Merge pull request #40 from sdww0/main

Finish PIT Timer, vmo and vmar passed the compilation
This commit is contained in:
Tate, Hongliang Tian 2022-11-10 19:02:44 -08:00 committed by GitHub
commit f944a5ead1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
38 changed files with 1055 additions and 487 deletions

5
src/Cargo.lock generated
View File

@ -127,6 +127,7 @@ version = "0.1.0"
dependencies = [
"bitflags",
"kxos-frame",
"kxos-frame-pod-derive",
"kxos-util",
"lazy_static",
"spin 0.9.4",
@ -149,6 +150,9 @@ dependencies = [
"kxos-frame",
"kxos-frame-pod-derive",
"kxos-pci",
"kxos-rights-proc",
"kxos-typeflags",
"kxos-typeflags-util",
"kxos-virtio",
"lazy_static",
"spin 0.9.4",
@ -182,6 +186,7 @@ version = "0.1.0"
dependencies = [
"bitflags",
"kxos-frame",
"kxos-frame-pod-derive",
"kxos-pci",
"kxos-util",
"spin 0.9.4",

View File

@ -1,6 +1,9 @@
use proc_macro2::TokenStream;
use quote::quote;
use syn::{parse_macro_input, Data, DataStruct, DeriveInput, Fields};
use syn::{
parse_macro_input, punctuated::Punctuated, token::Comma, Data, DataEnum, DataStruct,
DeriveInput, Field, Fields,
};
#[proc_macro_derive(Pod)]
pub fn derive_pod(input_token: proc_macro::TokenStream) -> proc_macro::TokenStream {
@ -14,11 +17,22 @@ fn expand_derive_pod(input: DeriveInput) -> TokenStream {
Data::Struct(DataStruct { fields, .. }) => match fields {
Fields::Named(fields_named) => fields_named.named,
Fields::Unnamed(fields_unnamed) => fields_unnamed.unnamed,
Fields::Unit => panic!("derive pod does not work for struct with unit field"),
Fields::Unit => Punctuated::new(),
},
Data::Enum(DataEnum { variants, .. }) => {
let mut fields: Punctuated<Field, Comma> = Punctuated::new();
for var in variants {
fields.extend(match var.fields {
Fields::Named(fields_named) => fields_named.named,
Fields::Unnamed(fields_unnamed) => fields_unnamed.unnamed,
Fields::Unit => Punctuated::new(),
})
}
fields
}
// Panic on compilation time if one tries to derive pod for enum or union.
// It may not be a good idea, but works now.
_ => panic!("derive pod only works for struct now."),
_ => panic!("derive pod only works for struct and enum now."),
};
// deal with generics

View File

@ -3,10 +3,14 @@
pub mod framebuffer;
mod io_port;
pub mod pci;
mod pic;
pub mod serial;
pub use self::io_port::IoPort;
pub(crate) use pic::{add_timeout_list, TICK};
pub use pic::{TimerCallback, TIMER_FREQ};
pub(crate) fn init(framebuffer: &'static mut bootloader::boot_info::FrameBuffer) {
framebuffer::init(framebuffer);
pic::init();
}

View File

@ -0,0 +1,176 @@
use crate::cell::Cell;
use crate::x86_64_util::out8;
use crate::{IrqAllocateHandle, TrapFrame};
use alloc::sync::Arc;
use alloc::vec::Vec;
use alloc::{boxed::Box, collections::BinaryHeap};
use core::any::Any;
use lazy_static::lazy_static;
use spin::Mutex;
const MASTER_CMD: u16 = 0x20;
const MASTER_DATA: u16 = MASTER_CMD + 1;
const SLAVE_CMD: u16 = 0xA0;
const SLAVE_DATA: u16 = SLAVE_CMD + 1;
const TIMER_RATE: u32 = 1193182;
/// This value represent the base timer frequency in Hz
pub const TIMER_FREQ: u64 = 100;
const TIMER_PERIOD_IO_PORT: u16 = 0x40;
const TIMER_MODE_IO_PORT: u16 = 0x43;
const TIMER_SQUARE_WAVE: u8 = 0x36;
const TIMER_IRQ_NUM: u8 = 32;
pub static mut TICK: u64 = 0;
lazy_static! {
static ref TIMER_IRQ: Mutex<IrqAllocateHandle> = Mutex::new(
crate::trap::allocate_target_irq(TIMER_IRQ_NUM).expect("Timer irq Allocate error")
);
}
pub fn init() {
// Start initialization
out8(MASTER_CMD, 0x11);
out8(SLAVE_CMD, 0x11);
// Set offsets
out8(MASTER_DATA, 0x20);
out8(SLAVE_DATA, 0x28);
// Set up cascade
out8(MASTER_DATA, 4);
out8(SLAVE_DATA, 2);
// Set up interrupt mode (1 is 8086/88 mode, 2 is auto EOI)
out8(MASTER_DATA, 1);
out8(SLAVE_DATA, 1);
// Unmask interrupts
out8(MASTER_DATA, 0);
out8(SLAVE_DATA, 0);
// Ack remaining interrupts
out8(MASTER_CMD, 0x20);
out8(SLAVE_CMD, 0x20);
// Initialize timer.
let cycle = TIMER_RATE / TIMER_FREQ as u32; // 1ms per interrupt.
out8(TIMER_MODE_IO_PORT, TIMER_SQUARE_WAVE);
out8(TIMER_PERIOD_IO_PORT, (cycle & 0xFF) as _);
out8(TIMER_PERIOD_IO_PORT, (cycle >> 8) as _);
TIMER_IRQ.lock().on_active(timer_callback);
}
#[inline(always)]
fn ack() {
out8(MASTER_CMD, 0x20);
}
fn timer_callback(trap_frame: &TrapFrame) {
// FIXME: disable and enable interupt will cause infinity loop
// x86_64_util::disable_interrupts();
ack();
let current_ms;
unsafe {
current_ms = TICK;
TICK += 1;
}
let timeout_list = TIMEOUT_LIST.get();
let mut callbacks: Vec<Arc<TimerCallback>> = Vec::new();
while let Some(t) = timeout_list.peek() {
if t.expire_ms <= current_ms {
callbacks.push(timeout_list.pop().unwrap());
} else {
break;
}
}
for callback in callbacks {
if callback.is_enable() {
callback.callback.call((&callback,));
}
}
// x86_64_util::enable_interrupts();
}
lazy_static! {
static ref TIMEOUT_LIST: Cell<BinaryHeap<Arc<TimerCallback>>> = Cell::new(BinaryHeap::new());
}
pub struct TimerCallback {
expire_ms: u64,
data: Arc<dyn Any + Send + Sync>,
callback: Box<dyn Fn(&TimerCallback) + Send + Sync>,
enable: Cell<bool>,
}
impl TimerCallback {
fn new(
timeout_ms: u64,
data: Arc<dyn Any + Send + Sync>,
callback: Box<dyn Fn(&TimerCallback) + Send + Sync>,
) -> Self {
Self {
expire_ms: timeout_ms,
data,
callback,
enable: Cell::new(true),
}
}
pub fn data(&self) -> &Arc<dyn Any + Send + Sync> {
&self.data
}
/// disable this timeout
pub fn disable(&self) {
*self.enable.get() = false;
}
/// enable this timeout
pub fn enable(&self) {
*self.enable.get() = true;
}
pub fn is_enable(&self) -> bool {
*self.enable
}
}
impl PartialEq for TimerCallback {
fn eq(&self, other: &Self) -> bool {
self.expire_ms == other.expire_ms
}
}
impl Eq for TimerCallback {}
impl PartialOrd for TimerCallback {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for TimerCallback {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.expire_ms.cmp(&other.expire_ms).reverse()
}
}
/// add timeout task into timeout list, the frequency see const TIMER_FREQ
///
/// user should ensure that the callback function cannot take too much time
///
pub fn add_timeout_list<F, T>(timeout: u64, data: T, callback: F) -> Arc<TimerCallback>
where
F: Fn(&TimerCallback) + Send + Sync + 'static,
T: Any + Send + Sync,
{
unsafe {
let timer_callback = TimerCallback::new(TICK + timeout, Arc::new(data), Box::new(callback));
let arc = Arc::new(timer_callback);
TIMEOUT_LIST.get().push(arc.clone());
arc
}
}

