Let page table own frames and remove MemorySet

This commit is contained in:
Zhang Junyang
2024-04-22 15:05:50 +08:00
committed by Tate, Hongliang Tian
parent b6f8661abb
commit ef1ab72ebe
20 changed files with 868 additions and 808 deletions

View File

@ -14,7 +14,7 @@ use crate::vm::{
/// The page table used by iommu maps the device address
/// space to the physical address space.
#[derive(Clone)]
#[derive(Clone, Debug)]
pub(super) struct DeviceMode {}
impl PageTableMode for DeviceMode {

View File

@ -415,7 +415,7 @@ pub unsafe fn unprotect_gpa_range(gpa: TdxGpa, page_num: usize) -> Result<(), Pa
warn!("Misaligned address: {:x}", gpa);
}
let vaddr = paddr_to_vaddr(gpa);
let mut pt = KERNEL_PAGE_TABLE.get().unwrap().lock();
let pt = KERNEL_PAGE_TABLE.get().unwrap();
unsafe {
pt.protect_unchecked(&(vaddr..page_num * PAGE_SIZE), |info| MapProperty {
perm: info.prop.perm,
@ -451,7 +451,7 @@ pub unsafe fn protect_gpa_range(gpa: TdxGpa, page_num: usize) -> Result<(), Page
warn!("Misaligned address: {:x}", gpa);
}
let vaddr = paddr_to_vaddr(gpa);
let mut pt = KERNEL_PAGE_TABLE.get().unwrap().lock();
let pt = KERNEL_PAGE_TABLE.get().unwrap();
unsafe {
pt.protect_unchecked(&(vaddr..page_num * PAGE_SIZE), |info| MapProperty {
perm: info.prop.perm,

View File

@ -1,5 +1,7 @@
// SPDX-License-Identifier: MPL-2.0
use crate::vm::page_table::PageTableError;
/// The error type which is returned from the APIs of this crate.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Error {
@ -10,4 +12,11 @@ pub enum Error {
IoError,
NotEnoughResources,
Overflow,
MapAlreadyMappedVaddr,
}
impl From<PageTableError> for Error {
fn from(_err: PageTableError) -> Error {
Error::AccessDenied
}
}

View File

@ -79,7 +79,6 @@ pub fn init() {
vm::kspace::KERNEL_PAGE_TABLE
.get()
.unwrap()
.lock()
.activate_unchecked();
}
invoke_ffi_init_funcs();

View File

@ -64,19 +64,17 @@ impl KernelStack {
let stack_segment =
VmAllocOptions::new(KERNEL_STACK_SIZE / PAGE_SIZE + 1).alloc_contiguous()?;
// FIXME: modifying the the linear mapping is bad.
let mut page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let guard_page_vaddr = {
let guard_page_paddr = stack_segment.start_paddr();
crate::vm::paddr_to_vaddr(guard_page_paddr)
};
// Safety: the physical guard page address is exclusively used since we allocated it.
unsafe {
page_table
.protect_unchecked(
page_table.protect_unchecked(
&(guard_page_vaddr..guard_page_vaddr + PAGE_SIZE),
perm_op(|p| p - VmPerm::RW),
)
.unwrap();
);
}
Ok(Self {
segment: stack_segment,
@ -93,19 +91,17 @@ impl Drop for KernelStack {
fn drop(&mut self) {
if self.has_guard_page {
// FIXME: modifying the the linear mapping is bad.
let mut page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let guard_page_vaddr = {
let guard_page_paddr = self.segment.start_paddr();
crate::vm::paddr_to_vaddr(guard_page_paddr)
};
// Safety: the physical guard page address is exclusively used since we allocated it.
unsafe {
page_table
.protect_unchecked(
page_table.protect_unchecked(
&(guard_page_vaddr..guard_page_vaddr + PAGE_SIZE),
perm_op(|p| p | VmPerm::RW),
)
.unwrap();
);
}
}
}

View File

@ -214,10 +214,9 @@ fn handle_kernel_page_fault(f: &TrapFrame) {
);
// Do the mapping
let mut page_table = KERNEL_PAGE_TABLE
let page_table = KERNEL_PAGE_TABLE
.get()
.expect("The kernel page table is not initialized when kernel page fault happens")
.lock();
.expect("The kernel page table is not initialized when kernel page fault happens");
let vaddr = (page_fault_vaddr as usize).align_down(PAGE_SIZE);
let paddr = vaddr - LINEAR_MAPPING_BASE_VADDR;

View File

@ -12,7 +12,7 @@ use crate::{cpu::UserContext, prelude::*, task::Task, vm::VmSpace};
/// user mode.
pub struct UserSpace {
/// vm space
vm_space: VmSpace,
vm_space: Arc<VmSpace>,
/// cpu context before entering user space
init_ctx: UserContext,
}
@ -22,7 +22,7 @@ impl UserSpace {
///
/// Each instance maintains a VM address space and the CPU state to enable
/// execution in the user space.
pub fn new(vm_space: VmSpace, init_ctx: UserContext) -> Self {
pub fn new(vm_space: Arc<VmSpace>, init_ctx: UserContext) -> Self {
Self { vm_space, init_ctx }
}

View File

@ -56,14 +56,12 @@ impl DmaCoherent {
// Ensure that the addresses used later will not overflow
start_paddr.checked_add(frame_count * PAGE_SIZE).unwrap();
if !is_cache_coherent {
let mut page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let vaddr = paddr_to_vaddr(start_paddr);
let va_range = vaddr..vaddr + (frame_count * PAGE_SIZE);
// Safety: the address is in the range of `vm_segment`.
unsafe {
page_table
.protect_unchecked(&va_range, cache_policy_op(CachePolicy::Uncacheable))
.unwrap();
page_table.protect_unchecked(&va_range, cache_policy_op(CachePolicy::Uncacheable));
}
}
let start_daddr = match dma_type() {
@ -143,14 +141,12 @@ impl Drop for DmaCoherentInner {
}
}
if !self.is_cache_coherent {
let mut page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let vaddr = paddr_to_vaddr(start_paddr);
let va_range = vaddr..vaddr + (frame_count * PAGE_SIZE);
// Safety: the address is in the range of `vm_segment`.
unsafe {
page_table
.protect_unchecked(&va_range, cache_policy_op(CachePolicy::Writeback))
.unwrap();
page_table.protect_unchecked(&va_range, cache_policy_op(CachePolicy::Writeback));
}
}
remove_dma_mapping(start_paddr, frame_count);
@ -210,19 +206,9 @@ mod test {
.unwrap();
let dma_coherent = DmaCoherent::map(vm_segment.clone(), false).unwrap();
assert!(dma_coherent.paddr() == vm_segment.paddr());
let page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
let page_table = KERNEL_PAGE_TABLE.get().unwrap();
let vaddr = paddr_to_vaddr(vm_segment.paddr());
assert!(
page_table
.query(&(vaddr..vaddr + PAGE_SIZE))
.unwrap()
.next()
.unwrap()
.info
.prop
.cache
== CachePolicy::Uncacheable
);
assert!(page_table.query(vaddr).unwrap().1.prop.cache == CachePolicy::Uncacheable);
}
#[ktest]

View File

@ -8,7 +8,6 @@ use spin::Once;
use super::page_table::PageTableConstsTrait;
use crate::{
arch::mm::{PageTableConsts, PageTableEntry},
sync::SpinLock,
vm::{
page_table::{page_walk, CachePolicy, KernelMode, MapProperty, PageTable},
space::VmPerm,
@ -36,7 +35,7 @@ pub fn vaddr_to_paddr(va: Vaddr) -> Option<Paddr> {
} else {
let root_paddr = crate::arch::mm::current_page_table_paddr();
// Safety: the root page table is valid since we read it from the register.
unsafe { page_walk::<PageTableEntry, PageTableConsts>(root_paddr, va) }
unsafe { page_walk::<PageTableEntry, PageTableConsts>(root_paddr, va).map(|(pa, _)| pa) }
}
}
@ -45,9 +44,8 @@ pub(crate) fn paddr_to_vaddr(pa: Paddr) -> usize {
pa + LINEAR_MAPPING_BASE_VADDR
}
pub static KERNEL_PAGE_TABLE: Once<
SpinLock<PageTable<KernelMode, PageTableEntry, PageTableConsts>>,
> = Once::new();
pub static KERNEL_PAGE_TABLE: Once<PageTable<KernelMode, PageTableEntry, PageTableConsts>> =
Once::new();
/// Initialize the kernel page table.
///
@ -58,7 +56,7 @@ pub static KERNEL_PAGE_TABLE: Once<
/// This function should be called before:
/// - any initializer that modifies the kernel page table.
pub fn init_kernel_page_table() {
let mut kpt = PageTable::<KernelMode>::empty();
let kpt = PageTable::<KernelMode>::empty();
kpt.make_shared_tables(
PageTableConsts::NR_ENTRIES_PER_FRAME / 2..PageTableConsts::NR_ENTRIES_PER_FRAME,
);
@ -118,5 +116,5 @@ pub fn init_kernel_page_table() {
unsafe {
kpt.map_unchecked(&from, &to, prop);
}
KERNEL_PAGE_TABLE.call_once(|| SpinLock::new(kpt));
KERNEL_PAGE_TABLE.call_once(|| kpt);
}

