!
//! We should build the jinux kernel as a ELF file, and feed it to the builder to
//! generate the bzImage. The builder will generate the PE/COFF header for the wrapper
//! and concatenate it to the ELF file to make the bzImage.
//!
//! The wrapper should be built into the ELF target and we convert it to a flat binary
//! in the builder.
mod mapping;
mod pe_header;
use std::{
fs::File,
io::{Read, Write},
path::{Path, PathBuf},
};
use xmas_elf::program::SegmentData;
use mapping::{WrapperFileOffset, WrapperVA};
/// We need a flat binary which satisfies PA delta == File delta, and objcopy
/// does not satisfy us well, so we should parse the ELF and do our own
/// objcopy job.
///
/// Interstingly, the resulting binary should be the same as the memory
/// dump of the kernel setup header when it's loaded by the bootloader.
fn trojan_to_flat_binary(elf_file: &[u8]) -> Vec<u8> {
let elf = xmas_elf::ElfFile::new(&elf_file).unwrap();
let mut bin = Vec::<u8>::new();
for program in elf.program_iter() {
if program.get_type().unwrap() == xmas_elf::program::Type::Load {
let SegmentData::Undefined(header_data) = program.get_data(&elf).unwrap() else {
panic!("Unexpected segment data type");
};
let dst_file_offset = usize::from(WrapperFileOffset::from(WrapperVA::from(
program.virtual_addr() as usize,
)));
let dst_file_length = program.file_size() as usize;
if bin.len() < dst_file_offset + dst_file_length {
bin.resize(dst_file_offset + dst_file_length, 0);
}
let dest_slice = bin[dst_file_offset..dst_file_offset + dst_file_length].as_mut();
dest_slice.copy_from_slice(header_data);
}
}
bin
}
/// This function sould be used when generating the Linux x86 Boot setup header.
/// Some fields in the Linux x86 Boot setup header should be filled after assembled.
/// And the filled fields must have the bytes with values of 0xAB. See
/// `framework/aster-frame/src/arch/x86/boot/linux_boot/setup/src/header.S` for more
/// info on this mechanism.
fn fill_header_field(header: &mut [u8], offset: usize, value: &[u8]) {
let size = value.len();
assert_eq!(
&header[offset..offset + size],
vec![0xABu8; size].as_slice(),
"The field {:#x} to be filled must be marked with 0xAB",
offset
);
header[offset..offset + size].copy_from_slice(value);
}
fn fill_legacy_header_fields(
header: &mut [u8],
kernel_len: usize,
trojan_len: usize,
payload_offset: WrapperVA,
) {
fill_header_field(
header,
0x248, /* payload_offset */
&(usize::from(payload_offset) as u32).to_le_bytes(),
);
fill_header_field(
header,
0x24C, /* payload_length */
&(kernel_len as u32).to_le_bytes(),
);
fill_header_field(
header,
0x260, /* init_size */
&((trojan_len + kernel_len) as u32).to_le_bytes(),
);
}
pub fn make_bzimage(path: &Path, kernel_path: &Path, trojan_src: &Path, trojan_out: &Path) {
#[cfg(feature = "trojan64")]
let wrapper = build_trojan_with_arch(trojan_src, trojan_out, &TrojanBuildArch::X86_64);
#[cfg(not(feature = "trojan64"))]
let wrapper = {
let arch = trojan_src
.join("x86_64-i386_pm-none.json")
.canonicalize()
.unwrap();
build_trojan_with_arch(trojan_src, trojan_out, &TrojanBuildArch::Other(arch))
};
let mut trojan_elf = Vec::new();
File::open(wrapper)
.unwrap()
.read_to_end(&mut trojan_elf)
.unwrap();
let mut wrapper = trojan_to_flat_binary(&trojan_elf);
// Pad the header with 8-byte alignment.