View File

@ -26,7 +26,6 @@ pub mod timer;
pub mod trap;
pub mod user;
mod util;
#[macro_use]
pub mod vm;
pub(crate) mod x86_64_util;
@ -62,10 +61,6 @@ pub use crate::serial_println as println;
pub fn init(boot_info: &'static mut BootInfo) {
let siz = boot_info.framebuffer.as_ref().unwrap() as *const FrameBuffer as usize;
device::init(boot_info.framebuffer.as_mut().unwrap());
device::framebuffer::WRITER.lock().as_mut().unwrap().clear();
trap::init();
enable_common_cpu_features();
let mut memory_init = false;
// memory
for region in boot_info.memory_regions.iter() {
@ -84,13 +79,19 @@ pub fn init(boot_info: &'static mut BootInfo) {
if !memory_init {
panic!("memory init failed");
}
device::init(boot_info.framebuffer.as_mut().unwrap());
device::framebuffer::WRITER.lock().as_mut().unwrap().clear();
trap::init();
enable_common_cpu_features();
unsafe {
for i in 0..256 {
IRQ_CALLBACK_LIST.push(IrqLine::acquire(i as u8).on_active(general_handler))
}
}
// uncomment below code to enable timer interrupt
// x86_64_util::enable_interrupts_and_hlt();
}
fn general_handler(trap_frame: TrapFrame) {
fn general_handler(trap_frame: &TrapFrame) {
println!("{:#x?}", trap_frame);
println!("rip = 0x{:x}", trap_frame.rip);
println!("rsp = 0x{:x}", trap_frame.rsp);
@ -113,7 +114,7 @@ where
T: Fn(),
{
fn run(&self) {
serial_print!("{}...\t", core::any::type_name::<T>());
serial_print!("{}...\n", core::any::type_name::<T>());
self();
serial_println!("[ok]");
}

View File

@ -1,7 +1,11 @@
//! Timer.
use crate::prelude::*;
use crate::{
device::{TimerCallback, TICK, TIMER_FREQ},
prelude::*,
};
use core::time::Duration;
use spin::Mutex;
/// A timer invokes a callback function after a specified span of time elapsed.
///
@ -11,33 +15,96 @@ use core::time::Duration;
///
/// Timers are one-shot. If the time is out, one has to set the timer again
/// in order to trigger the callback again.
pub struct Timer {}
pub struct Timer {
function: Arc<dyn Fn(Arc<Self>) + Send + Sync>,
inner: Mutex<TimerInner>,
}
#[derive(Default)]
struct TimerInner {
start_tick: u64,
timeout_tick: u64,
timer_callback: Option<Arc<TimerCallback>>,
}
fn timer_callback(callback: &TimerCallback) {
let data = callback.data();
if data.is::<Arc<Timer>>() {
let timer = data.downcast_ref::<Arc<Timer>>().unwrap();
timer.function.call((timer.clone(),));
} else {
panic!("the timer callback is not Timer structure");
}
}
const NANOS_DIVIDE: u64 = 1_000_000_000 / TIMER_FREQ;
impl Timer {
/// Creates a new instance, given a callback function.
pub fn new<F>(f: F) -> Result<Self>
pub fn new<F>(f: F) -> Result<Arc<Self>>
where
F: FnMut(&Self),
F: Fn(Arc<Timer>) + Send + Sync + 'static,
{
todo!()
Ok(Arc::new(Self {
function: Arc::new(f),
inner: Mutex::new(TimerInner::default()),
}))
}
/// Set a timeout value.
///
/// If a timeout value is already set, the timeout value will be refreshed.
pub fn set(&self, timeout: Duration) {
todo!()
///
pub fn set(self: Arc<Self>, timeout: Duration) {
let mut lock = self.inner.lock();
match &lock.timer_callback {
Some(callback) => {
callback.disable();
}
None => {}
}
let tick_count = timeout.as_secs() * TIMER_FREQ
+ if timeout.subsec_nanos() != 0 {
(timeout.subsec_nanos() as u64 - 1) / NANOS_DIVIDE + 1
} else {
0
};
unsafe {
lock.start_tick = TICK;
lock.timeout_tick = TICK + tick_count;
}
lock.timer_callback = Some(crate::device::add_timeout_list(
tick_count,
self.clone(),
timer_callback,
));
}
/// Returns the remaining timeout value.
///
/// If the timer is not set, then the remaining timeout value is zero.
pub fn remain(&self) -> Duration {
todo!()
let lock = self.inner.lock();
let tick_remain;
unsafe {
tick_remain = lock.timeout_tick as i64 - TICK as i64;
}
if tick_remain <= 0 {
Duration::new(0, 0)
} else {
let second_count = tick_remain as u64 / TIMER_FREQ;
let remain_count = tick_remain as u64 % TIMER_FREQ;
Duration::new(second_count, (remain_count * NANOS_DIVIDE) as u32)
}
}
/// Clear the timeout value.
pub fn clear(&self) {
todo!()
let mut lock = self.inner.lock();
if let Some(callback) = &lock.timer_callback {
callback.disable();
}
lock.timeout_tick = 0;
lock.start_tick = 0;
lock.timer_callback = None;
}
}

View File

@ -5,7 +5,7 @@ use crate::task::{
use super::{irq::IRQ_LIST, *};
#[no_mangle]
pub(crate) extern "C" fn syscall_handler(f: &'static mut SyscallFrame) -> isize {
pub(crate) extern "C" fn syscall_handler(f: &mut SyscallFrame) -> isize {
let r = &f.caller;
let current = Task::current();
current.inner_exclusive_access().is_from_trap = false;
@ -20,7 +20,7 @@ pub(crate) extern "C" fn syscall_handler(f: &'static mut SyscallFrame) -> isize
}
#[no_mangle]
pub(crate) extern "C" fn trap_handler(f: &'static mut TrapFrame) {
pub(crate) extern "C" fn trap_handler(f: &mut TrapFrame) {
if !is_from_kernel(f.cs) {
let current = Task::current();
current.inner_exclusive_access().is_from_trap = true;
@ -37,11 +37,18 @@ pub(crate) extern "C" fn trap_handler(f: &'static mut TrapFrame) {
let irq_line = IRQ_LIST.get(f.id as usize).unwrap();
let callback_functions = irq_line.callback_list();
for callback_function in callback_functions.iter() {
callback_function.call(f.clone());
callback_function.call(f);
}
}
} else {
panic!("cannot handle kernel exception now");
if is_cpu_fault(f) {
panic!("cannot handle kernel cpu fault now");
}
let irq_line = IRQ_LIST.get(f.id as usize).unwrap();
let callback_functions = irq_line.callback_list();
for callback_function in callback_functions.iter() {
callback_function.call(f);
}
}
}