View File

@ -1,282 +0,0 @@
// SPDX-License-Identifier: MPL-2.0
use alloc::collections::{btree_map::Entry, BTreeMap};
use core::fmt;
use align_ext::AlignExt;
use super::{
kspace::KERNEL_PAGE_TABLE,
page_table::{MapInfo, MapOp, MapProperty, PageTable, UserMode},
};
use crate::{
prelude::*,
vm::{
is_page_aligned, page_table::MapStatus, VmAllocOptions, VmFrame, VmFrameVec, VmPerm,
VmReader, VmWriter, PAGE_SIZE,
},
Error,
};
#[derive(Debug, Clone)]
pub struct MapArea {
pub info: MapInfo,
pub start_va: Vaddr,
pub size: usize,
pub mapper: BTreeMap<Vaddr, VmFrame>,
}
pub struct MemorySet {
pub pt: PageTable<UserMode>,
/// all the map area, sort by the start virtual address
areas: BTreeMap<Vaddr, MapArea>,
}
impl MapArea {
pub fn mapped_size(&self) -> usize {
self.size
}
/// This function will map the vitural address to the given physical frames
pub fn new(
start_va: Vaddr,
size: usize,
prop: MapProperty,
physical_frames: VmFrameVec,
) -> Self {
assert!(
is_page_aligned(start_va)
&& is_page_aligned(size)
&& physical_frames.len() == (size / PAGE_SIZE)
);
let mut map_area = Self {
info: MapInfo {
prop,
status: MapStatus::empty(),
},
start_va,
size,
mapper: BTreeMap::new(),
};
let mut current_va = start_va;
let page_size = size / PAGE_SIZE;
let mut phy_frame_iter = physical_frames.iter();
for _ in 0..page_size {
let vm_frame = phy_frame_iter.next().unwrap();
map_area.map_with_physical_address(current_va, vm_frame.clone());
current_va += PAGE_SIZE;
}
map_area
}
pub fn map_with_physical_address(&mut self, va: Vaddr, pa: VmFrame) -> Paddr {
assert!(is_page_aligned(va));
match self.mapper.entry(va) {
Entry::Occupied(e) => panic!("already mapped a input physical address"),
Entry::Vacant(e) => e.insert(pa).start_paddr(),
}
}
pub fn map(&mut self, va: Vaddr) -> Paddr {
assert!(is_page_aligned(va));
match self.mapper.entry(va) {
Entry::Occupied(e) => e.get().start_paddr(),
Entry::Vacant(e) => e
.insert(VmAllocOptions::new(1).alloc_single().unwrap())
.start_paddr(),
}
}
pub fn unmap(&mut self, va: Vaddr) -> Option<VmFrame> {
self.mapper.remove(&va)
}
pub fn write_data(&mut self, addr: usize, data: &[u8]) {
let mut current_start_address = addr;
let mut buf_reader: VmReader = data.into();
for (va, pa) in self.mapper.iter() {
if current_start_address >= *va && current_start_address < va + PAGE_SIZE {
let offset = current_start_address - va;
let _ = pa.writer().skip(offset).write(&mut buf_reader);
if !buf_reader.has_remain() {
return;
}
current_start_address = va + PAGE_SIZE;
}
}
}
pub fn read_data(&self, addr: usize, data: &mut [u8]) {
let mut start = addr;
let mut buf_writer: VmWriter = data.into();
for (va, pa) in self.mapper.iter() {
if start >= *va && start < va + PAGE_SIZE {
let offset = start - va;
let _ = pa.reader().skip(offset).read(&mut buf_writer);
if !buf_writer.has_avail() {
return;
}
start = va + PAGE_SIZE;
}
}
}
}
impl Default for MemorySet {
fn default() -> Self {
Self::new()
}
}
impl MemorySet {
pub fn map(&mut self, area: MapArea) {
if area.size > 0 {
// TODO: check overlap
if let Entry::Vacant(e) = self.areas.entry(area.start_va) {
let area = e.insert(area);
for (va, frame) in area.mapper.iter() {
self.pt.map_frame(*va, frame, area.info.prop).unwrap();
}
} else {
panic!(
"MemorySet::map: MapArea starts from {:#x?} is existed!",
area.start_va
);
}
}
}
/// Determine whether a Vaddr is in a mapped area
pub fn is_mapped(&self, vaddr: Vaddr) -> bool {
let vaddr = vaddr.align_down(PAGE_SIZE);
self.pt
.query(&(vaddr..vaddr + PAGE_SIZE))
.map(|mut i| i.next().is_some())
.unwrap_or(false)
}
/// Return the information of the PTE for the target virtual memory address.
pub fn info(&self, vaddr: Vaddr) -> Option<MapInfo> {
let vaddr = vaddr.align_down(PAGE_SIZE);
self.pt
.query(&(vaddr..vaddr + PAGE_SIZE))
.map(|mut i| i.next().unwrap().info)
.ok()
}
pub fn new() -> Self {
let page_table = KERNEL_PAGE_TABLE.get().unwrap().lock().fork();
Self {
pt: page_table,
areas: BTreeMap::new(),
}
}
pub fn unmap(&mut self, va: Vaddr) -> Result<()> {
if let Some(area) = self.areas.remove(&va) {
for (va, _) in area.mapper.iter() {
self.pt.unmap(&(*va..*va + PAGE_SIZE)).unwrap();
}
Ok(())
} else {
Err(Error::PageFault)
}
}
pub fn clear(&mut self) {
for area in self.areas.values_mut() {
for (va, _) in area.mapper.iter() {
self.pt.unmap(&(*va..*va + PAGE_SIZE)).unwrap();
}
}
self.areas.clear();
}
pub fn write_bytes(&mut self, addr: usize, data: &[u8]) -> Result<()> {
let mut current_addr = addr;
let mut remain = data.len();
let start_write = false;
let mut offset = 0usize;
for (va, area) in self.areas.iter_mut() {
if current_addr >= *va && current_addr < area.size + va {
if !area.info.prop.perm.contains(VmPerm::W) {
return Err(Error::PageFault);
}
let write_len = remain.min(area.size + va - current_addr);
area.write_data(current_addr, &data[offset..(offset + write_len)]);
offset += write_len;
remain -= write_len;
// remain -= (va.0 + area.size - current_addr).min(remain);
if remain == 0 {
return Ok(());
}
current_addr = va + area.size;
} else if start_write {
return Err(Error::PageFault);
}
}
Err(Error::PageFault)
}
pub fn read_bytes(&self, addr: usize, data: &mut [u8]) -> Result<()> {
let mut current_addr = addr;
let mut remain = data.len();
let mut offset = 0usize;
let start_read = false;
for (va, area) in self.areas.iter() {
if current_addr >= *va && current_addr < area.size + va {
let read_len = remain.min(area.size + va - current_addr);
area.read_data(current_addr, &mut data[offset..(offset + read_len)]);
remain -= read_len;
offset += read_len;
// remain -= (va.0 + area.size - current_addr).min(remain);
if remain == 0 {
return Ok(());
}
current_addr = va + area.size;
} else if start_read {
return Err(Error::PageFault);
}
}
Err(Error::PageFault)
}
pub fn protect(&mut self, addr: Vaddr, op: impl MapOp) {
let va = addr..addr + PAGE_SIZE;
// Temporary solution, since the `MapArea` currently only represents
// a single `VmFrame`.
if let Some(areas) = self.areas.get_mut(&addr) {
areas.info.prop = op(areas.info);
}
self.pt.protect(&va, op).unwrap();
}
}
impl Clone for MemorySet {
fn clone(&self) -> Self {
let mut ms = Self::new();
for area in self.areas.values() {
ms.map(area.clone());
}
ms
}
}
impl Drop for MemorySet {
fn drop(&mut self) {
self.clear();
}
}
impl fmt::Debug for MemorySet {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("MemorySet")
.field("areas", &self.areas)
.field("page_table_root", &self.pt.root_paddr())
.finish()
}
}

View File

@ -14,7 +14,6 @@ mod frame_allocator;
pub(crate) mod heap_allocator;
mod io;
pub(crate) mod kspace;
mod memory_set;
mod offset;
mod options;
pub(crate) mod page_table;
@ -25,17 +24,15 @@ use core::ops::Range;
use spin::Once;
pub(crate) use self::kspace::paddr_to_vaddr;
pub use self::{
dma::{Daddr, DmaCoherent, DmaDirection, DmaStream, DmaStreamSlice, HasDaddr},
frame::{VmFrame, VmFrameVec, VmFrameVecIter, VmReader, VmSegment, VmWriter},
io::VmIo,
kspace::vaddr_to_paddr,
memory_set::{MapArea, MemorySet},
options::VmAllocOptions,
page_table::PageTable,
space::{VmMapOptions, VmPerm, VmSpace},
};
pub(crate) use self::{kspace::paddr_to_vaddr, page_table::PageTable};
use crate::boot::memory_region::{MemoryRegion, MemoryRegionType};
pub const PAGE_SIZE: usize = 0x1000;