wrapper.resize((wrapper.len() + 7) & !7, 0x00);
let mut kernel = Vec::new();
File::open(kernel_path)
.unwrap()
.read_to_end(&mut kernel)
.unwrap();
let payload = kernel;
let trojan_len = wrapper.len();
let payload_len = payload.len();
let payload_offset = WrapperFileOffset::from(trojan_len);
fill_legacy_header_fields(&mut wrapper, payload_len, trojan_len, payload_offset.into());
let mut kernel_image = File::create(path).unwrap();
kernel_image.write_all(&wrapper).unwrap();
kernel_image.write_all(&payload).unwrap();
let image_size = trojan_len + payload_len;
// Since the Linux boot header starts at 0x1f1, we can write the PE/COFF header directly to the
// start of the file without overwriting the Linux boot header.
let pe_header = pe_header::make_pe_coff_header(&trojan_elf, image_size);
assert!(
pe_header.header_at_zero.len() <= 0x1f1,
"PE/COFF header is too large"
);
#[cfg(feature = "trojan64")]
{
use std::io::{Seek, SeekFrom};
kernel_image.seek(SeekFrom::Start(0)).unwrap();
kernel_image.write_all(&pe_header.header_at_zero).unwrap();
kernel_image
.seek(SeekFrom::Start(usize::from(pe_header.relocs.0) as u64))
.unwrap();
kernel_image.write_all(&pe_header.relocs.1).unwrap();
}
}
// We need a custom target file for i386 but not for x86_64.
// The compiler may warn us the X86_64 enum variant is not constructed
// when we are building for i386, but we can ignore it.
#[allow(dead_code)]
enum TrojanBuildArch {
X86_64,
Other(PathBuf),
}
/// Build the trojan binary.
///
/// It will return the path to the built trojan binary.
fn build_trojan_with_arch(source_dir: &Path, out_dir: &Path, arch: &TrojanBuildArch) -> PathBuf {
if !out_dir.exists() {
std::fs::create_dir_all(&out_dir).unwrap();
}
let out_dir = std::fs::canonicalize(out_dir).unwrap();
// Relocations are fewer in release mode. That's why the release mode is more stable than
// the debug mode.
let profile = "release";
let cargo = std::env::var("CARGO").unwrap();
let mut cmd = std::process::Command::new(cargo);
cmd.current_dir(source_dir);
cmd.arg("build");
if profile == "release" {
cmd.arg("--release");
}
cmd.arg("--package").arg("aster-boot-wrapper");
cmd.arg("--target").arg(match arch {
TrojanBuildArch::X86_64 => "x86_64-unknown-none",
TrojanBuildArch::Other(path) => path.to_str().unwrap(),
});
cmd.arg("-Zbuild-std=core,alloc,compiler_builtins");
cmd.arg("-Zbuild-std-features=compiler-builtins-mem");
// Specify the build target directory to avoid cargo running
// into a deadlock reading the workspace files.
cmd.arg("--target-dir").arg(out_dir.as_os_str());
cmd.env_remove("RUSTFLAGS");
cmd.env_remove("CARGO_ENCODED_RUSTFLAGS");
let mut child = cmd.spawn().unwrap();
let status = child.wait().unwrap();
if !status.success() {
panic!(
"Failed to build linux x86 setup header:\n\tcommand `{:?}`\n\treturned {}",
cmd, status
);
}
// Get the path to the wrapper binary.
let arch_name = match arch {
TrojanBuildArch::X86_64 => "x86_64-unknown-none",
TrojanBuildArch::Other(path) => path.file_stem().unwrap().to_str().unwrap(),
};
let trojan_artifact = out_dir
.join(arch_name)
.join(profile)
.join("aster-boot-wrapper");
trojan_artifact.to_owned()
}

View File

@ -0,0 +1,103 @@
//! In the wrapper, VA - SETUP32_LMA == FileOffset - LEGACY_SETUP_SEC_SIZE.
//! And the addresses are specified in the ELF file.
//!