View File

@ -20,6 +20,14 @@ pub fn allocate_irq() -> Result<IrqAllocateHandle> {
}
}
pub(crate) fn allocate_target_irq(target_irq: u8) -> Result<IrqAllocateHandle> {
if NOT_USING_IRQ.lock().get_target(target_irq as usize) {
Ok(IrqAllocateHandle::new(target_irq))
} else {
Err(Error::NotEnoughResources)
}
}
/// The handle to a allocate irq number between [32,256), used in std and other parts in kxos
///
/// When the handle is dropped, all the callback in this will be unregistered automatically.
@ -50,7 +58,7 @@ impl IrqAllocateHandle {
/// For each IRQ line, multiple callbacks may be registered.
pub fn on_active<F>(&mut self, callback: F)
where
F: Fn(TrapFrame) + Sync + Send + 'static,
F: Fn(&TrapFrame) + Sync + Send + 'static,
{
self.callbacks.push(self.irq.on_active(callback))
}
@ -87,12 +95,12 @@ lazy_static! {
}
pub struct CallbackElement {
function: Box<dyn Fn(TrapFrame) + Send + Sync + 'static>,
function: Box<dyn Fn(&TrapFrame) + Send + Sync + 'static>,
id: usize,
}
impl CallbackElement {
pub fn call(&self, element: TrapFrame) {
pub fn call(&self, element: &TrapFrame) {
self.function.call((element,));
}
}
@ -140,7 +148,7 @@ impl IrqLine {
/// For each IRQ line, multiple callbacks may be registered.
pub fn on_active<F>(&self, callback: F) -> IrqCallbackHandle
where
F: Fn(TrapFrame) + Sync + Send + 'static,
F: Fn(&TrapFrame) + Sync + Send + 'static,
{
let allocate_id = ID_ALLOCATOR.lock().alloc();
self.callback_list.lock().push(CallbackElement {

View File

@ -2,7 +2,7 @@ mod handler;
mod irq;
pub use self::irq::{allocate_irq, IrqAllocateHandle};
pub(crate) use self::irq::{IrqCallbackHandle, IrqLine};
pub(crate) use self::irq::{allocate_target_irq, IrqCallbackHandle, IrqLine};
use core::{fmt::Debug, mem::size_of_val};
use crate::{x86_64_util::*, *};

View File

@ -3,6 +3,7 @@ use alloc::vec::Vec;
pub struct RecycleAllocator {
current: usize,
recycled: Vec<usize>,
skip: Vec<usize>,
max: usize,
}
@ -11,6 +12,7 @@ impl RecycleAllocator {
RecycleAllocator {
current: 0,
recycled: Vec::new(),
skip: Vec::new(),
max: usize::MAX - 1,
}
}
@ -19,30 +21,73 @@ impl RecycleAllocator {
RecycleAllocator {
current: start,
recycled: Vec::new(),
skip: Vec::new(),
max: max,
}
}
#[allow(unused)]
pub fn alloc(&mut self) -> usize {
if self.current == self.max && self.recycled.is_empty() {
if let Some(id) = self.recycled.pop() {
return id;
}
// recycle list is empty, need to use current to allocate an id.
// it should skip the element in skip list
while self.skip.contains(&self.current) {
self.current += 1;
}
if self.current == self.max {
return usize::MAX;
}
if let Some(id) = self.recycled.pop() {
id
} else {
self.current += 1;
self.current - 1
}
}
/// deallocate a id, it should fit one of the following requirement, otherwise it will panic:
///
/// 1. It is in the skip list
///
/// 2. It smaller than current and not in recycled list
#[allow(unused)]
pub fn dealloc(&mut self, id: usize) {
if !self.skip.contains(&id) {
assert!(id < self.current);
assert!(
!self.recycled.iter().any(|i| *i == id),
"id {} has been deallocated!",
id
);
} else {
// if the value is in skip list, then remove it from the skip list
self.skip.retain(|value| *value != id);
}
self.recycled.push(id);
}
/// get target id in the list, it will return true if the target can used, false if can not used.
/// the target need to meet one of the following requirement so that it can used:
///
/// 1. It is in the recycled list
///
/// 2. It is bigger than the current, smaller than max and not in the skip list
///
pub fn get_target(&mut self, target: usize) -> bool {
if target >= self.max {
return false;
}
if target >= self.current {
if self.skip.contains(&target) {
false
} else {
self.skip.push(target);
true
}
} else {
if self.recycled.contains(&target) {
self.recycled.retain(|value| *value != target);
true
} else {
false
}
}
}
}

View File

@ -8,7 +8,6 @@ pub type Paddr = usize;
mod frame;
mod io;
#[macro_use]
mod pod;
mod space;

View File

@ -52,8 +52,6 @@ pub unsafe trait Pod: Copy + Sized + Debug {
}
}
/// FIXME: use derive instead
#[macro_export]
macro_rules! impl_pod_for {
($($pod_ty:ty),*) => {
$(unsafe impl Pod for $pod_ty {})*

View File

@ -77,6 +77,13 @@ pub fn enable_interrupts_and_hlt() {
}
}
#[inline]
pub fn enable_interrupts() {
unsafe {
asm!("sti", options(nomem, nostack));
}
}
pub const RING0: u16 = 0;
pub const RING3: u16 = 3;

View File

@ -10,6 +10,7 @@ bitflags = "1.3"
spin = "0.9.4"
kxos-frame = {path = "../kxos-frame"}
kxos-util = {path="../kxos-util"}
kxos-frame-pod-derive= {path="../kxos-frame-pod-derive"}
[dependencies.lazy_static]
version = "1.0"

View File

@ -1,6 +1,7 @@
use alloc::vec::Vec;
use crate::util::{CSpaceAccessMethod, Location, BAR};
use kxos_frame_pod_derive::Pod;
use super::capability::msix::CapabilityMSIXData;
@ -21,7 +22,7 @@ pub struct MSIXEntry {
pub irq_handle: IrqAllocateHandle,
}
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq)]
#[derive(Debug, Default, Copy, Clone, PartialEq, Eq, Pod)]
#[repr(C)]
pub struct MSIXTableEntry {
pub msg_addr: u32,
@ -30,8 +31,6 @@ pub struct MSIXTableEntry {
pub vector_control: u32,
}
kxos_frame::impl_pod_for!(MSIXTableEntry);
impl MSIX {
/// create a MSIX instance, it allocate the irq number automatically.
pub fn new(

View File

@ -10,6 +10,9 @@ kxos-frame = {path = "../kxos-frame"}
kxos-frame-pod-derive = {path = "../kxos-frame-pod-derive"}
kxos-pci = {path="../kxos-pci"}
kxos-virtio = {path="../kxos-virtio"}
kxos-typeflags = {path="../kxos-typeflags"}
kxos-typeflags-util = {path="../kxos-typeflags-util"}
kxos-rights-proc = {path="../kxos-rights-proc"}
# parse elf file
xmas-elf = "0.8.0"

