// SPDX-License-Identifier: MPL-2.0 #![expect(dead_code)] //! This module is used to parse elf file content to get elf_load_info. //! When create a process from elf file, we will use the elf_load_info to construct the VmSpace use align_ext::AlignExt; use aster_rights::Full; use ostd::{ mm::{CachePolicy, PageFlags, PageProperty, VmIo}, task::disable_preempt, }; use xmas_elf::program::{self, ProgramHeader64}; use super::elf_file::Elf; use crate::{ fs::{ fs_resolver::{FsPath, FsResolver, AT_FDCWD}, path::Dentry, }, prelude::*, process::{ posix_thread::do_exit_group, process_vm::{AuxKey, AuxVec, ProcessVm}, TermStatus, }, vdso::{vdso_vmo, VDSO_VMO_SIZE}, vm::{ perms::VmPerms, util::duplicate_frame, vmar::Vmar, vmo::{CommitFlags, VmoRightsOp}, }, }; /// Loads elf to the process vm. /// /// This function will map elf segments and /// initialize process init stack. pub fn load_elf_to_vm( process_vm: &ProcessVm, file_header: &[u8], elf_file: Dentry, fs_resolver: &FsResolver, argv: Vec, envp: Vec, ) -> Result { let parsed_elf = Elf::parse_elf(file_header)?; let ldso = lookup_and_parse_ldso(&parsed_elf, file_header, fs_resolver)?; match init_and_map_vmos(process_vm, ldso, &parsed_elf, &elf_file) { Ok((entry_point, mut aux_vec)) => { // Map and set vdso entry. // Since vdso does not require being mapped to any specific address, // vdso is mapped after the elf file, heap and stack are mapped. if let Some(vdso_text_base) = map_vdso_to_vm(process_vm) { aux_vec .set(AuxKey::AT_SYSINFO_EHDR, vdso_text_base as u64) .unwrap(); } process_vm.map_and_write_init_stack(argv, envp, aux_vec)?; let user_stack_top = process_vm.user_stack_top(); Ok(ElfLoadInfo { entry_point, user_stack_top, }) } Err(err) => { // Since the process_vm is in invalid state, // the process cannot return to user space again, // so `Vmar::clear` and `do_exit_group` are called here. // FIXME: sending a fault signal is an alternative approach. process_vm.lock_root_vmar().unwrap().clear().unwrap(); // FIXME: `current` macro will be used in `do_exit_group`. // if the macro is used when creating the init process, // the macro will panic. This corner case should be handled later. // FIXME: how to set the correct exit status? do_exit_group(TermStatus::Exited(1)); // The process will exit and the error code will be ignored. Err(err) } } } fn lookup_and_parse_ldso( elf: &Elf, file_header: &[u8], fs_resolver: &FsResolver, ) -> Result> { let ldso_file = { let Some(ldso_path) = elf.ldso_path(file_header)? else { return Ok(None); }; let fs_path = FsPath::new(AT_FDCWD, &ldso_path)?; fs_resolver.lookup(&fs_path)? }; let ldso_elf = { let mut buf = Box::new([0u8; PAGE_SIZE]); let inode = ldso_file.inode(); inode.read_bytes_at(0, &mut *buf)?; Elf::parse_elf(&*buf)? }; Ok(Some((ldso_file, ldso_elf))) } fn load_ldso(root_vmar: &Vmar, ldso_file: &Dentry, ldso_elf: &Elf) -> Result { let map_addr = map_segment_vmos(ldso_elf, root_vmar, ldso_file)?; Ok(LdsoLoadInfo::new( ldso_elf.entry_point() + map_addr, map_addr, )) } fn init_and_map_vmos( process_vm: &ProcessVm, ldso: Option<(Dentry, Elf)>, parsed_elf: &Elf, elf_file: &Dentry, ) -> Result<(Vaddr, AuxVec)> { let process_vmar = process_vm.lock_root_vmar(); let root_vmar = process_vmar.unwrap(); // After we clear process vm, if any error happens, we must call exit_group instead of return to user space. let ldso_load_info = if let Some((ldso_file, ldso_elf)) = ldso { Some(load_ldso(root_vmar, &ldso_file, &ldso_elf)?) } else { None }; let elf_map_addr = map_segment_vmos(parsed_elf, root_vmar, elf_file)?; let aux_vec = { let ldso_base = ldso_load_info .as_ref() .map(|load_info| load_info.base_addr()); init_aux_vec(parsed_elf, elf_map_addr, ldso_base)? }; let entry_point = if let Some(ldso_load_info) = ldso_load_info { // Normal shared object ldso_load_info.entry_point() } else if parsed_elf.is_shared_object() { // ldso itself parsed_elf.entry_point() + elf_map_addr } else { // statically linked executable parsed_elf.entry_point() }; Ok((entry_point, aux_vec)) } pub struct