//! This module centralizes the conversion between VA and FileOffset.
use std::{
cmp::PartialOrd,
convert::From,
ops::{Add, Sub},
};
// We chose the legacy setup sections to be 7 so that the setup header
// is page-aligned and the legacy setup section size would be 0x1000.
pub const LEGACY_SETUP_SECS: usize = 7;
pub const LEGACY_SETUP_SEC_SIZE: usize = 0x200 * (LEGACY_SETUP_SECS + 1);
pub const SETUP32_LMA: usize = 0x100000;
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
pub struct WrapperVA {
addr: usize,
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
pub struct WrapperFileOffset {
offset: usize,
}
impl From<usize> for WrapperVA {
fn from(addr: usize) -> Self {
Self { addr }
}
}
impl From<WrapperVA> for usize {
fn from(va: WrapperVA) -> Self {
va.addr
}
}
impl Sub for WrapperVA {
type Output = usize;
fn sub(self, rhs: Self) -> Self::Output {
self.addr - rhs.addr
}
}
impl Add<usize> for WrapperVA {
type Output = Self;
fn add(self, rhs: usize) -> Self::Output {
Self {
addr: self.addr + rhs,
}
}
}
impl From<usize> for WrapperFileOffset {
fn from(offset: usize) -> Self {
Self { offset }
}
}
impl From<WrapperFileOffset> for usize {
fn from(offset: WrapperFileOffset) -> Self {
offset.offset
}
}
impl Sub for WrapperFileOffset {
type Output = usize;
fn sub(self, rhs: Self) -> Self::Output {
self.offset - rhs.offset
}
}
impl Add<usize> for WrapperFileOffset {
type Output = Self;
fn add(self, rhs: usize) -> Self::Output {
Self {
offset: self.offset + rhs,
}
}
}
impl From<WrapperVA> for WrapperFileOffset {
fn from(va: WrapperVA) -> Self {
Self {
offset: va.addr + LEGACY_SETUP_SEC_SIZE - SETUP32_LMA,
}
}
}
impl From<WrapperFileOffset> for WrapperVA {
fn from(offset: WrapperFileOffset) -> Self {
Self {
addr: offset.offset + SETUP32_LMA - LEGACY_SETUP_SEC_SIZE,
}
}
}

View File

@ -0,0 +1,458 @@
//! Big zImage PE/COFF header generation.
//!
//! The definition of the PE/COFF header is in the Microsoft PE/COFF specification:
//! https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
//!
//! The reference to the Linux PE header definition:
//! https://github.com/torvalds/linux/blob/master/include/linux/pe.h
use bytemuck::{Pod, Zeroable};
use serde::Serialize;
use std::{mem::size_of, ops::Range};
use crate::mapping::{WrapperFileOffset, WrapperVA, LEGACY_SETUP_SEC_SIZE, SETUP32_LMA};
// The MS-DOS header.
const MZ_MAGIC: u16 = 0x5a4d; // "MZ"
// The `magic` field in PE header.
const PE_MAGIC: u32 = 0x00004550;
// The `machine` field choices in PE header. Not exhaustive.
#[derive(Serialize, Clone, Copy)]
#[repr(u16)]
enum PeMachineType {
Amd64 = 0x8664,
}
// The `flags` field choices in PE header.
bitflags::bitflags! {
struct PeFlags: u16 {
const RELOCS_STRIPPED = 1;
const EXECUTABLE_IMAGE = 1 << 1;
const LINE_NUMS_STRIPPED = 1 << 2;
const LOCAL_SYMS_STRIPPED = 1 << 3;
const AGGRESIVE_WS_TRIM = 1 << 4;
const LARGE_ADDRESS_AWARE = 1 << 5;
const SIXTEEN_BIT_MACHINE = 1 << 6;
const BYTES_REVERSED_LO = 1 << 7;
const THIRTY_TWO_BIT_MACHINE = 1 << 8;
const DEBUG_STRIPPED = 1 << 9;
const REMOVABLE_RUN_FROM_SWAP = 1 << 10;
const NET_RUN_FROM_SWAP = 1 << 11;
const SYSTEM = 1 << 12;
const DLL = 1 << 13;
const UP_SYSTEM_ONLY = 1 << 14;
}
}
#[derive(Zeroable, Pod, Serialize, Clone, Copy)]
#[repr(C, packed)]
struct PeHdr {
magic: u32, // PE magic
machine: u16, // machine type
sections: u16, // number of sections
timestamp: u32, // time_t
symbol_table: u32, // symbol table offset
symbols: u32, // number of symbols
opt_hdr_size: u16, // size of optional header
flags: u16, // flags
}
// The `magic` field in the PE32+ optional header.
const PE32PLUS_OPT_HDR_MAGIC: u16 = 0x020b;
// The `subsys` field choices in the PE32+ optional header. Not exhaustive.