View File

@ -3,7 +3,8 @@ use core::hint::spin_loop;
use crate::process::Process;
use alloc::sync::Arc;
use alloc::vec::Vec;
use kxos_frame::{impl_pod_for, info};
use kxos_frame::info;
use kxos_frame_pod_derive::Pod;
use kxos_pci::PCIDevice;
use kxos_virtio::PCIVirtioDevice;
use lazy_static::lazy_static;
@ -18,7 +19,7 @@ pub struct VirtioBlockDevice {
}
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Pod)]
pub struct BlkReq {
pub type_: ReqType,
pub reserved: u32,
@ -27,13 +28,13 @@ pub struct BlkReq {
/// Response of a VirtIOBlk request.
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Pod)]
pub struct BlkResp {
pub status: RespStatus,
}
#[repr(u32)]
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Pod)]
pub enum ReqType {
In = 0,
Out = 1,
@ -43,7 +44,7 @@ pub enum ReqType {
}
#[repr(u8)]
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[derive(Debug, Eq, PartialEq, Copy, Clone, Pod)]
pub enum RespStatus {
/// Ok.
Ok = 0,
@ -63,8 +64,6 @@ impl Default for BlkResp {
}
}
impl_pod_for!(BlkResp, RespStatus, ReqType, BlkReq);
lazy_static! {
// TODO: use dyn BlockDevice instead
pub static ref BLOCK_DEVICE: Arc<Mutex<Option<VirtioBlockDevice>>> = Arc::new(Mutex::new(None)) ;
@ -124,7 +123,7 @@ impl BlockDevice for VirtioBlockDevice {
impl VirtioBlockDevice {
fn new(mut virtio_device: PCIVirtioDevice) -> Self {
fn handle_block_device(frame: TrapFrame) {
fn handle_block_device(frame: &TrapFrame) {
info!("pci block device queue interrupt");
BLOCK_DEVICE.lock().as_ref().unwrap().handle_irq()
}

View File

@ -8,6 +8,7 @@
#![feature(half_open_range_patterns)]
#![feature(exclusive_range_pattern)]
#![feature(btree_drain_filter)]
#![feature(const_option)]
use kxos_frame::{debug, info, println};
use process::Process;
@ -22,9 +23,11 @@ pub mod fs;
mod memory;
pub mod prelude;
mod process;
pub mod rights;
pub mod syscall;
mod user_apps;
mod util;
pub mod vm;
#[macro_use]
extern crate kxos_frame_pod_derive;

View File

@ -1,5 +1,5 @@
use typeflags::typeflags;
use bitflags::bitflags;
use kxos_typeflags::type_flags;
bitflags! {
/// Value-based access rights.
@ -10,46 +10,48 @@ bitflags! {
/// Here, we give some sensible semantics for each access right.
pub struct Rights: u32 {
/// Allows duplicating a capability.
const DUP: u32 = 1 << 0;
const DUP = 1 << 0;
/// Allows reading data from a data source (files, VM objects, etc.) or
/// creating readable memory mappings.
const READ: u32 = 1 << 1;
const READ = 1 << 1;
/// Allows writing data to a data sink (files, VM objects, etc.) or
/// creating writable memory mappings.
const WRITE: u32 = 1 << 2;
const WRITE = 1 << 2;
/// Allows creating executable memory mappings.
const EXEC: u32 = 1 << 3;
const EXEC = 1 << 3;
/// Allows sending notifications or signals.
const SIGNAL: u32 = 1 << 7;
const SIGNAL = 1 << 7;
}
}
typeflags! {
/// Type-based access rights.
///
/// Similar to value-based access rights (`Rights`), but represented in
/// types.
/// Type-based access rights.
///
/// Similar to value-based access rights (`Rights`), but represented in
/// types.
///
/// pub trait TRights: u32 {
/// /// Allows duplicating a capability.
/// struct Dup: u32 = Rights::DUP;
/// /// Allows reading data from a data source (files, VM objects, etc.) or
/// /// creating readable memory mappings.
/// struct Read: u32 = Rights::READ;
/// /// Allows writing data to a data sink (files, VM objects, etc.) or
/// /// creating writable memory mappings.
/// struct Write: u32 = Rights::WRITE;
/// /// Allows creating executable memory mappings.
/// struct Exec: u32 = Rights::EXEC;
/// /// Allows sending notifications or signals.
/// struct Signal: u32 = Rights::SIGNAL;
/// }
///
type_flags! {
pub trait TRights: u32 {
/// Allows duplicating a capability.
struct Dup: u32 = Rights::DUP;
/// Allows reading data from a data source (files, VM objects, etc.) or
/// creating readable memory mappings.
struct Read: u32 = Rights::READ;
/// Allows writing data to a data sink (files, VM objects, etc.) or
/// creating writable memory mappings.
struct Write: u32 = Rights::WRITE;
/// Allows creating executable memory mappings.
struct Exec: u32 = Rights::EXEC;
/// Allows sending notifications or signals.
struct Signal: u32 = Rights::SIGNAL;
pub struct Dup = 1 <<0;
pub struct Read = 1 <<1;
pub struct Write = 1 <<2;
pub struct Exec = 1 <<3;
pub struct Signal = 1 <<7;
}
}
/// The full set of access rights.
pub type Full = TRights![
Dup,
Read,
Write,
Exec,
Signal,
];
pub type Full = TRights![Dup, Read, Write, Exec, Signal];

View File

@ -2,7 +2,7 @@
//!
//! There are two primary VM abstractions:
//! * Virtual Memory Address Regions (VMARs) a type of capability that manages
/// user address spaces.
//! user address spaces.
//! * Virtual Memory Objects (VMOs) are are a type of capability that
//! represents a set of memory pages.
//!

View File

@ -1,7 +1,20 @@
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use crate::{rights::Rights, vm::vmo::Vmo};
use super::{
options::{VmarChildOptions, VmarMapOptions},
VmPerms, Vmar, Vmar_,
};
impl Vmar<Rights> {
/// Creates a root VMAR.
pub fn new() -> Result<Self> {
let inner = Arc::new(Vmar_::new());
let inner = Arc::new(Vmar_::new()?);
let rights = Rights::all();
let new_self = Self(inner, rights);
Ok(new_self)
@ -42,9 +55,13 @@ impl Vmar<Rights> {
/// Memory permissions may be changed through the `protect` method,
/// which ensures that any updated memory permissions do not go beyond
/// the access rights of the underlying VMOs.
pub fn new_map(&self, vmo: Vmo, perms: VmPerms) -> VmarMapOptions<'_, Rights> {
pub fn new_map(
&self,
vmo: Vmo<Rights>,
perms: VmPerms,
) -> Result<VmarMapOptions<Rights, Rights>> {
let dup_self = self.dup()?;
VmarMapOptions::new(dup_self, vmo, perms)
Ok(VmarMapOptions::new(dup_self, vmo, perms))
}
/// Creates a new child VMAR through a set of VMAR child options.
@ -66,9 +83,9 @@ impl Vmar<Rights> {
///
/// The new VMAR child will be of the same capability class and
/// access rights as the parent.
pub fn new_child(&self, size: usize) -> VmarChildOptions<'a, Rights> {
pub fn new_child(&self, size: usize) -> Result<VmarChildOptions<Rights>> {
let dup_self = self.dup()?;
VmarChildOptions::new(dup_self, size)
Ok(VmarChildOptions::new(dup_self, size))
}
/// Change the permissions of the memory mappings in the specified range.
@ -107,24 +124,42 @@ impl Vmar<Rights> {
/// As for children VMARs, they must be fully within the range.
/// All children VMARs that fall within the range get their `destroy` methods
/// called.
pub fn destroy(&self, range: &Range<usize>) -> Result<()> {
pub fn destroy(&self, range: Range<usize>) -> Result<()> {
self.0.destroy(range)
}
/// Duplicates the capability.
///
/// # Access rights
///
/// The method requires the Dup right.
pub fn dup(&self) -> Result<Self> {
self.check_rights(Rights::DUP)?;
todo!()
}
/// Returns the access rights.
pub fn rights(&self) -> Rights {
self.1
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.1.contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}
impl<R> VmIo for Vmar<Rights> {
impl VmIo for Vmar<Rights> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
self.check_rights!(Rights::READ)?;
self.check_rights(Rights::READ)?;
self.0.read(offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
self.check_rights!(Rights::WRITE)?;
self.check_rights(Rights::WRITE)?;
self.0.write(offset, buf)
}
}