View File

@ -1,22 +1,32 @@
// SPDX-License-Identifier: MPL-2.0
use alloc::{boxed::Box, sync::Arc};
use core::{any::TypeId, marker::PhantomData, mem::size_of, ops::Range};
use alloc::sync::Arc;
use core::{any::TypeId, mem::size_of, ops::Range};
use super::{
KernelMode, MapInfo, MapOp, MapProperty, PageTable, PageTableConstsTrait, PageTableEntryTrait,
PageTableError, PageTableFrame, PageTableMode, PtfRef,
Child, KernelMode, MapInfo, MapOp, MapProperty, PageTable, PageTableConstsTrait,
PageTableEntryTrait, PageTableError, PageTableFrame, PageTableMode, PtfRef,
};
use crate::{
sync::SpinLock,
vm::{paddr_to_vaddr, Paddr, Vaddr},
sync::{ArcSpinLockGuard, SpinLock},
vm::{paddr_to_vaddr, Paddr, Vaddr, VmFrame},
};
/// The cursor for forward traversal over the page table.
///
/// Each method may move the cursor forward, doing mapping unmaping, or
/// querying this slot.
///
/// Doing mapping is somewhat like a depth-first search on a tree, except
/// that we modify the tree while traversing it. We use a stack to simulate
/// the recursion.
///
/// Any read or write accesses to nodes require exclusive access on the
/// entire path from the root to the node. But cursor can be created without
/// holding the lock, and can release the lock after yeilding the current
/// slot while querying over the page table with a range. Simultaneous
/// reading or writing to the same range in the page table will not produce
/// consistent results, only validity is guaranteed.
pub(super) struct PageTableCursor<
'a,
M: PageTableMode,
@ -27,9 +37,80 @@ pub(super) struct PageTableCursor<
[(); C::NR_LEVELS]:,
{
stack: [Option<PtfRef<E, C>>; C::NR_LEVELS],
lock_guard: [Option<ArcSpinLockGuard<PageTableFrame<E, C>>>; C::NR_LEVELS],
level: usize,
va: Vaddr,
_phantom_ref: PhantomData<&'a PageTable<M, E, C>>,
}
#[derive(Debug, Clone)]
pub(super) enum MapOption {
Map {
frame: VmFrame,
prop: MapProperty,
},
MapUntyped {
pa: Paddr,
len: usize,
prop: MapProperty,
},
Unmap {
len: usize,
},
}
impl MapOption {
fn paddr(&self) -> Option<Paddr> {
match self {
MapOption::Map { frame, prop } => Some(frame.start_paddr()),
MapOption::MapUntyped { pa, len, prop } => Some(*pa),
MapOption::Unmap { len } => None,
}
}
fn prop(&self) -> Option<MapProperty> {
match self {
MapOption::Map { frame, prop } => Some(*prop),
MapOption::MapUntyped { pa, len, prop } => Some(*prop),
MapOption::Unmap { len } => None,
}
}
fn len(&self) -> usize {
match self {
// A VmFrame currently has a fixed size of 1 base page.
MapOption::Map { frame, prop } => crate::arch::mm::PageTableConsts::BASE_PAGE_SIZE,
MapOption::MapUntyped { pa, len, prop } => *len,
MapOption::Unmap { len: l } => *l,
}
}
fn consume(&mut self, len: usize) -> Self {
match self {
MapOption::Map { frame, prop } => {
debug_assert_eq!(len, crate::arch::mm::PageTableConsts::BASE_PAGE_SIZE);
let ret = self.clone();
*self = MapOption::Unmap { len: 0 };
ret
}
MapOption::MapUntyped { pa, len: l, prop } => {
debug_assert!(*l >= len);
let ret = MapOption::MapUntyped {
pa: *pa,
len,
prop: *prop,
};
*self = MapOption::MapUntyped {
pa: *pa + len,
len: *l - len,
prop: *prop,
};
ret
}
MapOption::Unmap { len: l } => {
debug_assert!(*l >= len);
let ret = MapOption::Unmap { len };
*l -= len;
ret
}
}
}
}
impl<M: PageTableMode, E: PageTableEntryTrait, C: PageTableConstsTrait> PageTableCursor<'_, M, E, C>
@ -40,11 +121,12 @@ where
pub(super) fn new(pt: &PageTable<M, E, C>, va: Vaddr) -> Self {
let mut stack = core::array::from_fn(|_| None);
stack[0] = Some(pt.root_frame.clone());
let lock_guard = core::array::from_fn(|_| None);
Self {
stack,
lock_guard,
level: C::NR_LEVELS,
va,
_phantom_ref: PhantomData,
}
}
@ -73,38 +155,45 @@ where
/// it may cause undefined behavior if the caller does not ensure that the
/// mapped address is valid and the page table is not corrupted if it is used
/// by the kernel.
pub(super) unsafe fn map(&mut self, len: usize, create: Option<(Paddr, MapProperty)>) {
pub(super) unsafe fn map(&mut self, option: MapOption) {
self.acquire_locks();
let len = option.len();
let end = self.va + len;
let mut create = create;
while self.va != end {
let top_spin = self.stack[C::NR_LEVELS - self.level].clone().unwrap();
let mut top_ptf = top_spin.lock();
// Go down if the page size is too big or alignment is not satisfied.
let is_pa_not_aligned = create
.map(|(pa, _)| pa % C::page_size(self.level) != 0)
let mut option = option;
while self.va < end {
// Skip if we are unmapping and it is already invalid.
let cur_pte = unsafe { self.cur_pte_ptr().read() };
if matches!(option, MapOption::Unmap { .. }) && !cur_pte.is_valid() {
self.next_slot();
continue;
}
// We check among the conditions that may lead to a level down.
let is_pa_not_aligned = option
.paddr()
.map(|pa| pa % C::page_size(self.level) != 0)
.unwrap_or(false);
let map_but_too_huge = self.level > C::HIGHEST_TRANSLATION_LEVEL
&& !matches!(option, MapOption::Unmap { .. });
// We ensure not mapping in reserved kernel shared tables or releasing it.
// Although it may be an invariant for all architectures and will be optimized
// out by the compiler since `C::NR_LEVELS - 1 > C::HIGHEST_TRANSLATION_LEVEL`.
let kshared_lvl_down =
TypeId::of::<M>() == TypeId::of::<KernelMode>() && self.level >= C::NR_LEVELS - 1;
if self.level > C::HIGHEST_TRANSLATION_LEVEL
if map_but_too_huge
|| kshared_lvl_down
|| self.va % C::page_size(self.level) != 0
|| self.va + C::page_size(self.level) > end
|| is_pa_not_aligned
{
let ld_prop = create
.map(|(pa, prop)| prop)
.unwrap_or(MapProperty::new_invalid());
self.level_down(&mut top_ptf, Some(ld_prop));
let ld_prop = option.prop().unwrap_or(MapProperty::new_invalid());
self.level_down(Some(ld_prop));
continue;
}
self.map_page(&mut top_ptf, create);
create = create.map(|(pa, prop)| (pa + C::page_size(self.level), prop));
drop(top_ptf);
self.map_page(option.consume(C::page_size(self.level)));
self.next_slot();
}
self.release_locks();
}
/// Apply the given operation to all the mappings within the range.
@ -112,39 +201,44 @@ where
&mut self,
len: usize,
op: impl MapOp,
allow_protect_invalid: bool,
) -> Result<(), PageTableError> {
self.acquire_locks();
let end = self.va + len;
while self.va != end {
let top_spin = self.stack[C::NR_LEVELS - self.level].clone().unwrap();
let mut top_ptf = top_spin.lock();
let cur_pte = unsafe { self.cur_pte_ptr(&top_ptf).read() };
while self.va < end {
let cur_pte = unsafe { self.cur_pte_ptr().read() };
if !cur_pte.is_valid() {
if !allow_protect_invalid {
return Err(PageTableError::ProtectingInvalid);
}
self.next_slot();
continue;
}
// Go down if it's not a last node or if the page size is too big.
if !(cur_pte.is_huge() || self.level == 1)
|| (self.va % C::page_size(self.level)) != 0
|| self.va + C::page_size(self.level) > end
{
self.level_down(&mut top_ptf, Some(op(cur_pte.info())));
self.level_down(Some(op(cur_pte.info())));
continue;
}
// Apply the operation.
unsafe {
self.cur_pte_ptr(&top_ptf).write(E::new(
self.cur_pte_ptr().write(E::new(
cur_pte.paddr(),
op(cur_pte.info()),
cur_pte.is_huge(),
true,
))
};
drop(top_ptf);
self.next_slot();
}
self.release_locks();
Ok(())
}
fn cur_pte_ptr(&self, ptf: &PageTableFrame<E, C>) -> *mut E {
fn cur_pte_ptr(&self) -> *mut E {
let ptf = self.lock_guard[C::NR_LEVELS - self.level].as_ref().unwrap();
let frame_addr = paddr_to_vaddr(ptf.inner.start_paddr());
let offset = C::in_frame_index(self.va, self.level);
(frame_addr + offset * size_of::<E>()) as *mut E
@ -162,24 +256,26 @@ where
/// Go up a level. We release the current frame if it has no mappings since the cursor only moves
/// forward. And we will do the final cleanup using `level_up` when the cursor is dropped.
///
/// This method requires locks acquired before calling it. The discarded level will be unlocked.
fn level_up(&mut self) {
let last_map_cnt_is_zero = {
let top_ptf_ref = self.stack[C::NR_LEVELS - self.level].clone().unwrap();
let top_ptf = top_ptf_ref.lock();
let top_ptf = self.lock_guard[C::NR_LEVELS - self.level].as_ref().unwrap();
top_ptf.map_count == 0
};
self.stack[C::NR_LEVELS - self.level] = None;
self.lock_guard[C::NR_LEVELS - self.level] = None;
self.level += 1;
let can_release_child =
TypeId::of::<M>() == TypeId::of::<KernelMode>() && self.level < C::NR_LEVELS;
if can_release_child && last_map_cnt_is_zero {
let top_ptf_ref = self.stack[C::NR_LEVELS - self.level].clone().unwrap();
let mut top_ptf = top_ptf_ref.lock();
let top_ptf = self.lock_guard[C::NR_LEVELS - self.level]
.as_deref_mut()
.unwrap();
let frame_addr = paddr_to_vaddr(top_ptf.inner.start_paddr());
let offset = C::in_frame_index(self.va, self.level);
unsafe { ((frame_addr + offset) as *mut E).write(E::new_invalid()) }
let idx = C::in_frame_index(self.va, self.level);
top_ptf.child.as_mut().unwrap()[idx] = None;
unsafe { (frame_addr as *mut E).add(idx).write(E::new_invalid()) }
top_ptf.child[idx] = None;
top_ptf.map_count -= 1;
}
}
@ -190,18 +286,30 @@ where
/// If that may happen the map property of intermediate level `prop` should be
/// passed in correctly. Whether the map property matters in an intermediate
/// level is architecture-dependent.
unsafe fn level_down(&mut self, top_ptf: &mut PageTableFrame<E, C>, prop: Option<MapProperty>) {
if top_ptf.child.is_none() {
top_ptf.child = Some(Box::new(core::array::from_fn(|_| None)));
///
/// This method requires write locks acquired before calling it. The newly added
/// level will still hold the lock.
unsafe fn level_down(&mut self, prop: Option<MapProperty>) {
debug_assert!(self.level > 1);
// Check if the child frame exists.
let nxt_lvl_frame = {
let idx = C::in_frame_index(self.va, self.level);
let child = {
let top_ptf = self.lock_guard[C::NR_LEVELS - self.level].as_ref().unwrap();
&top_ptf.child[idx]
};
let nxt_lvl_frame = if let Some(nxt_lvl_frame) =
top_ptf.child.as_ref().unwrap()[C::in_frame_index(self.va, self.level)].clone()
{
nxt_lvl_frame
if let Some(Child::PageTable(nxt_lvl_frame)) = child {
Some(nxt_lvl_frame.clone())
} else {
None
}
};
// Create a new child frame if it does not exist. Sure it could be done only if
// it is allowed to modify the page table.
let nxt_lvl_frame = nxt_lvl_frame.unwrap_or_else(|| {
let mut new_frame = PageTableFrame::<E, C>::new();
// If it already maps a huge page, we should split it.
let pte = unsafe { self.cur_pte_ptr(top_ptf).read() };
let pte = unsafe { self.cur_pte_ptr().read() };
if pte.is_valid() && pte.is_huge() {
let pa = pte.paddr();
let prop = pte.info().prop;
@ -215,7 +323,7 @@ where
}
new_frame.map_count = C::NR_ENTRIES_PER_FRAME;
unsafe {
self.cur_pte_ptr(top_ptf).write(E::new(
self.cur_pte_ptr().write(E::new(
new_frame.inner.start_paddr(),
prop,
false,
@ -223,10 +331,10 @@ where
))
}
} else {
// The child couldn't be valid here cause child is none and it's not huge.
// The child couldn't be valid here because child is none and it's not huge.
debug_assert!(!pte.is_valid());
unsafe {
self.cur_pte_ptr(top_ptf).write(E::new(
self.cur_pte_ptr().write(E::new(
new_frame.inner.start_paddr(),
prop.unwrap(),
false,
@ -234,12 +342,16 @@ where
))
}
}
let top_ptf = self.lock_guard[C::NR_LEVELS - self.level]
.as_deref_mut()
.unwrap();
top_ptf.map_count += 1;
let new_frame_ref = Arc::new(SpinLock::new(new_frame));
top_ptf.child.as_mut().unwrap()[C::in_frame_index(self.va, self.level)] =
Some(new_frame_ref.clone());
top_ptf.child[C::in_frame_index(self.va, self.level)] =
Some(Child::PageTable(new_frame_ref.clone()));
new_frame_ref
};
});
self.lock_guard[C::NR_LEVELS - self.level + 1] = Some(nxt_lvl_frame.lock_arc());
self.stack[C::NR_LEVELS - self.level + 1] = Some(nxt_lvl_frame);
self.level -= 1;
}
@ -247,46 +359,61 @@ where
/// Map or unmap the page pointed to by the cursor (which could be large).
/// If the physical address and the map property are not provided, it unmaps
/// the current page.
unsafe fn map_page(
&mut self,
top_ptf: &mut PageTableFrame<E, C>,
create: Option<(Paddr, MapProperty)>,
) {
let already_mapped = unsafe { self.cur_pte_ptr(top_ptf).read().is_valid() };
if let Some((pa, prop)) = create {
unsafe {
self.cur_pte_ptr(top_ptf)
.write(E::new(pa, prop, self.level > 1, true))
}
if !already_mapped {
top_ptf.map_count += 1;
}
} else {
unsafe { self.cur_pte_ptr(top_ptf).write(E::new_invalid()) }
if already_mapped {
///
/// This method requires write locks acquired before calling it.
unsafe fn map_page(&mut self, option: MapOption) {
let pte_ptr = self.cur_pte_ptr();
let top_ptf = self.lock_guard[C::NR_LEVELS - self.level]
.as_deref_mut()
.unwrap();
let child = {
let idx = C::in_frame_index(self.va, self.level);
if top_ptf.child[idx].is_some() {
top_ptf.child[idx] = None;
top_ptf.map_count -= 1;
}
}
// If it dismantle a child page table frame by mapping a huge page
// we ensure it to be released.
if let Some(child) = &mut top_ptf.child {
let idx = C::in_frame_index(self.va, self.level);
if child[idx].is_some() {
child[idx] = None;
}
&mut top_ptf.child[idx]
};
match option {
MapOption::Map { frame, prop } => {
let pa = frame.start_paddr();
unsafe {
pte_ptr.write(E::new(pa, prop, self.level > 1, true));
}
*child = Some(Child::Frame(frame));
top_ptf.map_count += 1;
}
MapOption::MapUntyped { pa, len, prop } => {
debug_assert_eq!(len, C::page_size(self.level));
unsafe {
pte_ptr.write(E::new(pa, prop, self.level > 1, true));
}
top_ptf.map_count += 1;
}
MapOption::Unmap { len } => {
debug_assert_eq!(len, C::page_size(self.level));
unsafe { pte_ptr.write(E::new_invalid()) }
}
}
}
}
impl<'a, M: PageTableMode, E: PageTableEntryTrait, C: PageTableConstsTrait> Drop
for PageTableCursor<'a, M, E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
fn drop(&mut self) {
while self.level < C::NR_LEVELS {
self.level_up();
fn acquire_locks(&mut self) {
for i in 0..=C::NR_LEVELS - self.level {
let Some(ref ptf) = self.stack[i] else {
panic!("Invalid values in PT cursor stack while acuqiring locks");
};
debug_assert!(self.lock_guard[i].is_none());
self.lock_guard[i] = Some(ptf.lock_arc());
}
}
fn release_locks(&mut self) {
for i in (0..=C::NR_LEVELS - self.level).rev() {
let Some(ref ptf) = self.stack[i] else {
panic!("Invalid values in PT cursor stack while releasing locks");
};
debug_assert!(self.lock_guard[i].is_some());
self.lock_guard[i] = None;
}
}
}
@ -315,9 +442,23 @@ where
}
}
pub struct PageTableQueryResult {
pub va: Range<Vaddr>,
pub info: MapInfo,
#[derive(Clone, Debug)]
pub enum PageTableQueryResult {
NotMapped {
va: Vaddr,
len: usize,
},
Mapped {
va: Vaddr,
frame: VmFrame,
info: MapInfo,
},
MappedUntyped {
va: Vaddr,
pa: Paddr,
len: usize,
info: MapInfo,
},
}
impl<'a, M: PageTableMode, E: PageTableEntryTrait, C: PageTableConstsTrait> Iterator
@ -329,36 +470,63 @@ where
type Item = PageTableQueryResult;
fn next(&mut self) -> Option<Self::Item> {
self.cursor.acquire_locks();
if self.cursor.va >= self.end_va {
return None;
}
loop {
let level = self.cursor.level;
let va = self.cursor.va;
let top_spin = self.cursor.stack[C::NR_LEVELS - level].clone().unwrap();
let mut top_ptf = top_spin.lock();
let cur_pte = unsafe { self.cursor.cur_pte_ptr(&top_ptf).read() };
let top_ptf = self.cursor.lock_guard[C::NR_LEVELS - level]
.as_ref()
.unwrap();
let cur_pte = unsafe { self.cursor.cur_pte_ptr().read() };
// Yeild if it's not a valid node.
if !cur_pte.is_valid() {
return None;
self.cursor.next_slot();
self.cursor.release_locks();
return Some(PageTableQueryResult::NotMapped {
va,
len: C::page_size(level),
});
}
// Go down if it's not a last node.
if !(cur_pte.is_huge() || level == 1) {
// Safety: alignment checked and there should be a child frame here.
debug_assert!(cur_pte.is_valid());
// Safety: it's valid and there should be a child frame here.
unsafe {
self.cursor.level_down(&mut top_ptf, None);
self.cursor.level_down(None);
}
continue;
}
// Yield the current mapping.
let mapped_range = self.cursor.va..self.cursor.va + C::page_size(self.cursor.level);
let map_info = cur_pte.info();
drop(top_ptf);
let idx = C::in_frame_index(self.cursor.va, self.cursor.level);
match top_ptf.child[idx] {
Some(Child::Frame(ref frame)) => {
let frame = frame.clone();
self.cursor.next_slot();
return Some(PageTableQueryResult {
va: mapped_range,
self.cursor.release_locks();
return Some(PageTableQueryResult::Mapped {
va,
frame,
info: map_info,
});
}
Some(Child::PageTable(_)) => {
panic!("The child couldn't be page table here because it's valid and not huge");
}
None => {
self.cursor.next_slot();
self.cursor.release_locks();
return Some(PageTableQueryResult::MappedUntyped {
va,
pa: cur_pte.paddr(),
len: C::page_size(level),
info: map_info,
});
}
}
}
}
}