LdsoLoadInfo { entry_point: Vaddr, base_addr: Vaddr, } impl LdsoLoadInfo { pub fn new(entry_point: Vaddr, base_addr: Vaddr) -> Self { Self { entry_point, base_addr, } } pub fn entry_point(&self) -> Vaddr { self.entry_point } pub fn base_addr(&self) -> Vaddr { self.base_addr } } pub struct ElfLoadInfo { entry_point: Vaddr, user_stack_top: Vaddr, } impl ElfLoadInfo { pub fn new(entry_point: Vaddr, user_stack_top: Vaddr) -> Self { Self { entry_point, user_stack_top, } } pub fn entry_point(&self) -> Vaddr { self.entry_point } pub fn user_stack_top(&self) -> Vaddr { self.user_stack_top } } /// Inits VMO for each segment and then map segment to root vmar pub fn map_segment_vmos(elf: &Elf, root_vmar: &Vmar, elf_file: &Dentry) -> Result { // all segments of the shared object must be mapped to a continuous vm range // to ensure the relative offset of each segment not changed. let base_addr = if elf.is_shared_object() { base_map_addr(elf, root_vmar)? } else { 0 }; for program_header in &elf.program_headers { let type_ = program_header .get_type() .map_err(|_| Error::with_message(Errno::ENOEXEC, "parse program header type fails"))?; if type_ == program::Type::Load { check_segment_align(program_header)?; map_segment_vmo(program_header, elf_file, root_vmar, base_addr)?; } } Ok(base_addr) } fn base_map_addr(elf: &Elf, root_vmar: &Vmar) -> Result { let elf_size = elf .program_headers .iter() .filter_map(|program_header| { if let Ok(type_) = program_header.get_type() && type_ == program::Type::Load { let ph_max_addr = program_header.virtual_addr + program_header.mem_size; Some(ph_max_addr as usize) } else { None } }) .max() .ok_or(Error::with_message( Errno::ENOEXEC, "executable file does not has loadable sections", ))?; let map_size = elf_size.align_up(PAGE_SIZE); let vmar_map_options = root_vmar .new_map(map_size, VmPerms::empty())? .handle_page_faults_around(); vmar_map_options.build() } /// Creates and map the corresponding segment VMO to `root_vmar`. /// If needed, create additional anonymous mapping to represents .bss segment. fn map_segment_vmo( program_header: &ProgramHeader64, elf_file: &Dentry, root_vmar: &Vmar, base_addr: Vaddr, ) -> Result<()> { trace!( "mem range = 0x{:x} - 0x{:x}, mem_size = 0x{:x}", program_header.virtual_addr, program_header.virtual_addr + program_header.mem_size, program_header.mem_size ); trace!( "file range = 0x{:x} - 0x{:x}, file_size = 0x{:x}", program_header.offset, program_header.offset + program_header.file_size, program_header.file_size ); let file_offset = program_header.offset as usize; let virtual_addr = program_header.virtual_addr as usize; debug_assert!(file_offset % PAGE_SIZE == virtual_addr % PAGE_SIZE); let segment_vmo = { let inode = elf_file.inode(); inode .page_cache() .ok_or(Error::with_message( Errno::ENOENT, "executable has no page cache", ))? .to_dyn() .dup()? }; let total_map_size = { let vmap_start = virtual_addr.align_down(PAGE_SIZE); let vmap_end = (virtual_addr + program_header.mem_size as usize).align_up(PAGE_SIZE); vmap_end - vmap_start }; let (segment_offset, segment_size) = { let start = file_offset.align_down(PAGE_SIZE); let end = (file_offset + program_header.file_size as usize).align_up(PAGE_SIZE); debug_assert!(total_map_size >= (program_header.file_size as usize).align_up(PAGE_SIZE)); (start, end - start) }; let perms = parse_segment_perm(program_header.flags); let offset = base_addr + (program_header.virtual_addr as Vaddr).align_down(PAGE_SIZE); if segment_size != 0 { let mut vm_map_options = root_vmar .new_map(segment_size, perms)? .vmo(segment_vmo.dup()?) .vmo_offset(segment_offset) .vmo_limit(segment_offset + segment_size) .can_overwrite(true); vm_map_options = vm_map_options.offset(offset).handle_page_faults_around(); let map_addr = vm_map_options.build()?; // Write zero as paddings. There are head padding and tail padding. // Head padding: if the segment's virtual address is not page-aligned, // then the bytes in first page from start to virtual address should be padded zeros. // Tail padding: If the segment's mem_size is larger than file size, // then the bytes that are not backed up by file content should be zeros.