View File

@ -1,8 +1,18 @@
//! Virtual Memory Address Regions (VMARs).
mod static_cap;
mod dyn_cap;
mod options;
mod static_cap;
use crate::rights::Rights;
use alloc::sync::Arc;
use bitflags::bitflags;
use core::ops::Range;
use kxos_frame::prelude::Result;
use kxos_frame::vm::Vaddr;
use kxos_frame::vm::VmSpace;
use kxos_frame::Error;
use spin::Mutex;
/// Virtual Memory Address Regions (VMARs) are a type of capability that manages
/// user address spaces.
@ -79,15 +89,7 @@ impl<R> Vmar<R> {
///
/// The base address of a root VMAR is zero.
pub fn base(&self) -> Vaddr {
self.base
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights.contains(rights) {
Ok(())
} else {
Err(EACCESS)
}
self.0.base
}
}
@ -95,16 +97,22 @@ bitflags! {
/// The memory access permissions of memory mappings.
pub struct VmPerms: u32 {
/// Readable.
const READ: u32 = 1 << 0;
const READ = 1 << 0;
/// Writable.
const WRITE: u32 = 1 << 1;
const WRITE = 1 << 1;
/// Executable.
const EXEC: u32 = 1 << 2;
const EXEC = 1 << 2;
}
}
impl From<Rights> for VmPerms {
fn from(perms: VmPerms) -> Rights {
fn from(rights: Rights) -> VmPerms {
todo!()
}
}
impl From<VmPerms> for Rights {
fn from(vm_perms: VmPerms) -> Rights {
todo!()
}
}

View File

@ -1,5 +1,12 @@
//! Options for allocating child VMARs and creating mappings.
use kxos_frame::prelude::Result;
use kxos_frame::{config::PAGE_SIZE, vm::Vaddr};
use crate::vm::vmo::Vmo;
use super::{VmPerms, Vmar};
/// Options for allocating a child VMAR, which must not overlap with any
/// existing mappings or child VMARs.
///
@ -39,6 +46,7 @@ pub struct VmarChildOptions<R> {
parent: Vmar<R>,
size: usize,
offset: usize,
align: usize,
}
impl<R> VmarChildOptions<R> {
@ -94,9 +102,9 @@ impl<R> VmarChildOptions<R> {
/// Options for creating a new mapping. The mapping is not allowed to overlap
/// with any child VMARs. And unless specified otherwise, it is not allowed
/// to overlap with any existing mapping, either.
pub struct VmarMapOptions<R> {
parent: Vmar<R>,
vmo: Vmo,
pub struct VmarMapOptions<R1, R2> {
parent: Vmar<R1>,
vmo: Vmo<R2>,
perms: VmPerms,
vmo_offset: usize,
size: usize,
@ -105,20 +113,21 @@ pub struct VmarMapOptions<R> {
can_overwrite: bool,
}
impl<R> VmarMapOptions<'a, R> {
impl<R1, R2> VmarMapOptions<R1, R2> {
/// Creates a default set of options with the VMO and the memory access
/// permissions.
///
/// The VMO must have access rights that correspond to the memory
/// access permissions. For example, if `perms` contains `VmPerm::Write`,
/// then `vmo.rights()` should contain `Rights::WRITE`.
pub fn new(parent: Vmar<R>, vmo: Vmo, perms: VmPerms) -> Self {
pub fn new(parent: Vmar<R1>, vmo: Vmo<R2>, perms: VmPerms) -> Self {
let size = vmo.size();
Self {
parent,
vmo,
perms,
vmo_offset: 0,
size: vmo.size(),
size,
offset: None,
align: PAGE_SIZE,
can_overwrite: false,
@ -176,7 +185,7 @@ impl<R> VmarMapOptions<'a, R> {
///
/// If not set, the system will choose an offset automatically.
pub fn offset(mut self, offset: usize) -> Self {
self.offset = offset;
self.offset = Some(offset);
self
}

View File

@ -1,3 +1,17 @@
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use kxos_rights_proc::require;
use crate::{rights::*, vm::vmo::Vmo};
use super::{
options::{VmarChildOptions, VmarMapOptions},
VmPerms, Vmar, Vmar_,
};
impl<R: TRights> Vmar<R> {
/// Creates a root VMAR.
///
@ -5,7 +19,7 @@ impl<R: TRights> Vmar<R> {
///
/// A root VMAR is initially given full access rights.
pub fn new() -> Result<Self> {
let inner = Arc::new(Vmar_::new());
let inner = Arc::new(Vmar_::new()?);
let rights = R::new();
let new_self = Self(inner, rights);
Ok(new_self)
@ -46,9 +60,10 @@ impl<R: TRights> Vmar<R> {
/// Memory permissions may be changed through the `protect` method,
/// which ensures that any updated memory permissions do not go beyond
/// the access rights of the underlying VMOs.
pub fn new_map(&self, vmo: Vmo, perms: VmPerms) -> VmarMapOptions<'_, Rights> {
let dup_self = self.dup();
VmarMapOptions::new(dup_self, vmo_ref)
#[require(R > Dup)]
pub fn new_map(&self, vmo: Vmo<Rights>, perms: VmPerms) -> Result<VmarMapOptions<R, Rights>> {
let dup_self = self.dup()?;
Ok(VmarMapOptions::new(dup_self, vmo, perms))
}
/// Creates a new child VMAR through a set of VMAR child options.
@ -71,9 +86,9 @@ impl<R: TRights> Vmar<R> {
/// The new VMAR child will be of the same capability class and
/// access rights as the parent.
#[require(R > Dup)]
pub fn new_child(&self, size: usize) -> VmarChildOptions<'a, R> {
let dup_self = self.dup();
VmarChildOptions::new(dup_self, size)
pub fn new_child(&self, size: usize) -> Result<VmarChildOptions<R>> {
let dup_self = self.dup()?;
Ok(VmarChildOptions::new(dup_self, size))
}
/// Change the permissions of the memory mappings in the specified range.
@ -112,24 +127,48 @@ impl<R: TRights> Vmar<R> {
/// As for children VMARs, they must be fully within the range.
/// All children VMARs that fall within the range get their `destroy` methods
/// called.
pub fn destroy(&self, range: &Range<usize>) -> Result<()> {
pub fn destroy(&self, range: Range<usize>) -> Result<()> {
self.0.destroy(range)
}
/// Duplicate the capability.
///
/// # Access rights
///
/// The method requires the Dup right.
#[require(R > Dup)]
pub fn dup(&self) -> Result<Self> {
todo!()
}
/// Strict the access rights.
#[require(R > R1)]
pub fn restrict<R1>(mut self) -> Vmo<R1> {
todo!()
}
/// Returns the access rights.
pub const fn rights(&self) -> Rights {
R::BITS
Rights::from_bits(R::BITS).unwrap()
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}
impl<R> VmIo for Vmar<Rights> {
impl<R: TRights> VmIo for Vmar<R> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
self.check_rights!(Rights::READ)?;
// self.check_rights!(Rights::READ)?;
self.0.read(offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
self.check_rights!(Rights::WRITE)?;
// self.check_rights!(Rights::WRITE)?;
self.0.write(offset, buf)
}
}