View File

@ -0,0 +1,110 @@
// SPDX-License-Identifier: MPL-2.0
use alloc::{boxed::Box, sync::Arc};
use super::{PageTableConstsTrait, PageTableEntryTrait};
use crate::{
sync::SpinLock,
vm::{VmAllocOptions, VmFrame},
};
/// A page table frame.
/// It's also frequently referred to as a page table in many architectural documentations.
/// Cloning a page table frame will create a deep copy of the page table.
#[derive(Debug)]
pub(super) struct PageTableFrame<E: PageTableEntryTrait, C: PageTableConstsTrait>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
pub inner: VmFrame,
/// TODO: all the following fields can be removed if frame metadata is introduced.
/// Here we allow 2x space overhead each frame temporarily.
#[allow(clippy::type_complexity)]
pub child: Box<[Option<Child<E, C>>; C::NR_ENTRIES_PER_FRAME]>,
/// The number of mapped frames or page tables.
/// This is to track if we can free itself.
pub map_count: usize,
}
pub(super) type PtfRef<E, C> = Arc<SpinLock<PageTableFrame<E, C>>>;
#[derive(Debug)]
pub(super) enum Child<E: PageTableEntryTrait, C: PageTableConstsTrait>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
PageTable(PtfRef<E, C>),
Frame(VmFrame),
}
impl<E: PageTableEntryTrait, C: PageTableConstsTrait> Clone for Child<E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
/// This is a shallow copy.
fn clone(&self) -> Self {
match self {
Child::PageTable(ptf) => Child::PageTable(ptf.clone()),
Child::Frame(frame) => Child::Frame(frame.clone()),
}
}
}
impl<E: PageTableEntryTrait, C: PageTableConstsTrait> PageTableFrame<E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
pub(super) fn new() -> Self {
Self {
inner: VmAllocOptions::new(1).alloc_single().unwrap(),
child: Box::new(core::array::from_fn(|_| None)),
map_count: 0,
}
}
}
impl<E: PageTableEntryTrait, C: PageTableConstsTrait> Clone for PageTableFrame<E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
/// Make a deep copy of the page table.
/// The child page tables are also being deep copied.
fn clone(&self) -> Self {
let new_frame = VmAllocOptions::new(1).alloc_single().unwrap();
let new_ptr = new_frame.as_mut_ptr() as *mut E;
let ptr = self.inner.as_ptr() as *const E;
let child = Box::new(core::array::from_fn(|i| {
self.child[i].as_ref().map(|child| match child {
Child::PageTable(ptf) => unsafe {
let frame = ptf.lock();
let cloned = frame.clone();
let pte = ptr.add(i).read();
new_ptr.add(i).write(E::new(
cloned.inner.start_paddr(),
pte.info().prop,
false,
false,
));
Child::PageTable(Arc::new(SpinLock::new(cloned)))
},
Child::Frame(frame) => {
unsafe {
let pte = ptr.add(i).read();
new_ptr.add(i).write(pte);
}
Child::Frame(frame.clone())
}
})
}));
Self {
inner: new_frame,
child,
map_count: self.map_count,
}
}
}