#[derive(Serialize, Clone, Copy)]
#[repr(u16)]
enum PeImageSubsystem {
EfiApplication = 10,
}
#[derive(Zeroable, Pod, Serialize, Clone, Copy)]
#[repr(C, packed)]
struct Pe32PlusOptHdr {
magic: u16, // file type
ld_major: u8, // linker major version
ld_minor: u8, // linker minor version
text_size: u32, // size of text section(s)
data_size: u32, // size of data section(s)
bss_size: u32, // size of bss section(s)
entry_point: u32, // file offset of entry point
code_base: u32, // relative code addr in ram
image_base: u64, // preferred load address
section_align: u32, // alignment in bytes
file_align: u32, // file alignment in bytes
os_major: u16, // major OS version
os_minor: u16, // minor OS version
image_major: u16, // major image version
image_minor: u16, // minor image version
subsys_major: u16, // major subsystem version
subsys_minor: u16, // minor subsystem version
win32_version: u32, // reserved, must be 0
image_size: u32, // image size
header_size: u32, // header size rounded up to file_align
csum: u32, // checksum
subsys: u16, // subsystem
dll_flags: u16, // more flags!
stack_size_req: u64, // amt of stack requested
stack_size: u64, // amt of stack required
heap_size_req: u64, // amt of heap requested
heap_size: u64, // amt of heap required
loader_flags: u32, // reserved, must be 0
data_dirs: u32, // number of data dir entries
}
#[derive(Zeroable, Pod, Serialize, Clone, Copy)]
#[repr(C, packed)]
struct Pe32PlusOptDataDirEnt {
/// The RVA is the address of the table relative to the base address of the image when the table is loaded.
rva: u32,
size: u32,
}
impl Pe32PlusOptDataDirEnt {
fn none() -> Self {
Self { rva: 0, size: 0 }
}
}
/// The data directories in the PE32+ optional header.
///
/// The `data_dirs` number field in the PE32+ optional header is just an illusion that you can choose to have a
/// subset of the data directories. The actual number of data directories is fixed to 16 and you can only ignore
/// data directories at the end of the list. We ignore data directories after the 8th as what Linux do.
#[derive(Zeroable, Pod, Serialize, Clone, Copy)]
#[repr(C, packed)]
struct Pe32PlusOptDataDirs {
export_table: Pe32PlusOptDataDirEnt,
import_table: Pe32PlusOptDataDirEnt,
resource_table: Pe32PlusOptDataDirEnt,
exception_table: Pe32PlusOptDataDirEnt,
certificate_table: Pe32PlusOptDataDirEnt,
base_relocation_table: Pe32PlusOptDataDirEnt,
}
impl Pe32PlusOptDataDirs {
fn num_dirs() -> usize {
size_of::<Self>() / size_of::<Pe32PlusOptDataDirEnt>()
}
}
// The `flags` field choices in the PE section header.
// Excluding the alignment flags, which is not bitflags.
bitflags::bitflags! {
struct PeSectionHdrFlags: u32 {
const CNT_CODE = 1 << 5;
const CNT_INITIALIZED_DATA = 1 << 6;
const CNT_UNINITIALIZED_DATA = 1 << 7;
const LNK_INFO = 1 << 9;
const LNK_REMOVE = 1 << 11;
const LNK_COMDAT = 1 << 12;
const GPREL = 1 << 15;
const MEM_PURGEABLE = 1 << 16;
const LNK_NRELOC_OVFL = 1 << 24;
const MEM_DISCARDABLE = 1 << 25;
const MEM_NOT_CACHED = 1 << 26;
const MEM_NOT_PAGED = 1 << 27;
const MEM_SHARED = 1 << 28;
const MEM_EXECUTE = 1 << 29;
const MEM_READ = 1 << 30;
const MEM_WRITE = 1 << 31;
}
}
// The `flags` field choices in the PE section header.