View File

@ -1,3 +1,15 @@
use core::ops::Range;
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use crate::rights::{Rights, TRights};
use super::{
options::{VmoCowChild, VmoSliceChild},
Vmo, VmoChildOptions,
};
impl Vmo<Rights> {
/// Creates a new slice VMO through a set of VMO child options.
///
@ -18,9 +30,12 @@ impl Vmo<Rights> {
///
/// The new VMO child will be of the same capability flavor as the parent;
/// so are the access rights.
pub fn new_slice_child(&self, range: Range<usize>) -> VmoChildOptions<'_, Rights, VmoSliceChild> {
pub fn new_slice_child(
&self,
range: Range<usize>,
) -> Result<VmoChildOptions<Rights, VmoSliceChild>> {
let dup_self = self.dup()?;
VmoChildOptions::new_slice(dup_self, range)
Ok(VmoChildOptions::new_slice_rights(dup_self, range))
}
/// Creates a new COW VMO through a set of VMO child options.
@ -43,9 +58,12 @@ impl Vmo<Rights> {
/// The new VMO child will be of the same capability flavor as the parent.
/// The child will be given the access rights of the parent
/// plus the Write right.
pub fn new_cow_child(&self, range: Range<usize>) -> VmoChildOptions<'_, Rights, VmoCowChild> {
pub fn new_cow_child(
&self,
range: Range<usize>,
) -> Result<VmoChildOptions<Rights, VmoCowChild>> {
let dup_self = self.dup()?;
VmoChildOptions::new_cow(dup_self, range)
Ok(VmoChildOptions::new_cow(dup_self, range))
}
/// Commits the pages specified in the range (in bytes).
@ -117,7 +135,7 @@ impl Vmo<Rights> {
/// Converts to a static capability.
pub fn to_static<R1: TRights>(self) -> Result<Vmo<R1>> {
self.check_rights(R1::BITS)?;
self.check_rights(Rights::from_bits(R1::BITS).ok_or(Error::InvalidArgs)?)?;
todo!()
}
@ -125,16 +143,24 @@ impl Vmo<Rights> {
pub fn rights(&self) -> Rights {
self.1
}
pub fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}
impl VmIo for Vmo<Rights> {
fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
self.check_rights(Rights::READ)?;
self.0.read(offset, buf)
self.0.read_bytes(offset, buf)
}
fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
self.check_rights(Rights::WRITE)?;
self.0.write(offset, buf)
self.0.write_bytes(offset, buf)
}
}

View File

@ -1,16 +1,20 @@
//! Virtual Memory Objects (VMOs).
use kx_frame::vm::VmIo;
use core::ops::Range;
use crate::rights::{Rights, TRights};
use crate::rights::Rights;
use alloc::sync::Arc;
use bitflags::bitflags;
use kxos_frame::{prelude::Result, vm::Paddr, Error};
mod static_cap;
mod dyn_cap;
mod options;
mod pager;
mod static_cap;
pub use options::{VmoOptions, VmoChildOptions};
pub use options::{VmoChildOptions, VmoOptions};
pub use pager::Pager;
use spin::Mutex;
/// Virtual Memory Objects (VMOs) are a type of capability that represents a
/// range of memory pages.
@ -73,16 +77,16 @@ bitflags! {
/// VMO flags.
pub struct VmoFlags: u32 {
/// Set this flag if a VMO is resizable.
const RESIZABLE: u32 = 1 << 0;
const RESIZABLE = 1 << 0;
/// Set this flags if a VMO is backed by physically contiguous memory
/// pages.
///
/// To ensure the memory pages to be contiguous, these pages
/// are allocated upon the creation of the VMO, rather than on demands.
const CONTIGUOUS: u32 = 1 << 1;
const CONTIGUOUS = 1 << 1;
/// Set this flag if a VMO is backed by memory pages that supports
/// Direct Memory Access (DMA) by devices.
const DMA: u32 = 1 << 2;
const DMA = 1 << 2;
}
}
@ -126,7 +130,7 @@ impl Vmo_ {
}
pub fn size(&self) -> usize {
self.0.size()
todo!()
}
pub fn resize(&self, new_size: usize) -> Result<()> {
@ -142,7 +146,6 @@ impl Vmo_ {
}
}
impl<R> Vmo<R> {
/// Returns the size (in bytes) of a VMO.
pub fn size(&self) -> usize {
@ -159,12 +162,4 @@ impl<R> Vmo<R> {
pub fn flags(&self) -> VmoFlags {
self.0.flags()
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}