View File

@ -1,29 +1,32 @@
// SPDX-License-Identifier: MPL-2.0
use alloc::{boxed::Box, sync::Arc};
use core::{fmt::Debug, marker::PhantomData, mem::size_of, ops::Range};
use core::{fmt::Debug, marker::PhantomData, mem::size_of, ops::Range, panic};
use crate::{
arch::mm::{activate_page_table, PageTableConsts, PageTableEntry},
sync::SpinLock,
vm::{paddr_to_vaddr, Paddr, Vaddr, VmAllocOptions, VmFrame, VmFrameVec, VmPerm, PAGE_SIZE},
vm::{paddr_to_vaddr, Paddr, Vaddr, VmAllocOptions, VmFrameVec, VmPerm},
};
mod properties;
pub use properties::*;
mod frame;
use frame::*;
mod cursor;
use cursor::*;
pub(crate) use cursor::{PageTableIter, PageTableQueryResult};
#[cfg(ktest)]
mod test;
#[derive(Debug)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum PageTableError {
InvalidVaddr(Vaddr),
InvalidVaddrRange(Range<Vaddr>),
InvalidVaddrRange(Vaddr, Vaddr),
VaddrNotAligned(Vaddr),
VaddrRangeNotAligned(Range<Vaddr>),
VaddrRangeNotAligned(Vaddr, Vaddr),
PaddrNotAligned(Paddr),
PaddrRangeNotAligned(Range<Paddr>),
PaddrRangeNotAligned(Vaddr, Vaddr),
// Protecting a mapping that does not exist.
ProtectingInvalid,
}
@ -31,27 +34,34 @@ pub enum PageTableError {
/// This is a compile-time technique to force the frame developers to distinguish
/// between the kernel global page table instance, process specific user page table
/// instance, and device page table instances.
pub trait PageTableMode: 'static {
pub trait PageTableMode: Clone + Debug + 'static {
/// The range of virtual addresses that the page table can manage.
const VADDR_RANGE: Range<Vaddr>;
/// Check if the given range is within the valid virtual address range.
fn encloses(r: &Range<Vaddr>) -> bool {
Self::VADDR_RANGE.start <= r.start && r.end <= Self::VADDR_RANGE.end
}
}
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct UserMode {}
impl PageTableMode for UserMode {
const VADDR_RANGE: Range<Vaddr> = 0..super::MAX_USERSPACE_VADDR;
}
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct KernelMode {}
impl PageTableMode for KernelMode {
const VADDR_RANGE: Range<Vaddr> = super::KERNEL_BASE_VADDR..super::KERNEL_END_VADDR;
}
/// A page table instance.
pub struct PageTable<
/// A handle to a page table.
/// A page table can track the lifetime of the mapped physical frames.
#[derive(Debug)]
pub(crate) struct PageTable<
M: PageTableMode,
E: PageTableEntryTrait = PageTableEntry,
C: PageTableConstsTrait = PageTableConsts,
@ -63,70 +73,15 @@ pub struct PageTable<
_phantom: PhantomData<M>,
}
/// A page table frame.
/// It's also frequently referred to as a page table in many architectural documentations.
#[derive(Debug)]
struct PageTableFrame<E: PageTableEntryTrait, C: PageTableConstsTrait>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
pub inner: VmFrame,
#[allow(clippy::type_complexity)]
pub child: Option<Box<[Option<PtfRef<E, C>>; C::NR_ENTRIES_PER_FRAME]>>,
/// The number of mapped frames or page tables.
/// This is to track if we can free itself.
pub map_count: usize,
}
type PtfRef<E, C> = Arc<SpinLock<PageTableFrame<E, C>>>;
impl<E: PageTableEntryTrait, C: PageTableConstsTrait> PageTableFrame<E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
pub(crate) fn new() -> Self {
Self {
inner: VmAllocOptions::new(1).alloc_single().unwrap(),
child: None,
map_count: 0,
}
}
}
impl<E: PageTableEntryTrait, C: PageTableConstsTrait> PageTable<UserMode, E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
pub(crate) fn map_frame(
&mut self,
vaddr: Vaddr,
frame: &VmFrame,
prop: MapProperty,
) -> Result<(), PageTableError> {
if vaddr % C::BASE_PAGE_SIZE != 0 {
return Err(PageTableError::VaddrNotAligned(vaddr));
}
let va_range = vaddr
..vaddr
.checked_add(PAGE_SIZE)
.ok_or(PageTableError::InvalidVaddr(vaddr))?;
if !range_contains(&UserMode::VADDR_RANGE, &va_range) {
return Err(PageTableError::InvalidVaddrRange(va_range));
}
// Safety: modification to the user page table is safe.
unsafe {
self.map_frame_unchecked(vaddr, frame, prop);
}
Ok(())
}
pub(crate) fn map_frames(
&mut self,
&self,
vaddr: Vaddr,
frames: &VmFrameVec,
frames: VmFrameVec,
prop: MapProperty,
) -> Result<(), PageTableError> {
if vaddr % C::BASE_PAGE_SIZE != 0 {
@ -136,8 +91,11 @@ where
..vaddr
.checked_add(frames.nbytes())
.ok_or(PageTableError::InvalidVaddr(vaddr))?;
if !range_contains(&UserMode::VADDR_RANGE, &va_range) {
return Err(PageTableError::InvalidVaddrRange(va_range));
if !UserMode::encloses(&va_range) {
return Err(PageTableError::InvalidVaddrRange(
va_range.start,
va_range.end,
));
}
// Safety: modification to the user page table is safe.
unsafe {
@ -146,34 +104,12 @@ where
Ok(())
}
pub(crate) fn map(
&mut self,
vaddr: &Range<Vaddr>,
paddr: &Range<Paddr>,
prop: MapProperty,
) -> Result<(), PageTableError> {
pub(crate) fn unmap(&self, vaddr: &Range<Vaddr>) -> Result<(), PageTableError> {
if vaddr.start % C::BASE_PAGE_SIZE != 0 || vaddr.end % C::BASE_PAGE_SIZE != 0 {
return Err(PageTableError::VaddrRangeNotAligned(vaddr.clone()));
return Err(PageTableError::VaddrRangeNotAligned(vaddr.start, vaddr.end));
}
if paddr.start % C::BASE_PAGE_SIZE != 0 || paddr.end % C::BASE_PAGE_SIZE != 0 {
return Err(PageTableError::PaddrRangeNotAligned(paddr.clone()));
}
if !range_contains(&UserMode::VADDR_RANGE, vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.clone()));
}
// Safety: modification to the user page table is safe.
unsafe {
self.map_unchecked(vaddr, paddr, prop);
}
Ok(())
}
pub(crate) fn unmap(&mut self, vaddr: &Range<Vaddr>) -> Result<(), PageTableError> {
if vaddr.start % C::BASE_PAGE_SIZE != 0 || vaddr.end % C::BASE_PAGE_SIZE != 0 {
return Err(PageTableError::VaddrRangeNotAligned(vaddr.clone()));
}
if !range_contains(&UserMode::VADDR_RANGE, vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.clone()));
if !UserMode::encloses(vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.start, vaddr.end));
}
// Safety: modification to the user page table is safe.
unsafe {
@ -183,18 +119,18 @@ where
}
pub(crate) fn protect(
&mut self,
&self,
vaddr: &Range<Vaddr>,
op: impl MapOp,
) -> Result<(), PageTableError> {
if vaddr.start % C::BASE_PAGE_SIZE != 0 || vaddr.end % C::BASE_PAGE_SIZE != 0 {
return Err(PageTableError::VaddrRangeNotAligned(vaddr.clone()));
return Err(PageTableError::VaddrRangeNotAligned(vaddr.start, vaddr.end));
}
if !range_contains(&UserMode::VADDR_RANGE, vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.clone()));
if !UserMode::encloses(vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.start, vaddr.end));
}
// Safety: modification to the user page table is safe.
unsafe { self.protect_unchecked(vaddr, op) }
unsafe { self.cursor(vaddr.start).protect(vaddr.len(), op, false) }
}
pub(crate) fn activate(&self) {
@ -204,6 +140,59 @@ where
self.activate_unchecked();
}
}
/// Remove all write permissions from the user page table and mark the page
/// table as copy-on-write, and the create a handle to the new page table.
///
/// That is, new page tables will be created when needed if a write operation
/// is performed on either of the user page table handles. Calling this function
/// performs no significant operations.
pub(crate) fn fork_copy_on_write(&self) -> Self {
unsafe {
self.protect_unchecked(&UserMode::VADDR_RANGE, perm_op(|perm| perm & !VmPerm::W));
}
// TODO: implement the copy-on-write mechanism. This is a simple workaround.
let new_root_frame = VmAllocOptions::new(1).alloc_single().unwrap();
let root_frame = self.root_frame.lock();
let half_of_entries = C::NR_ENTRIES_PER_FRAME / 2;
let new_ptr = new_root_frame.as_mut_ptr() as *mut E;
let ptr = root_frame.inner.as_ptr() as *const E;
let child = Box::new(core::array::from_fn(|i| {
if i < half_of_entries {
// This is user space, deep copy the child.
root_frame.child[i].as_ref().map(|child| match child {
Child::PageTable(ptf) => unsafe {
let frame = ptf.lock();
let cloned = frame.clone();
let pte = ptr.add(i).read();
new_ptr.add(i).write(E::new(
cloned.inner.start_paddr(),
pte.info().prop,
false,
false,
));
Child::PageTable(Arc::new(SpinLock::new(cloned)))
},
Child::Frame(_) => panic!("Unexpected frame child."),
})
} else {
// This is kernel space, share the child.
unsafe {
let pte = ptr.add(i).read();
new_ptr.add(i).write(pte);
}
root_frame.child[i].clone()
}
}));
PageTable::<UserMode, E, C> {
root_frame: Arc::new(SpinLock::new(PageTableFrame::<E, C> {
inner: new_root_frame,
child,
map_count: root_frame.map_count,
})),
_phantom: PhantomData,
}
}
}
impl<E: PageTableEntryTrait, C: PageTableConstsTrait> PageTable<KernelMode, E, C>
@ -213,22 +202,21 @@ where
{
/// Create a new user page table.
///
/// This should be the only way to create a user page table, that is
/// This should be the only way to create the first user page table, that is
/// to fork the kernel page table with all the kernel mappings shared.
pub(crate) fn fork(&self) -> PageTable<UserMode, E, C> {
///
/// Then, one can use a user page table to call [`fork_copy_on_write`], creating
/// other child page tables.
pub(crate) fn create_user_page_table(&self) -> PageTable<UserMode, E, C> {
let new_root_frame = VmAllocOptions::new(1).alloc_single().unwrap();
let root_frame = self.root_frame.lock();
// Safety: The root_paddr is the root of a valid page table and
// it does not overlap with the new page.
unsafe {
let src = paddr_to_vaddr(root_frame.inner.start_paddr()) as *const E;
let dst = paddr_to_vaddr(new_root_frame.start_paddr()) as *mut E;
core::ptr::copy_nonoverlapping(src, dst, C::NR_ENTRIES_PER_FRAME);
}
let half_of_entries = C::NR_ENTRIES_PER_FRAME / 2;
new_root_frame.copy_from_frame(&root_frame.inner);
let child = Box::new(core::array::from_fn(|i| root_frame.child[i].clone()));
PageTable::<UserMode, E, C> {
root_frame: Arc::new(SpinLock::new(PageTableFrame::<E, C> {
inner: new_root_frame,
child: root_frame.child.clone(),
child,
map_count: root_frame.map_count,
})),
_phantom: PhantomData,
@ -246,11 +234,8 @@ where
let end = root_index.end;
assert!(end <= C::NR_ENTRIES_PER_FRAME);
let mut root_frame = self.root_frame.lock();
if root_frame.child.is_none() {
root_frame.child = Some(Box::new(core::array::from_fn(|_| None)));
}
for i in start..end {
let no_such_child = root_frame.child.as_ref().unwrap()[i].is_none();
let no_such_child = root_frame.child[i].is_none();
if no_such_child {
let frame = PageTableFrame::<E, C>::new();
let pte_ptr = (root_frame.inner.start_paddr() + i * size_of::<E>()) as *mut E;
@ -267,8 +252,7 @@ where
false,
));
}
let child_array = root_frame.child.as_mut().unwrap();
child_array[i] = Some(Arc::new(SpinLock::new(frame)));
root_frame.child[i] = Some(Child::PageTable(Arc::new(SpinLock::new(frame))));
root_frame.map_count += 1;
}
}
@ -293,74 +277,68 @@ where
self.root_frame.lock().inner.start_paddr()
}
/// Translate a virtual address to a physical address using the page table.
pub(crate) fn translate(&self, vaddr: Vaddr) -> Option<Paddr> {
// Safety: The root frame is a valid page table frame so the address is valid.
unsafe { page_walk::<E, C>(self.root_paddr(), vaddr) }
}
pub(crate) unsafe fn map_frame_unchecked(
&mut self,
vaddr: Vaddr,
frame: &VmFrame,
prop: MapProperty,
) {
self.cursor(vaddr)
.map(PAGE_SIZE, Some((frame.start_paddr(), prop)));
}
pub(crate) unsafe fn map_frames_unchecked(
&mut self,
&self,
vaddr: Vaddr,
frames: &VmFrameVec,
frames: VmFrameVec,
prop: MapProperty,
) {
let mut cursor = self.cursor(vaddr);
for frame in frames.iter() {
cursor.map(PAGE_SIZE, Some((frame.start_paddr(), prop)));
for frame in frames.into_iter() {
cursor.map(MapOption::Map { frame, prop });
}
}
pub(crate) unsafe fn map_unchecked(
&mut self,
&self,
vaddr: &Range<Vaddr>,
paddr: &Range<Paddr>,
prop: MapProperty,
) {
self.cursor(vaddr.start).map(MapOption::MapUntyped {
pa: paddr.start,
len: vaddr.len(),
prop,
});
}
pub(crate) unsafe fn unmap_unchecked(&self, vaddr: &Range<Vaddr>) {
self.cursor(vaddr.start)
.map(vaddr.len(), Some((paddr.start, prop)));
.map(MapOption::Unmap { len: vaddr.len() });
}
pub(crate) unsafe fn unmap_unchecked(&mut self, vaddr: &Range<Vaddr>) {
self.cursor(vaddr.start).map(vaddr.len(), None);
pub(crate) unsafe fn protect_unchecked(&self, vaddr: &Range<Vaddr>, op: impl MapOp) {
self.cursor(vaddr.start)
.protect(vaddr.len(), op, true)
.unwrap();
}
pub(crate) unsafe fn protect_unchecked(
&mut self,
vaddr: &Range<Vaddr>,
op: impl MapOp,
) -> Result<(), PageTableError> {
self.cursor(vaddr.start).protect(vaddr.len(), op)
}
pub(crate) fn query(
/// Query about the mappings of a range of virtual addresses.
pub(crate) fn query_range(
&'a self,
vaddr: &Range<Vaddr>,
) -> Result<PageTableIter<'a, M, E, C>, PageTableError> {
if vaddr.start % C::BASE_PAGE_SIZE != 0 || vaddr.end % C::BASE_PAGE_SIZE != 0 {
return Err(PageTableError::InvalidVaddrRange(vaddr.clone()));
return Err(PageTableError::InvalidVaddrRange(vaddr.start, vaddr.end));
}
if !range_contains(&M::VADDR_RANGE, vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.clone()));
if !M::encloses(vaddr) {
return Err(PageTableError::InvalidVaddrRange(vaddr.start, vaddr.end));
}
Ok(PageTableIter::new(self, vaddr))
}
/// Query about the mapping of a single byte at the given virtual address.
pub(crate) fn query(&self, vaddr: Vaddr) -> Option<(Paddr, MapInfo)> {
// Safety: The root frame is a valid page table frame so the address is valid.
unsafe { page_walk::<E, C>(self.root_paddr(), vaddr) }
}
pub(crate) unsafe fn activate_unchecked(&self) {
activate_page_table(self.root_paddr(), CachePolicy::Writeback);
}
/// Create a new cursor for the page table initialized at the given virtual address.
/// Create a new mutating cursor for the page table.
/// The cursor is initialized atthe given virtual address.
fn cursor(&self, va: usize) -> PageTableCursor<'a, M, E, C> {
PageTableCursor::new(self, va)
}
@ -376,9 +354,23 @@ where
}
}
impl<M: PageTableMode, E: PageTableEntryTrait, C: PageTableConstsTrait> Clone for PageTable<M, E, C>
where
[(); C::NR_ENTRIES_PER_FRAME]:,
[(); C::NR_LEVELS]:,
{
fn clone(&self) -> Self {
let frame = self.root_frame.lock();
PageTable {
root_frame: Arc::new(SpinLock::new(frame.clone())),
_phantom: PhantomData,
}
}
}
/// A software emulation of the MMU address translation process.
/// It returns the physical address of the given virtual address if a valid mapping
/// exists for the given virtual address.
/// It returns the physical address of the given virtual address and the mapping info
/// if a valid mapping exists for the given virtual address.
///
/// # Safety
///
@ -387,13 +379,13 @@ where
pub(super) unsafe fn page_walk<E: PageTableEntryTrait, C: PageTableConstsTrait>(
root_paddr: Paddr,
vaddr: Vaddr,
) -> Option<Paddr> {
) -> Option<(Paddr, MapInfo)> {
let mut cur_level = C::NR_LEVELS;
let mut cur_pte = {
let frame_addr = paddr_to_vaddr(root_paddr);
let offset = C::in_frame_index(vaddr, cur_level);
// Safety: The offset does not exceed the value of PAGE_SIZE.
unsafe { &*(frame_addr as *const E).add(offset) }
unsafe { (frame_addr as *const E).add(offset).read() }
};
while cur_level > 1 {
@ -409,17 +401,16 @@ pub(super) unsafe fn page_walk<E: PageTableEntryTrait, C: PageTableConstsTrait>(
let frame_addr = paddr_to_vaddr(cur_pte.paddr());
let offset = C::in_frame_index(vaddr, cur_level);
// Safety: The offset does not exceed the value of PAGE_SIZE.
unsafe { &*(frame_addr as *const E).add(offset) }
unsafe { (frame_addr as *const E).add(offset).read() }
};
}
if cur_pte.is_valid() {
Some(cur_pte.paddr() + (vaddr & (C::page_size(cur_level) - 1)))
Some((
cur_pte.paddr() + (vaddr & (C::page_size(cur_level) - 1)),
cur_pte.info(),
))
} else {
None
}
}
fn range_contains<Idx: PartialOrd<Idx>>(parent: &Range<Idx>, child: &Range<Idx>) -> bool {
parent.start <= child.start && parent.end >= child.end
}