#[derive(Serialize, Clone, Copy)]
#[repr(u32)]
enum PeSectionHdrFlagsAlign {
_1Bytes = 0x00100000,
_2Bytes = 0x00200000,
_4Bytes = 0x00300000,
_8Bytes = 0x00400000,
_16Bytes = 0x00500000,
_32Bytes = 0x00600000,
_64Bytes = 0x00700000,
_128Bytes = 0x00800000,
_256Bytes = 0x00900000,
_512Bytes = 0x00A00000,
_1024Bytes = 0x00B00000,
_2048Bytes = 0x00C00000,
_4096Bytes = 0x00D00000,
_8192Bytes = 0x00E00000,
}
#[derive(Zeroable, Pod, Serialize, Clone, Copy)]
#[repr(C, packed)]
struct PeSectionHdr {
name: [u8; 8], // name or "/12\0" string tbl offset
virtual_size: u32, // size of loaded section in RAM
virtual_address: u32, // relative virtual address
raw_data_size: u32, // size of the section
data_addr: u32, // file pointer to first page of sec
relocs: u32, // file pointer to relocation entries
line_numbers: u32, // line numbers!
num_relocs: u16, // number of relocations
num_lin_numbers: u16, // srsly.
flags: u32,
}
struct TrojanSectionAddrInfo {
pub text: Range<WrapperVA>,
pub data: Range<WrapperVA>,
pub bss: Range<WrapperVA>,
/// All the readonly but loaded sections.
pub rodata: Range<WrapperVA>,
}
impl TrojanSectionAddrInfo {
fn from(elf: &xmas_elf::ElfFile) -> Self {
let mut text_start = None;
let mut text_end = None;
let mut data_start = None;
let mut data_end = None;
let mut bss_start = None;
let mut bss_end = None;
let mut rodata_start = None;
let mut rodata_end = None;
for program in elf.program_iter() {
if program.get_type().unwrap() == xmas_elf::program::Type::Load {
let offset = WrapperVA::from(program.virtual_addr() as usize);
let length = program.mem_size() as usize;
if program.flags().is_execute() {
text_start = Some(offset);
text_end = Some(offset + length);
} else if program.flags().is_write() {
data_start = Some(offset);
data_end = Some(offset + program.file_size() as usize);
bss_start = Some(offset + program.file_size() as usize);
bss_end = Some(offset + length);
} else if program.flags().is_read() {
rodata_start = Some(offset);
rodata_end = Some(offset + length);
}
}
}
Self {
text: WrapperVA::from(text_start.unwrap())..WrapperVA::from(text_end.unwrap()),
data: WrapperVA::from(data_start.unwrap())..WrapperVA::from(data_end.unwrap()),
bss: WrapperVA::from(bss_start.unwrap())..WrapperVA::from(bss_end.unwrap()),
rodata: WrapperVA::from(rodata_start.unwrap())..WrapperVA::from(rodata_end.unwrap()),
}
}
fn text_virt_size(&self) -> usize {
self.text.end - self.text.start
}
fn text_file_size(&self) -> usize {
WrapperFileOffset::from(self.text.end) - WrapperFileOffset::from(self.text.start)
}
fn data_virt_size(&self) -> usize {
self.data.end - self.data.start
}
fn data_file_size(&self) -> usize {
WrapperFileOffset::from(self.data.end) - WrapperFileOffset::from(self.data.start)
}
fn bss_virt_size(&self) -> usize {
self.bss.end - self.bss.start
}
fn rodata_virt_size(&self) -> usize {
self.rodata.end - self.rodata.start
}
fn rodata_file_size(&self) -> usize {
WrapperFileOffset::from(self.rodata.end) - WrapperFileOffset::from(self.rodata.start)
}
}
pub struct TrojanPeCoffHeaderBuf {
pub header_at_zero: Vec<u8>,
pub relocs: (WrapperFileOffset, Vec<u8>),
}
pub(crate) fn make_pe_coff_header(setup_elf: &[u8], image_size: usize) -> TrojanPeCoffHeaderBuf {
let elf = xmas_elf::ElfFile::new(setup_elf).unwrap();
let mut bin = Vec::<u8>::new();
// The EFI application loader requires a relocation section.