View File

@ -1,5 +1,17 @@
//! Options for allocating root and child VMOs.
use core::marker::PhantomData;
use core::ops::Range;
use alloc::sync::Arc;
use kxos_frame::prelude::Result;
use kxos_frame::vm::Paddr;
use kxos_rights_proc::require;
use crate::rights::{Dup, Rights, TRights};
use super::{Pager, Vmo, VmoFlags};
/// Options for allocating a root VMO.
///
/// # Examples
@ -38,7 +50,8 @@ pub struct VmoOptions<R = Rights> {
size: usize,
paddr: Option<Paddr>,
flags: VmoFlags,
supplier: Option<Arc<dyn FrameSupplier>>,
rights: R,
// supplier: Option<Arc<dyn FrameSupplier>>,
}
impl<R> VmoOptions<R> {
@ -81,7 +94,7 @@ impl VmoOptions<Rights> {
/// # Access rights
///
/// The VMO is initially assigned full access rights.
pub fn alloc(mut self) -> Result<Vmo<R>> {
pub fn alloc(mut self) -> Result<Vmo<Rights>> {
todo!()
}
}
@ -185,10 +198,10 @@ pub struct VmoChildOptions<R, C> {
range: Range<usize>,
flags: VmoFlags,
// Specifies whether the child is a slice or a COW
child_marker: PhantomData<C>,
marker: PhantomData<C>,
}
impl<R> VmoChildOptions<R, VmoSliceChild> {
impl<R: TRights> VmoChildOptions<R, VmoSliceChild> {
/// Creates a default set of options for creating a slice VMO child.
///
/// A slice child of a VMO, which has direct access to a range of memory
@ -199,9 +212,32 @@ impl<R> VmoChildOptions<R, VmoSliceChild> {
#[require(R > Dup)]
pub fn new_slice(parent: Vmo<R>, range: Range<usize>) -> Self {
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
marker: PhantomData,
}
}
}
impl VmoChildOptions<Rights, VmoSliceChild> {
/// Creates a default set of options for creating a slice VMO child.
///
/// User should ensure parent have dup rights, otherwise this function will panic
///
/// A slice child of a VMO, which has direct access to a range of memory
/// pages in the parent VMO. In other words, any updates of the parent will
/// reflect on the child, and vice versa.
///
/// The range of a child must be within that of the parent.
pub fn new_slice_rights(parent: Vmo<Rights>, range: Range<usize>) -> Self {
parent
.check_rights(Rights::DUP)
.expect("function new_slice_rights should called with rights Dup");
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
flags: parent.flags & Self::PARENT_FLAGS_MASK,
marker: PhantomData,
}
}
@ -219,9 +255,9 @@ impl<R> VmoChildOptions<R, VmoCowChild> {
/// Any pages that are beyond the parent's range are initially all zeros.
pub fn new_cow(parent: Vmo<R>, range: Range<usize>) -> Self {
Self {
flags: parent.flags() & Self::PARENT_FLAGS_MASK,
parent,
range,
flags: parent.flags & Self::PARENT_FLAGS_MASK,
marker: PhantomData,
}
}
@ -229,10 +265,10 @@ impl<R> VmoChildOptions<R, VmoCowChild> {
impl<R, C> VmoChildOptions<R, C> {
/// Flags that a VMO child inherits from its parent.
pub const PARENT_FLAGS_MASK: VmoFlags = VmoFlags::CONTIGUOUS.bits |
VmoFlags::DMA.bits;
pub const PARENT_FLAGS_MASK: VmoFlags =
VmoFlags::from_bits(VmoFlags::CONTIGUOUS.bits | VmoFlags::DMA.bits).unwrap();
/// Flags that a VMO child may differ from its parent.
pub const CHILD_FLAGS_MASK: VmoFlags = VmoFlags::RESIZABLE.bits;
pub const CHILD_FLAGS_MASK: VmoFlags = VmoFlags::RESIZABLE;
/// Sets the VMO flags.
///
@ -248,7 +284,7 @@ impl<R, C> VmoChildOptions<R, C> {
}
}
impl<'a, C> VmoChildOptions<'a, Rights, C> {
impl<C> VmoChildOptions<Rights, C> {
/// Allocates the child VMO.
///
/// # Access rights
@ -259,7 +295,7 @@ impl<'a, C> VmoChildOptions<'a, Rights, C> {
}
}
impl<'a, R: TRights> VmoChildOptions<'a, R, VmoSliceChild> {
impl<R: TRights> VmoChildOptions<R, VmoSliceChild> {
/// Allocates the child VMO.
///
/// # Access rights
@ -270,23 +306,34 @@ impl<'a, R: TRights> VmoChildOptions<'a, R, VmoSliceChild> {
}
}
impl<'a, R: TRights> VmoChildOptions<'a, R, VmoCowChild> {
impl<R: TRights> VmoChildOptions<R, VmoCowChild> {
/// Allocates the child VMO.
///
/// # Access rights
///
/// The child VMO is initially assigned all the parent's access rights
/// plus the Write right.
pub fn alloc<R1>(mut self) -> Result<Vmo<R1>>
where
// TODO: R1 must contain the Write right. To do so at the type level,
pub fn alloc<TRights>(mut self) -> Result<Vmo<TRights>>
// TODO: R1 must contain the Write right. To do so at the type level,
// we need to implement a type-level operator
// (say, `TRightsExtend(L, F)`)
// that may extend a list (`L`) of type-level flags with an extra flag `F`.
R1: R // TRightsExtend<R, Write>
// TRightsExtend<R, Write>
{
todo!()
}
// original:
// pub fn alloc<R1>(mut self) -> Result<Vmo<R1>>
// where
// // TODO: R1 must contain the Write right. To do so at the type level,
// // we need to implement a type-level operator
// // (say, `TRightsExtend(L, F)`)
// // that may extend a list (`L`) of type-level flags with an extra flag `F`.
// R1: R // TRightsExtend<R, Write>
// {
// todo!()
// }
}
/// A type to specify the "type" of a child, which is either a slice or a COW.
@ -295,9 +342,9 @@ pub trait VmoChildType {}
/// A type to mark a child is slice.
#[derive(Copy, Clone, Debug)]
pub struct VmoSliceChild;
impl VmoChildType for VmoSliceChild {};
impl VmoChildType for VmoSliceChild {}
/// A type to mark a child is COW.
#[derive(Copy, Clone, Debug)]
pub struct VmoCowChild;
impl VmoChildType for VmoCowChild {};
impl VmoChildType for VmoCowChild {}

View File

@ -1,3 +1,6 @@
use kxos_frame::prelude::Result;
use kxos_frame::vm::VmFrame;
/// Pagers provide frame to a VMO.
///
/// A `Pager` object can be attached to a VMO. Whenever the

View File

@ -1,3 +1,16 @@
use core::ops::Range;
use kxos_frame::prelude::Result;
use kxos_frame::{vm::VmIo, Error};
use kxos_rights_proc::require;
use crate::rights::*;
use super::{
options::{VmoCowChild, VmoSliceChild},
Vmo, VmoChildOptions,
};
impl<R: TRights> Vmo<R> {
/// Creates a new slice VMO through a set of VMO child options.
///
@ -19,9 +32,12 @@ impl<R: TRights> Vmo<R> {
/// The new VMO child will be of the same capability flavor as the parent;
/// so are the access rights.
#[require(R > Dup)]
pub fn new_slice_child(&self, range: Range<usize>) -> VmoChildOptions<'_, R, VmoSliceChild> {
let dup_self = self.dup();
VmoChildOptions::new_slice(dup_self, range)
pub fn new_slice_child(
&self,
range: Range<usize>,
) -> Result<VmoChildOptions<R, VmoSliceChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_slice(dup_self, range))
}
/// Creates a new COW VMO through a set of VMO child options.
@ -45,9 +61,9 @@ impl<R: TRights> Vmo<R> {
/// The child will be given the access rights of the parent
/// plus the Write right.
#[require(R > Dup)]
pub fn new_cow_child(&self, range: Range<usize>) -> VmoChildOptions<'_, R, VmoCowChild> {
let dup_self = self.dup();
VmoChildOptions::new_cow(dup_self, range)
pub fn new_cow_child(&self, range: Range<usize>) -> Result<VmoChildOptions<R, VmoCowChild>> {
let dup_self = self.dup()?;
Ok(VmoChildOptions::new_cow(dup_self, range))
}
/// Commit the pages specified in the range (in bytes).
@ -102,11 +118,6 @@ impl<R: TRights> Vmo<R> {
self.0.clear(range)
}
/// Returns the size of the VMO in bytes.
pub fn size(&self) -> usize {
self.0.size()
}
/// Duplicate the capability.
///
/// # Access rights
@ -124,13 +135,21 @@ impl<R: TRights> Vmo<R> {
}
/// Converts to a dynamic capability.
pub fn to_dyn(self) -> Vmo {
pub fn to_dyn(self) -> Vmo<Rights> {
todo!()
}
/// Returns the access rights.
pub const fn rights(&self) -> Rights {
R::BITS
Rights::from_bits(R::BITS).unwrap()
}
fn check_rights(&self, rights: Rights) -> Result<()> {
if self.rights().contains(rights) {
Ok(())
} else {
Err(Error::AccessDenied)
}
}
}

View File

@ -1,8 +1,9 @@
//! Type level bools
pub use std::ops::BitAnd as And;
pub use std::ops::BitOr as Or;
pub use std::ops::Not;
pub use core::ops::BitAnd as And;
pub use core::ops::BitOr as Or;
pub use core::ops::Not;
use core::unimplemented;
pub trait Bool {}