View File

@ -116,12 +116,12 @@ pub struct MapProperty {
pub perm: VmPerm,
/// Global.
/// A global page is not evicted from the TLB when TLB is flushed.
pub global: bool,
pub(crate) global: bool,
/// The properties of a memory mapping that is used and defined as flags in PTE
/// in specific architectures on an ad hoc basis. The logics provided by the
/// page table module will not be affected by this field.
pub extension: u64,
pub cache: CachePolicy,
pub(crate) extension: u64,
pub(crate) cache: CachePolicy,
}
/// Any functions that could be used to modify the map property of a memory mapping.
@ -129,7 +129,7 @@ pub struct MapProperty {
/// To protect a virtual address range, you can either directly use a `MapProperty` object,
///
/// ```rust
/// let page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
/// let page_table = KERNEL_PAGE_TABLE.get().unwrap();
/// let prop = MapProperty {
/// perm: VmPerm::R,
/// global: true,
@ -142,7 +142,7 @@ pub struct MapProperty {
/// use a map operation
///
/// ```rust
/// let page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
/// let page_table = KERNEL_PAGE_TABLE.get().unwrap();
/// page_table.map(0..PAGE_SIZE, cache_policy_op(CachePolicy::Writeback));
/// page_table.map(0..PAGE_SIZE, perm_op(|perm| perm | VmPerm::R));
/// ```
@ -150,7 +150,7 @@ pub struct MapProperty {
/// or even customize a map operation using a closure
///
/// ```rust
/// let page_table = KERNEL_PAGE_TABLE.get().unwrap().lock();
/// let page_table = KERNEL_PAGE_TABLE.get().unwrap();
/// page_table.map(0..PAGE_SIZE, |info| {
/// assert!(info.prop.perm.contains(VmPerm::R));
/// MapProperty {
@ -164,8 +164,8 @@ pub struct MapProperty {
pub trait MapOp: Fn(MapInfo) -> MapProperty {}
impl<F> MapOp for F where F: Fn(MapInfo) -> MapProperty {}
// These implementations allow a property to be used as an overriding map operation.
// Other usages seems pointless.
// These implementations allow a property or permission to be used as an
// overriding map operation. Other usages seems pointless.
impl FnOnce<(MapInfo,)> for MapProperty {
type Output = MapProperty;
extern "rust-call" fn call_once(self, _: (MapInfo,)) -> MapProperty {
@ -182,6 +182,31 @@ impl Fn<(MapInfo,)> for MapProperty {
*self
}
}
impl FnOnce<(MapInfo,)> for VmPerm {
type Output = MapProperty;
extern "rust-call" fn call_once(self, info: (MapInfo,)) -> MapProperty {
MapProperty {
perm: self,
..info.0.prop
}
}
}
impl FnMut<(MapInfo,)> for VmPerm {
extern "rust-call" fn call_mut(&mut self, info: (MapInfo,)) -> MapProperty {
MapProperty {
perm: *self,
..info.0.prop
}
}
}
impl Fn<(MapInfo,)> for VmPerm {
extern "rust-call" fn call(&self, info: (MapInfo,)) -> MapProperty {
MapProperty {
perm: *self,
..info.0.prop
}
}
}
/// A life saver for creating a map operation that sets the cache policy.
pub fn cache_policy_op(cache: CachePolicy) -> impl MapOp {
@ -229,6 +254,18 @@ pub struct MapInfo {
pub status: MapStatus,
}
impl MapInfo {
pub fn contains(&self, perm: VmPerm) -> bool {
self.prop.perm.contains(perm)
}
pub fn accessed(&self) -> bool {
self.status.contains(MapStatus::ACCESSED)
}
pub fn dirty(&self) -> bool {
self.status.contains(MapStatus::DIRTY)
}
}
pub trait PageTableEntryTrait: Clone + Copy + Sized + Pod + Debug {
/// Create a new invalid page table flags that causes page faults
/// when the MMU meets them.

View File

@ -7,65 +7,84 @@ const PAGE_SIZE: usize = 4096;
#[ktest]
fn test_range_check() {
let mut pt = PageTable::<UserMode>::empty();
let pt = PageTable::<UserMode>::empty();
let good_va = 0..PAGE_SIZE;
let bad_va = 0..PAGE_SIZE + 1;
let bad_va2 = LINEAR_MAPPING_BASE_VADDR..LINEAR_MAPPING_BASE_VADDR + PAGE_SIZE;
let to = PAGE_SIZE..PAGE_SIZE * 2;
assert!(pt.query(&good_va).is_ok());
assert!(pt.query(&bad_va).is_err());
assert!(pt.query(&bad_va2).is_err());
let to = VmAllocOptions::new(1).alloc().unwrap();
assert!(pt.query_range(&good_va).is_ok());
assert!(pt.query_range(&bad_va).is_err());
assert!(pt.query_range(&bad_va2).is_err());
assert!(pt.unmap(&good_va).is_ok());
assert!(pt.unmap(&bad_va).is_err());
assert!(pt.unmap(&bad_va2).is_err());
assert!(pt
.map(&good_va, &to, MapProperty::new_general(VmPerm::R))
.map_frames(
good_va.start,
to.clone(),
MapProperty::new_general(VmPerm::R)
)
.is_ok());
assert!(pt.map(&bad_va, &to, MapProperty::new_invalid()).is_err());
assert!(pt.map(&bad_va2, &to, MapProperty::new_invalid()).is_err());
assert!(pt
.map_frames(bad_va2.start, to.clone(), MapProperty::new_invalid())
.is_err());
}
#[ktest]
fn test_map_unmap() {
let mut pt = PageTable::<UserMode>::empty();
let pt = PageTable::<UserMode>::empty();
let from = PAGE_SIZE..PAGE_SIZE * 2;
let frame = VmAllocOptions::new(1).alloc_single().unwrap();
let frames = VmAllocOptions::new(1).alloc().unwrap();
let start_paddr = frames.get(0).unwrap().start_paddr();
let prop = MapProperty::new_general(VmPerm::RW);
pt.map_frame(from.start, &frame, prop).unwrap();
assert_eq!(
pt.translate(from.start + 10).unwrap(),
frame.start_paddr() + 10
);
pt.map_frames(from.start, frames.clone(), prop).unwrap();
assert_eq!(pt.query(from.start + 10).unwrap().0, start_paddr + 10);
pt.unmap(&from).unwrap();
assert!(pt.translate(from.start + 10).is_none());
assert!(pt.query(from.start + 10).is_none());
let from_ppn = 13245..512 * 512 + 23456;
let to_ppn = from_ppn.start - 11010..from_ppn.end - 11010;
let from = PAGE_SIZE * from_ppn.start..PAGE_SIZE * from_ppn.end;
let to = PAGE_SIZE * to_ppn.start..PAGE_SIZE * to_ppn.end;
pt.map(&from, &to, prop).unwrap();
unsafe { pt.map_unchecked(&from, &to, prop) };
for i in 0..100 {
let offset = i * (PAGE_SIZE + 1000);
assert_eq!(
pt.translate(from.start + offset).unwrap(),
to.start + offset
);
assert_eq!(pt.query(from.start + offset).unwrap().0, to.start + offset);
}
let unmap = PAGE_SIZE * 123..PAGE_SIZE * 3434;
pt.unmap(&unmap).unwrap();
for i in 0..100 {
let offset = i * (PAGE_SIZE + 10);
if unmap.start <= from.start + offset && from.start + offset < unmap.end {
assert!(pt.translate(from.start + offset).is_none());
assert!(pt.query(from.start + offset).is_none());
} else {
assert_eq!(
pt.translate(from.start + offset).unwrap(),
to.start + offset
);
assert_eq!(pt.query(from.start + offset).unwrap().0, to.start + offset);
}
}
}
#[ktest]
fn test_user_copy_on_write() {
let pt = PageTable::<UserMode>::empty();
let from = PAGE_SIZE..PAGE_SIZE * 2;
let frames = VmAllocOptions::new(1).alloc().unwrap();
let start_paddr = frames.get(0).unwrap().start_paddr();
let prop = MapProperty::new_general(VmPerm::RW);
pt.map_frames(from.start, frames.clone(), prop).unwrap();
assert_eq!(pt.query(from.start + 10).unwrap().0, start_paddr + 10);
pt.unmap(&from).unwrap();
assert!(pt.query(from.start + 10).is_none());
pt.map_frames(from.start, frames.clone(), prop).unwrap();
assert_eq!(pt.query(from.start + 10).unwrap().0, start_paddr + 10);
let child_pt = pt.fork_copy_on_write();
assert_eq!(pt.query(from.start + 10).unwrap().0, start_paddr + 10);
assert_eq!(child_pt.query(from.start + 10).unwrap().0, start_paddr + 10);
pt.unmap(&from).unwrap();
assert!(pt.query(from.start + 10).is_none());
assert_eq!(child_pt.query(from.start + 10).unwrap().0, start_paddr + 10);
}
type Qr = PageTableQueryResult;
#[derive(Debug)]
@ -79,23 +98,29 @@ impl PageTableConstsTrait for BasePageTableConsts {
}
#[ktest]
fn test_base_protect_query() {
let mut pt = PageTable::<UserMode, PageTableEntry, BasePageTableConsts>::empty();
fn test_base_protect_query_range() {
let pt = PageTable::<UserMode, PageTableEntry, BasePageTableConsts>::empty();
let from_ppn = 1..1000;
let from = PAGE_SIZE * from_ppn.start..PAGE_SIZE * from_ppn.end;
let to = PAGE_SIZE * 1000..PAGE_SIZE * 1999;
let prop = MapProperty::new_general(VmPerm::RW);
pt.map(&from, &to, prop).unwrap();
for (Qr { va, info }, i) in pt.query(&from).unwrap().zip(from_ppn) {
unsafe { pt.map_unchecked(&from, &to, prop) };
for (qr, i) in pt.query_range(&from).unwrap().zip(from_ppn) {
let Qr::MappedUntyped { va, pa, len, info } = qr else {
panic!("Expected MappedUntyped, got {:?}", qr);
};
assert_eq!(info.prop.perm, VmPerm::RW);
assert_eq!(info.prop.cache, CachePolicy::Writeback);
assert_eq!(va, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
assert_eq!(va..va + len, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
}
let prot = PAGE_SIZE * 18..PAGE_SIZE * 20;
pt.protect(&prot, perm_op(|p| p - VmPerm::W)).unwrap();
for (Qr { va, info }, i) in pt.query(&prot).unwrap().zip(18..20) {
for (qr, i) in pt.query_range(&prot).unwrap().zip(18..20) {
let Qr::MappedUntyped { va, pa, len, info } = qr else {
panic!("Expected MappedUntyped, got {:?}", qr);
};
assert_eq!(info.prop.perm, VmPerm::R);
assert_eq!(va, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
assert_eq!(va..va + len, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
}
}
@ -110,8 +135,8 @@ impl PageTableConstsTrait for VeryHugePageTableConsts {
}
#[ktest]
fn test_large_protect_query() {
let mut pt = PageTable::<UserMode, PageTableEntry, VeryHugePageTableConsts>::empty();
fn test_large_protect_query_range() {
let pt = PageTable::<UserMode, PageTableEntry, VeryHugePageTableConsts>::empty();
let gmult = 512 * 512;
let from_ppn = gmult - 512..gmult + gmult + 514;
let to_ppn = gmult - 512 - 512..gmult + gmult - 512 + 514;
@ -123,20 +148,23 @@ fn test_large_protect_query() {
let from = PAGE_SIZE * from_ppn.start..PAGE_SIZE * from_ppn.end;
let to = PAGE_SIZE * to_ppn.start..PAGE_SIZE * to_ppn.end;
let prop = MapProperty::new_general(VmPerm::RW);
pt.map(&from, &to, prop).unwrap();
for (Qr { va, info }, i) in pt.query(&from).unwrap().zip(0..512 + 2 + 2) {
unsafe { pt.map_unchecked(&from, &to, prop) };
for (qr, i) in pt.query_range(&from).unwrap().zip(0..512 + 2 + 2) {
let Qr::MappedUntyped { va, pa, len, info } = qr else {
panic!("Expected MappedUntyped, got {:?}", qr);
};
assert_eq!(info.prop.perm, VmPerm::RW);
assert_eq!(info.prop.cache, CachePolicy::Writeback);
if i < 512 + 2 {
assert_eq!(va.start, from.start + i * PAGE_SIZE * 512);
assert_eq!(va.end, from.start + (i + 1) * PAGE_SIZE * 512);
assert_eq!(va, from.start + i * PAGE_SIZE * 512);
assert_eq!(va + len, from.start + (i + 1) * PAGE_SIZE * 512);
} else {
assert_eq!(
va.start,
va,
from.start + (512 + 2) * PAGE_SIZE * 512 + (i - 512 - 2) * PAGE_SIZE
);
assert_eq!(
va.end,
va + len,
from.start + (512 + 2) * PAGE_SIZE * 512 + (i - 512 - 2 + 1) * PAGE_SIZE
);
}
@ -144,24 +172,33 @@ fn test_large_protect_query() {
let ppn = from_ppn.start + 18..from_ppn.start + 20;
let va = PAGE_SIZE * ppn.start..PAGE_SIZE * ppn.end;
pt.protect(&va, perm_op(|p| p - VmPerm::W)).unwrap();
for (r, i) in pt
.query(&(va.start - PAGE_SIZE..va.start))
for (qr, i) in pt
.query_range(&(va.start - PAGE_SIZE..va.start))
.unwrap()
.zip(ppn.start - 1..ppn.start)
{
assert_eq!(r.info.prop.perm, VmPerm::RW);
assert_eq!(r.va, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
let Qr::MappedUntyped { va, pa, len, info } = qr else {
panic!("Expected MappedUntyped, got {:?}", qr);
};
assert_eq!(info.prop.perm, VmPerm::RW);
assert_eq!(va..va + len, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
}
for (Qr { va, info }, i) in pt.query(&va).unwrap().zip(ppn.clone()) {
for (qr, i) in pt.query_range(&va).unwrap().zip(ppn.clone()) {
let Qr::MappedUntyped { va, pa, len, info } = qr else {
panic!("Expected MappedUntyped, got {:?}", qr);
};
assert_eq!(info.prop.perm, VmPerm::R);
assert_eq!(va, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
assert_eq!(va..va + len, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
}
for (r, i) in pt
.query(&(va.end..va.end + PAGE_SIZE))
for (qr, i) in pt
.query_range(&(va.end..va.end + PAGE_SIZE))
.unwrap()
.zip(ppn.end..ppn.end + 1)
{
assert_eq!(r.info.prop.perm, VmPerm::RW);
assert_eq!(r.va, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
let Qr::MappedUntyped { va, pa, len, info } = qr else {
panic!("Expected MappedUntyped, got {:?}", qr);
};
assert_eq!(info.prop.perm, VmPerm::RW);
assert_eq!(va..va + len, i * PAGE_SIZE..(i + 1) * PAGE_SIZE);
}
}