(usually .data/.bss sections). let preempt_guard = disable_preempt(); let mut cursor = root_vmar .vm_space() .cursor_mut(&preempt_guard, &(map_addr..map_addr + segment_size))?; let page_flags = PageFlags::from(perms) | PageFlags::ACCESSED; // Head padding. let page_offset = file_offset % PAGE_SIZE; if page_offset != 0 { let new_frame = { let head_frame = segment_vmo.commit_on(segment_offset / PAGE_SIZE, CommitFlags::empty())?; let new_frame = duplicate_frame(&head_frame)?; let buffer = vec![0u8; page_offset]; new_frame.write_bytes(0, &buffer).unwrap(); new_frame }; cursor.map( new_frame.into(), PageProperty::new(page_flags, CachePolicy::Writeback), ); } // Tail padding. let tail_padding_offset = program_header.file_size as usize + page_offset; if segment_size > tail_padding_offset { let new_frame = { let tail_frame = { let offset_index = (segment_offset + tail_padding_offset) / PAGE_SIZE; segment_vmo.commit_on(offset_index, CommitFlags::empty())? }; let new_frame = duplicate_frame(&tail_frame)?; let buffer = vec![0u8; (segment_size - tail_padding_offset) % PAGE_SIZE]; new_frame .write_bytes(tail_padding_offset % PAGE_SIZE, &buffer) .unwrap(); new_frame }; let tail_page_addr = map_addr + tail_padding_offset.align_down(PAGE_SIZE); cursor.jump(tail_page_addr)?; cursor.map( new_frame.into(), PageProperty::new(page_flags, CachePolicy::Writeback), ); } } let anonymous_map_size: usize = total_map_size.saturating_sub(segment_size); if anonymous_map_size > 0 { let mut anonymous_map_options = root_vmar .new_map(anonymous_map_size, perms)? .can_overwrite(true); anonymous_map_options = anonymous_map_options.offset(offset + segment_size); anonymous_map_options.build()?; } Ok(()) } fn parse_segment_perm(flags: xmas_elf::program::Flags) -> VmPerms { let mut vm_perm = VmPerms::empty(); if flags.is_read() { vm_perm |= VmPerms::READ; } if flags.is_write() { vm_perm |= VmPerms::WRITE; } if flags.is_execute() { vm_perm |= VmPerms::EXEC; } vm_perm } fn check_segment_align(program_header: &ProgramHeader64) -> Result<()> { let align = program_header.align; if align == 0 || align == 1 { // no align requirement return Ok(()); } if !align.is_power_of_two() { return_errno_with_message!(Errno::ENOEXEC, "segment align is invalid."); } if program_header.offset % align != program_header.virtual_addr % align { return_errno_with_message!(Errno::ENOEXEC, "segment align is not satisfied."); } Ok(()) } pub fn init_aux_vec(elf: &Elf, elf_map_addr: Vaddr, ldso_base: Option) -> Result { let mut aux_vec = AuxVec::new(); aux_vec.set(AuxKey::AT_PAGESZ, PAGE_SIZE as _)?; let ph_addr = if elf.is_shared_object() { elf.ph_addr()? + elf_map_addr } else { elf.ph_addr()? }; aux_vec.set(AuxKey::AT_PHDR, ph_addr as u64)?; aux_vec.set(AuxKey::AT_PHNUM, elf.ph_count() as u64)?; aux_vec.set(AuxKey::AT_PHENT, elf.ph_ent() as u64)?; let elf_entry = if elf.is_shared_object() { let base_load_offset = elf.base_load_address_offset(); elf.entry_point() + elf_map_addr - base_load_offset as usize } else { elf.entry_point() }; aux_vec.set(AuxKey::AT_ENTRY, elf_entry as u64)?; if let Some(ldso_base) = ldso_base { aux_vec.set(AuxKey::AT_BASE, ldso_base as u64)?; } Ok(aux_vec) } /// Maps the VDSO VMO to the corresponding virtual memory address. fn map_vdso_to_vm(process_vm: &ProcessVm) -> Option { let process_vmar = process_vm.lock_root_vmar(); let root_vmar = process_vmar.unwrap(); let vdso_vmo = vdso_vmo()?; let options = root_vmar .new_map(VDSO_VMO_SIZE, VmPerms::empty()) .unwrap() .vmo(vdso_vmo.dup().unwrap()); let vdso_data_base = options.build().unwrap(); let vdso_text_base = vdso_data_base + 0x4000; let data_perms = VmPerms::READ | VmPerms::WRITE; let text_perms = VmPerms::READ | VmPerms::EXEC; root_vmar .protect(data_perms, vdso_data_base..vdso_data_base + PAGE_SIZE) .unwrap(); root_vmar .protect(text_perms, vdso_text_base..vdso_text_base + PAGE_SIZE) .unwrap(); Some(vdso_text_base) }