let relocs = vec![];
// The place where we put the stub, must be after the legacy header and before 0x1000.
let reloc_offset = WrapperFileOffset::from(0x500);
// PE header
let mut pe_hdr = PeHdr {
magic: PE_MAGIC,
machine: PeMachineType::Amd64 as u16,
sections: 0, // this field will be modified later
timestamp: 0,
symbol_table: 0,
symbols: 1, // I don't know why, Linux header.S says it's 1
opt_hdr_size: size_of::<Pe32PlusOptHdr>() as u16,
flags: (PeFlags::EXECUTABLE_IMAGE | PeFlags::DEBUG_STRIPPED | PeFlags::LINE_NUMS_STRIPPED)
.bits,
};
let elf_text_hdr = elf.find_section_by_name(".text").unwrap();
// PE32+ optional header
let pe_opt_hdr = Pe32PlusOptHdr {
magic: PE32PLUS_OPT_HDR_MAGIC,
ld_major: 0x02, // there's no linker to this extent, we do linking by ourselves
ld_minor: 0x14,
text_size: elf_text_hdr.size() as u32,
data_size: 0, // data size is irrelevant
bss_size: 0, // bss size is irrelevant
entry_point: elf.header.pt2.entry_point() as u32,
code_base: elf_text_hdr.address() as u32,
image_base: SETUP32_LMA as u64 - LEGACY_SETUP_SEC_SIZE as u64,
section_align: 0x20,
file_align: 0x20,
os_major: 0,
os_minor: 0,
image_major: 0x3, // see linux/pe.h for more info
image_minor: 0,
subsys_major: 0,
subsys_minor: 0,
win32_version: 0,
image_size: image_size as u32,
header_size: LEGACY_SETUP_SEC_SIZE as u32,
csum: 0,
subsys: PeImageSubsystem::EfiApplication as u16,
dll_flags: 0,
stack_size_req: 0,
stack_size: 0,
heap_size_req: 0,
heap_size: 0,
loader_flags: 0,
data_dirs: Pe32PlusOptDataDirs::num_dirs() as u32,
};
let pe_opt_hdr_data_dirs = Pe32PlusOptDataDirs {
export_table: Pe32PlusOptDataDirEnt::none(),
import_table: Pe32PlusOptDataDirEnt::none(),
resource_table: Pe32PlusOptDataDirEnt::none(),
exception_table: Pe32PlusOptDataDirEnt::none(),
certificate_table: Pe32PlusOptDataDirEnt::none(),
base_relocation_table: Pe32PlusOptDataDirEnt {
rva: usize::from(reloc_offset) as u32,
size: relocs.len() as u32,
},
};
let addr_info = TrojanSectionAddrInfo::from(&elf);
// PE section headers
let mut sec_hdrs = Vec::<PeSectionHdr>::new();
// .reloc
sec_hdrs.push(PeSectionHdr {
name: [b'.', b'r', b'e', b'l', b'o', b'c', 0, 0],
virtual_size: relocs.len() as u32,
virtual_address: usize::from(WrapperVA::from(reloc_offset)) as u32,
raw_data_size: relocs.len() as u32,
data_addr: usize::from(reloc_offset) as u32,
relocs: 0,
line_numbers: 0,
num_relocs: 0,
num_lin_numbers: 0,
flags: (PeSectionHdrFlags::CNT_INITIALIZED_DATA
| PeSectionHdrFlags::MEM_READ
| PeSectionHdrFlags::MEM_DISCARDABLE)
.bits
| PeSectionHdrFlagsAlign::_1Bytes as u32,
});
// .text
sec_hdrs.push(PeSectionHdr {
name: [b'.', b't', b'e', b'x', b't', 0, 0, 0],
virtual_size: addr_info.text_virt_size() as u32,