View File

@ -2,14 +2,24 @@
use core::ops::Range;
use align_ext::AlignExt;
use bitflags::bitflags;
use super::{is_page_aligned, MapArea, MemorySet, VmFrameVec, VmIo};
use super::{
is_page_aligned,
kspace::KERNEL_PAGE_TABLE,
page_table::{
MapInfo, MapOp, PageTable, PageTableConstsTrait, PageTableQueryResult as PtQr, UserMode,
},
VmFrameVec, VmIo, PAGE_SIZE,
};
use crate::{
arch::mm::PageTableFlags,
arch::mm::{PageTableConsts, PageTableEntry},
prelude::*,
sync::Mutex,
vm::{page_table::MapProperty, PAGE_SIZE},
vm::{
page_table::{CachePolicy, MapProperty, PageTableIter},
VmFrame, MAX_USERSPACE_VADDR,
},
Error,
};
@ -23,29 +33,28 @@ use crate::{
///
/// A newly-created `VmSpace` is not backed by any physical memory pages.
/// To provide memory pages for a `VmSpace`, one can allocate and map
/// physical memory (`VmFrames`) to the `VmSpace`.
#[derive(Debug, Clone)]
/// physical memory (`VmFrame`s) to the `VmSpace`.
#[derive(Debug)]
pub struct VmSpace {
memory_set: Arc<Mutex<MemorySet>>,
pt: PageTable<UserMode>,
}
impl VmSpace {
/// Creates a new VM address space.
pub fn new() -> Self {
Self {
memory_set: Arc::new(Mutex::new(MemorySet::new())),
pt: KERNEL_PAGE_TABLE.get().unwrap().create_user_page_table(),
}
}
/// Activate the page table.
pub fn activate(&self) {
self.memory_set.lock().pt.activate();
pub(crate) fn activate(&self) {
self.pt.activate();
}
/// Maps some physical memory pages into the VM space according to the given
/// options, returning the address where the mapping is created.
///
/// the frames in variable frames will delete after executing this function
/// The ownership of the frames will be transferred to the `VmSpace`.
///
/// For more information, see `VmMapOptions`.
pub fn map(&self, frames: VmFrameVec, options: &VmMapOptions) -> Result<Vaddr> {
@ -53,56 +62,49 @@ impl VmSpace {
return Err(Error::InvalidArgs);
}
// if can overwrite, the old mapping should be unmapped.
if options.can_overwrite {
let addr = options.addr.unwrap();
let size = frames.nbytes();
let _ = self.unmap(&(addr..addr + size));
// If overwrite is forbidden, we should check if there are existing mappings
if !options.can_overwrite {
let end = addr.checked_add(size).ok_or(Error::Overflow)?;
for qr in self.query_range(&(addr..end)).unwrap() {
if matches!(qr, VmQueryResult::Mapped { .. }) {
return Err(Error::MapAlreadyMappedVaddr);
}
// debug!("map to vm space: 0x{:x}", options.addr.unwrap());
let mut memory_set = self.memory_set.lock();
// FIXME: This is only a hack here. The interface of MapArea cannot simply deal with unmap part of memory,
// so we only map MapArea of page size now.
// Ensure that the base address is not unwrapped repeatedly
// and the addresses used later will not overflow
let base_addr = options.addr.unwrap();
base_addr
.checked_add(frames.len() * PAGE_SIZE)
.ok_or(Error::Overflow)?;
for (idx, frame) in frames.into_iter().enumerate() {
let addr = base_addr + idx * PAGE_SIZE;
let frames = VmFrameVec::from_one_frame(frame);
memory_set.map(MapArea::new(
}
}
self.pt.map_frames(
addr,
PAGE_SIZE,
MapProperty::new_general(options.perm),
frames,
));
MapProperty {
perm: options.perm,
global: false,
extension: 0,
cache: CachePolicy::Writeback,
},
)?;
Ok(addr)
}
Ok(base_addr)
/// Query about a range of virtual memory.
/// You will get a iterator of `VmQueryResult` which contains the information of
/// each parts of the range.
pub fn query_range(&self, range: &Range<Vaddr>) -> Result<VmQueryIter> {
Ok(VmQueryIter {
inner: self.pt.query_range(range)?,
})
}
/// Determine whether a `vaddr` is already mapped.
pub fn is_mapped(&self, vaddr: Vaddr) -> bool {
let memory_set = self.memory_set.lock();
memory_set.is_mapped(vaddr)
/// Query about the mapping information about a byte in virtual memory.
/// This is more handy than [`query_range`], but less efficient if you want
/// to query in a batch.
pub fn query(&self, vaddr: Vaddr) -> Result<Option<MapInfo>> {
if !(0..MAX_USERSPACE_VADDR).contains(&vaddr) {
return Err(Error::AccessDenied);
}
/// Determine whether the target `vaddr` is writable based on the page table.
pub fn is_writable(&self, vaddr: Vaddr) -> bool {
let memory_set = self.memory_set.lock();
let info = memory_set.info(vaddr);
info.is_some_and(|info| info.prop.perm.contains(VmPerm::W))
}
/// Determine whether the target `vaddr` is executable based on the page table.
pub fn is_executable(&self, vaddr: Vaddr) -> bool {
let memory_set = self.memory_set.lock();
let info = memory_set.info(vaddr);
info.is_some_and(|info| info.prop.perm.contains(VmPerm::X))
Ok(self.pt.query(vaddr).map(|(_pa, info)| info))
}
/// Unmaps the physical memory pages within the VM address range.
@ -111,51 +113,44 @@ impl VmSpace {
/// are mapped.
pub fn unmap(&self, range: &Range<Vaddr>) -> Result<()> {
assert!(is_page_aligned(range.start) && is_page_aligned(range.end));
let mut start_va = range.start;
let num_pages = (range.end - range.start) / PAGE_SIZE;
let mut inner = self.memory_set.lock();
start_va
.checked_add(PAGE_SIZE * num_pages)
.ok_or(Error::Overflow)?;
for i in 0..num_pages {
inner.unmap(start_va)?;
start_va += PAGE_SIZE;
}
self.pt.unmap(range)?;
Ok(())
}
/// clear all mappings
pub fn clear(&self) {
self.memory_set.lock().clear();
// Safety: unmapping user space is safe, and we don't care unmapping
// invalid ranges.
unsafe {
self.pt.unmap_unchecked(&(0..MAX_USERSPACE_VADDR));
}
#[cfg(target_arch = "x86_64")]
x86_64::instructions::tlb::flush_all();
}
/// Update the VM protection permissions within the VM address range.
///
/// The entire specified VM range must have been mapped with physical
/// memory pages.
pub fn protect(&self, range: &Range<Vaddr>, perm: VmPerm) -> Result<()> {
debug_assert!(range.start % PAGE_SIZE == 0);
debug_assert!(range.end % PAGE_SIZE == 0);
let start_page = range.start / PAGE_SIZE;
let end_page = range.end / PAGE_SIZE;
for page_idx in start_page..end_page {
let addr = page_idx * PAGE_SIZE;
self.memory_set
.lock()
.protect(addr, MapProperty::new_general(perm))
}
/// If any of the page in the given range is not mapped, it is skipped.
/// The method panics when virtual address is not aligned to base page
/// size.
///
/// TODO: It returns error when invalid operations such as protect
/// partial huge page happens, and efforts are not reverted, leaving us
/// in a bad state.
pub fn protect(&self, range: &Range<Vaddr>, op: impl MapOp) -> Result<()> {
assert!(is_page_aligned(range.start) && is_page_aligned(range.end));
self.pt.protect(range, op)?;
Ok(())
}
/// Deep-copy the current `VmSpace`.
/// To fork a new VM space with copy-on-write semantics.
///
/// The generated new `VmSpace` possesses a `MemorySet` independent from the
/// original `VmSpace`, with initial contents identical to the original.
pub fn deep_copy(&self) -> Self {
/// Both the parent and the newly forked VM space will be marked as
/// read-only. And both the VM space will take handles to the same
/// physical memory pages.
pub fn fork_copy_on_write(&self) -> Self {
Self {
memory_set: Arc::new(Mutex::new(self.memory_set.lock().clone())),
pt: self.pt.fork_copy_on_write(),
}
}
}
@ -168,11 +163,37 @@ impl Default for VmSpace {
impl VmIo for VmSpace {
fn read_bytes(&self, vaddr: usize, buf: &mut [u8]) -> Result<()> {
self.memory_set.lock().read_bytes(vaddr, buf)
let range_end = vaddr.checked_add(buf.len()).ok_or(Error::Overflow)?;
let vaddr = vaddr.align_down(PAGE_SIZE);
let range_end = range_end.align_up(PAGE_SIZE);
for qr in self.query_range(&(vaddr..range_end))? {
if matches!(qr, VmQueryResult::NotMapped { .. }) {
return Err(Error::AccessDenied);
}
}
self.activate();
buf.clone_from_slice(unsafe { core::slice::from_raw_parts(vaddr as *const u8, buf.len()) });
Ok(())
}
fn write_bytes(&self, vaddr: usize, buf: &[u8]) -> Result<()> {
self.memory_set.lock().write_bytes(vaddr, buf)
let range_end = vaddr.checked_add(buf.len()).ok_or(Error::Overflow)?;
let vaddr = vaddr.align_down(PAGE_SIZE);
let range_end = range_end.align_up(PAGE_SIZE);
for qr in self.query_range(&(vaddr..vaddr + range_end))? {
match qr {
VmQueryResult::NotMapped { .. } => return Err(Error::AccessDenied),
VmQueryResult::Mapped { info, .. } => {
if !info.prop.perm.contains(VmPerm::W) {
return Err(Error::AccessDenied);
}
}
}
}
self.activate();
unsafe { core::slice::from_raw_parts_mut(vaddr as *mut u8, buf.len()) }
.clone_from_slice(buf);
Ok(())
}
}
@ -195,7 +216,7 @@ impl VmMapOptions {
pub fn new() -> Self {
Self {
addr: None,
align: PAGE_SIZE,
align: PageTableConsts::BASE_PAGE_SIZE,
perm: VmPerm::empty(),
can_overwrite: false,
}
@ -283,16 +304,32 @@ impl TryFrom<u64> for VmPerm {
}
}
impl From<VmPerm> for PageTableFlags {
fn from(vm_perm: VmPerm) -> Self {
let mut flags = PageTableFlags::PRESENT | PageTableFlags::USER;
if vm_perm.contains(VmPerm::W) {
flags |= PageTableFlags::WRITABLE;
}
// FIXME: how to respect executable flags?
if !vm_perm.contains(VmPerm::X) {
flags |= PageTableFlags::NO_EXECUTE;
}
flags
/// The iterator for querying over the VM space without modifying it.
pub struct VmQueryIter<'a> {
inner: PageTableIter<'a, UserMode, PageTableEntry, PageTableConsts>,
}
pub enum VmQueryResult {
NotMapped {
va: Vaddr,
len: usize,
},
Mapped {
va: Vaddr,
frame: VmFrame,
info: MapInfo,
},
}
impl Iterator for VmQueryIter<'_> {
type Item = VmQueryResult;
fn next(&mut self) -> Option<Self::Item> {
self.inner.next().map(|ptqr| match ptqr {
PtQr::NotMapped { va, len } => VmQueryResult::NotMapped { va, len },
PtQr::Mapped { va, frame, info } => VmQueryResult::Mapped { va, frame, info },
// It is not possible to map untyped memory in user space.
PtQr::MappedUntyped { va, pa, len, info } => unreachable!(),
})
}
}