View File

@ -2,7 +2,7 @@
//! This crate defines common type level operations, like SameAsOp, and Bool type operations.
//! Besides, this crate defines operations to deal with type sets, like SetContain and SetInclude.
//! When use kxos-typeflags or kxos-rights-poc, this crate should also be added as a dependency.
#![no_std]
pub mod assert;
pub mod bool;
pub mod if_;

View File

@ -1,13 +1,13 @@
//! Common types and traits to deal with type-level sets
use std::marker::PhantomData;
use core::marker::PhantomData;
use crate::{
if_::{If, IfOp},
And, AndOp, False, OrOp, SameAs, SameAsOp, True,
};
use std::ops::BitOr as Or;
use core::ops::BitOr as Or;
/// A marker trait for type-level sets.
pub trait Set {}

View File

@ -65,11 +65,12 @@ impl TypeFlagDef {
let ident = self.ident.clone();
let type_ = self.type_.clone();
quote!(
#vis trait #ident {
#vis trait #ident : Sync + Send{
const BITS: #type_;
fn new() -> Self;
}
)
}

View File

@ -11,6 +11,7 @@ spin = "0.9.4"
kxos-frame = {path = "../kxos-frame"}
kxos-pci = {path="../kxos-pci"}
kxos-util = {path="../kxos-util"}
kxos-frame-pod-derive= {path="../kxos-frame-pod-derive"}
[features]

View File

@ -1,11 +1,12 @@
use kxos_frame::Pod;
use kxos_frame_pod_derive::Pod;
use kxos_pci::capability::vendor::virtio::CapabilityVirtioData;
use kxos_pci::util::BAR;
use kxos_util::frame_ptr::InFramePtr;
pub const BLK_SIZE: usize = 512;
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Pod)]
#[repr(C)]
pub struct VirtioBLKConfig {
capacity: u64,
@ -24,7 +25,7 @@ pub struct VirtioBLKConfig {
unused1: [u8; 3],
}
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Pod)]
#[repr(C)]
pub struct VirtioBLKGeometry {
cylinders: u16,
@ -32,7 +33,7 @@ pub struct VirtioBLKGeometry {
sectors: u8,
}
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Copy, Clone, Pod)]
#[repr(C)]
pub struct VirtioBLKTopology {
physical_block_exp: u8,
@ -41,8 +42,6 @@ pub struct VirtioBLKTopology {
opt_io_size: u32,
}
kxos_frame::impl_pod_for!(VirtioBLKTopology, VirtioBLKGeometry, VirtioBLKConfig);
impl VirtioBLKConfig {
pub(crate) fn new(cap: &CapabilityVirtioData, bars: [Option<BAR>; 6]) -> InFramePtr<Self> {
let bar = cap.bar;

View File

@ -7,8 +7,10 @@ extern crate alloc;
use alloc::{sync::Arc, vec::Vec};
use bitflags::bitflags;
use kxos_frame::{info, offset_of, TrapFrame};
use kxos_frame_pod_derive::Pod;
use kxos_pci::util::{PCIDevice, BAR};
use kxos_util::frame_ptr::InFramePtr;
use spin::{mutex::Mutex, MutexGuard};
use self::{block::VirtioBLKConfig, queue::VirtQueue};
@ -54,7 +56,7 @@ bitflags! {
}
}
#[derive(Debug, Default, Copy, Clone)]
#[derive(Debug, Default, Copy, Clone, Pod)]
#[repr(C)]
pub struct VitrioPciCommonCfg {
device_feature_select: u32,
@ -76,8 +78,6 @@ pub struct VitrioPciCommonCfg {
queue_device: u64,
}
kxos_frame::impl_pod_for!(VitrioPciCommonCfg);
impl VitrioPciCommonCfg {
pub(crate) fn new(cap: &CapabilityVirtioData, bars: [Option<BAR>; 6]) -> InFramePtr<Self> {
let bar = cap.bar;
@ -272,7 +272,7 @@ impl PCIVirtioDevice {
/// register the queue interrupt functions, this function should call only once
pub fn register_queue_interrupt_functions<F>(&mut self, functions: &mut Vec<F>)
where
F: Fn(TrapFrame) + Send + Sync + 'static,
F: Fn(&TrapFrame) + Send + Sync + 'static,
{
let len = functions.len();
if len

View File

@ -6,6 +6,7 @@ use bitflags::bitflags;
use core::sync::atomic::{fence, Ordering};
use kxos_frame::offset_of;
use kxos_frame::Pod;
use kxos_frame_pod_derive::Pod;
use kxos_util::frame_ptr::InFramePtr;
#[derive(Debug)]
pub enum QueueError {
@ -230,7 +231,7 @@ impl VirtQueue {
}
#[repr(C, align(16))]
#[derive(Debug, Default, Copy, Clone)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct Descriptor {
addr: u64,
len: u32,
@ -252,9 +253,9 @@ fn set_buf(inframe_ptr: &InFramePtr<Descriptor>, buf: &[u8]) {
);
inframe_ptr.write_at(offset_of!(Descriptor, len), buf.len() as u32);
}
bitflags! {
/// Descriptor flags
#[derive(Pod)]
struct DescFlags: u16 {
const NEXT = 1;
const WRITE = 2;
@ -273,7 +274,7 @@ impl Default for DescFlags {
/// each ring entry refers to the head of a descriptor chain.
/// It is only written by the driver and read by the device.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct AvailRing {
flags: u16,
/// A driver MUST NOT decrement the idx.
@ -285,7 +286,7 @@ struct AvailRing {
/// The used ring is where the device returns buffers once it is done with them:
/// it is only written to by the device, and read by the driver.
#[repr(C)]
#[derive(Debug, Default, Copy, Clone)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct UsedRing {
flags: u16,
idx: u16,
@ -294,10 +295,8 @@ struct UsedRing {
}
#[repr(C)]
#[derive(Debug, Default, Copy, Clone)]
#[derive(Debug, Default, Copy, Clone, Pod)]
struct UsedElem {
id: u32,
len: u32,
}
kxos_frame::impl_pod_for!(UsedElem, UsedRing, AvailRing, Descriptor, DescFlags);

48
src/tests/timer_test.rs Normal file
View File

@ -0,0 +1,48 @@
#![no_std]
#![no_main]
#![feature(custom_test_frameworks)]
#![test_runner(kxos_frame::test_runner)]
#![reexport_test_harness_main = "test_main"]
use bootloader::{entry_point, BootInfo};
use kxos_frame::timer::Timer;
extern crate alloc;
use alloc::sync::Arc;
use core::panic::PanicInfo;
use core::time::Duration;
use kxos_frame::println;
static mut TICK: usize = 0;
entry_point!(kernel_test_main);
fn kernel_test_main(boot_info: &'static mut BootInfo) -> ! {
kxos_frame::init(boot_info);
test_main();
loop {}
}
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
kxos_frame::test_panic_handler(info)
}
#[test_case]
fn test_timer() {
println!(
"If you want to pass this test, you may need to enable the interrupt in kxos_frame/lib.rs"
);
println!("make sure the Timer irq number 32 handler won't panic");
unsafe {
let timer = Timer::new(timer_callback).unwrap();
timer.set(Duration::from_secs(1));
while TICK < 5 {}
}
}
pub fn timer_callback(timer: Arc<Timer>) {
unsafe {
TICK += 1;
println!("TICK:{}", TICK);
timer.set(Duration::from_secs(1));
}
}