virtual_address: usize::from(addr_info.text.start) as u32,
raw_data_size: addr_info.text_file_size() as u32,
data_addr: usize::from(WrapperFileOffset::from(addr_info.text.start)) as u32,
relocs: 0,
line_numbers: 0,
num_relocs: 0,
num_lin_numbers: 0,
flags: (PeSectionHdrFlags::CNT_CODE
| PeSectionHdrFlags::MEM_READ
| PeSectionHdrFlags::MEM_EXECUTE)
.bits
| PeSectionHdrFlagsAlign::_16Bytes as u32,
});
// .data
sec_hdrs.push(PeSectionHdr {
name: [b'.', b'd', b'a', b't', b'a', 0, 0, 0],
virtual_size: addr_info.data_virt_size() as u32,
virtual_address: usize::from(addr_info.data.start) as u32,
raw_data_size: addr_info.data_file_size() as u32,
data_addr: usize::from(WrapperFileOffset::from(addr_info.data.start)) as u32,
relocs: 0,
line_numbers: 0,
num_relocs: 0,
num_lin_numbers: 0,
flags: (PeSectionHdrFlags::CNT_INITIALIZED_DATA
| PeSectionHdrFlags::MEM_READ
| PeSectionHdrFlags::MEM_WRITE)
.bits
| PeSectionHdrFlagsAlign::_16Bytes as u32,
});
// .bss
sec_hdrs.push(PeSectionHdr {
name: [b'.', b'b', b's', b's', 0, 0, 0, 0],
virtual_size: addr_info.bss_virt_size() as u32,
virtual_address: usize::from(addr_info.bss.start) as u32,
raw_data_size: 0,
data_addr: 0,
relocs: 0,
line_numbers: 0,
num_relocs: 0,
num_lin_numbers: 0,
flags: (PeSectionHdrFlags::CNT_UNINITIALIZED_DATA
| PeSectionHdrFlags::MEM_READ
| PeSectionHdrFlags::MEM_WRITE)
.bits
| PeSectionHdrFlagsAlign::_16Bytes as u32,
});
// .rodata
sec_hdrs.push(PeSectionHdr {
name: [b'.', b'r', b'o', b'd', b'a', b't', b'a', 0],
virtual_size: addr_info.rodata_virt_size() as u32,
virtual_address: usize::from(addr_info.rodata.start) as u32,
raw_data_size: addr_info.rodata_file_size() as u32,
data_addr: usize::from(WrapperFileOffset::from(addr_info.rodata.start)) as u32,
relocs: 0,
line_numbers: 0,
num_relocs: 0,
num_lin_numbers: 0,
flags: (PeSectionHdrFlags::CNT_INITIALIZED_DATA | PeSectionHdrFlags::MEM_READ).bits
| PeSectionHdrFlagsAlign::_16Bytes as u32,
});
// Write the MS-DOS header
bin.extend_from_slice(&MZ_MAGIC.to_le_bytes());
// Write the MS-DOS stub at 0x3c
bin.extend_from_slice(&[0x0; 0x3c - 0x2]);
// Write the PE header offset, the header is right after the offset field
bin.extend_from_slice(&(0x3cu32 + size_of::<u32>() as u32).to_le_bytes());
// Write the PE header
pe_hdr.sections = sec_hdrs.len() as u16;
bin.extend_from_slice(bytemuck::bytes_of(&pe_hdr));
// Write the PE32+ optional header
bin.extend_from_slice(bytemuck::bytes_of(&pe_opt_hdr));
bin.extend_from_slice(bytemuck::bytes_of(&pe_opt_hdr_data_dirs));
// Write the PE section headers
for sec_hdr in sec_hdrs {
bin.extend_from_slice(bytemuck::bytes_of(&sec_hdr));
}
TrojanPeCoffHeaderBuf {
header_at_zero: bin,
relocs: (reloc_offset, relocs),
}
}