View File

@ -190,6 +190,7 @@ impl From<aster_frame::Error> for Error {
aster_frame::Error::NotEnoughResources => Error::new(Errno::EBUSY),
aster_frame::Error::PageFault => Error::new(Errno::EFAULT),
aster_frame::Error::Overflow => Error::new(Errno::EOVERFLOW),
aster_frame::Error::MapAlreadyMappedVaddr => Error::new(Errno::EINVAL),
}
}
}

View File

@ -90,7 +90,7 @@ impl<R> PageFaultHandler for Vmar<R> {
impl<R> Vmar<R> {
/// FIXME: This function should require access control
pub fn vm_space(&self) -> &VmSpace {
pub fn vm_space(&self) -> &Arc<VmSpace> {
self.0.vm_space()
}
}
@ -103,7 +103,7 @@ pub(super) struct Vmar_ {
/// The total size of the VMAR in bytes
size: usize,
/// The attached vmspace
vm_space: VmSpace,
vm_space: Arc<VmSpace>,
/// The parent vmar. If points to none, this is a root vmar
parent: Weak<Vmar_>,
}
@ -142,7 +142,7 @@ impl Interval<usize> for Arc<Vmar_> {
impl Vmar_ {
fn new(
inner: VmarInner,
vm_space: VmSpace,
vm_space: Arc<VmSpace>,
base: usize,
size: usize,
parent: Option<&Arc<Vmar_>>,
@ -172,7 +172,13 @@ impl Vmar_ {
vm_mappings: BTreeMap::new(),
free_regions,
};
Vmar_::new(vmar_inner, VmSpace::new(), 0, ROOT_VMAR_CAP_ADDR, None)
Vmar_::new(
vmar_inner,
Arc::new(VmSpace::new()),
0,
ROOT_VMAR_CAP_ADDR,
None,
)
}
fn is_root_vmar(&self) -> bool {
@ -611,7 +617,7 @@ impl Vmar_ {
}
/// Returns the attached `VmSpace`.
pub(super) fn vm_space(&self) -> &VmSpace {
pub(super) fn vm_space(&self) -> &Arc<VmSpace> {
&self.vm_space
}
@ -708,15 +714,6 @@ impl Vmar_ {
self.new_cow(None)
}
/// Set the entries in the page table associated with the current `Vmar` to read-only.
fn set_pt_read_only(&self) -> Result<()> {
let inner = self.inner.lock();
for (map_addr, vm_mapping) in &inner.vm_mappings {
vm_mapping.set_pt_read_only(self.vm_space())?;
}
Ok(())
}
/// Create a new vmar by creating cow child for all mapped vmos.
fn new_cow(&self, parent: Option<&Arc<Vmar_>>) -> Result<Arc<Self>> {
let new_vmar_ = {
@ -724,17 +721,11 @@ impl Vmar_ {
// If this is not a root `Vmar`, we clone the `VmSpace` from parent.
//
// If this is a root `Vmar`, we leverage Copy-On-Write (COW) mechanism to
// clone the `VmSpace` to the child. We set all the page table entries
// in current `VmSpace` to be read-only, then clone the `VmSpace` to the child.
// In this way, initially, the child shares the same page table contents
// as the current `Vmar`. Later on, whether the current `Vmar` or the child
// `Vmar` needs to perform a write operation, the COW mechanism will be triggered,
// creating a new page for writing.
// clone the `VmSpace` to the child.
let vm_space = if let Some(parent) = parent {
parent.vm_space().clone()
} else {
self.set_pt_read_only()?;
self.vm_space().deep_copy()
Arc::new(self.vm_space().fork_copy_on_write())
};
Vmar_::new(vmar_inner, vm_space, self.base, self.size, parent)
};

View File

@ -131,22 +131,6 @@ impl VmMapping {
&self.vmo
}
/// Set the entries in the page table associated with the current `VmMapping` to read-only.
pub(super) fn set_pt_read_only(&self, vm_space: &VmSpace) -> Result<()> {
let map_inner = self.inner.lock();
let mapped_addr = &map_inner.mapped_pages;
let perm = map_inner.perm;
if !perm.contains(VmPerm::W) {
return Ok(());
}
for page_idx in mapped_addr {
let map_addr = map_inner.page_map_addr(*page_idx);
vm_space.protect(&(map_addr..map_addr + PAGE_SIZE), perm - VmPerm::W)?;
}
Ok(())
}
/// Add a new committed page and map it to vmspace. If copy on write is set, it's allowed to unmap the page at the same address.
/// FIXME: This implementation based on the truth that we map one page at a time. If multiple pages are mapped together, this implementation may have problems
pub(super) fn map_one_page(
@ -214,7 +198,9 @@ impl VmMapping {
// The `VmMapping` has the write permission but the corresponding PTE is present and is read-only.
// This means this PTE is set to read-only due to the COW mechanism. In this situation we need to trigger a
// page fault before writing at the VMO to guarantee the consistency between VMO and the page table.
let need_page_fault = vm_space.is_mapped(page_addr) && !vm_space.is_writable(page_addr);
let need_page_fault = vm_space
.query(page_addr)?
.is_some_and(|info| !info.contains(VmPerm::W));
if need_page_fault {
self.handle_page_fault(page_addr, false, true)?;
}
@ -478,7 +464,7 @@ impl VmMappingInner {
};
// Cow child allows unmapping the mapped page.
if vmo.is_cow_vmo() && vm_space.is_mapped(map_addr) {
if vmo.is_cow_vmo() && vm_space.query(map_addr)?.is_some() {
vm_space.unmap(&(map_addr..(map_addr + PAGE_SIZE))).unwrap();
}
@ -490,7 +476,7 @@ impl VmMappingInner {
fn unmap_one_page(&mut self, vm_space: &VmSpace, page_idx: usize) -> Result<()> {
let map_addr = self.page_map_addr(page_idx);
let range = map_addr..(map_addr + PAGE_SIZE);
if vm_space.is_mapped(map_addr) {
if vm_space.query(map_addr)?.is_some() {
vm_space.unmap(&range)?;
}
self.mapped_pages.remove(&page_idx);
@ -531,7 +517,7 @@ impl VmMappingInner {
let perm = VmPerm::from(perms);
for page_idx in start_page..end_page {
let page_addr = self.page_map_addr(page_idx);
if vm_space.is_mapped(page_addr) {
if vm_space.query(page_addr)?.is_some() {
// If the page is already mapped, we will modify page table
let page_range = page_addr..(page_addr + PAGE_SIZE);
vm_space.protect(&page_range, perm)?;