// SPDX-License-Identifier: MPL-2.0 //! The context that can be accessed from the current task, thread or process. use core::mem; use ostd::{ mm::{Fallible, Infallible, VmReader, VmSpace, VmWriter}, task::Task, }; use crate::{ prelude::*, process::{posix_thread::PosixThread, Process}, thread::Thread, }; /// The context that can be accessed from the current POSIX thread. #[derive(Clone)] pub struct Context<'a> { pub process: &'a Process, pub posix_thread: &'a PosixThread, pub thread: &'a Thread, pub task: &'a Task, } impl Context<'_> { /// Gets the userspace of the current task. pub fn get_user_space(&self) -> CurrentUserSpace { CurrentUserSpace::new(self.task) } } /// The user's memory space of the current task. /// /// It provides methods to read from or write to the user space efficiently. pub struct CurrentUserSpace<'a>(&'a VmSpace); /// Gets the [`CurrentUserSpace`] from the current task. /// /// This is slower than [`Context::get_user_space`]. Don't use this getter /// If you get the access to the [`Context`]. #[macro_export] macro_rules! get_current_userspace { () => { CurrentUserSpace::new(&ostd::task::Task::current().unwrap()) }; } impl<'a> CurrentUserSpace<'a> { /// Creates a new `CurrentUserSpace` from the specified task. /// /// This method is _not_ recommended for use, as it does not verify whether the provided /// `task` is the current task in release builds. /// /// If you have access to a [`Context`], it is preferable to call [`Context::get_user_space`]. /// /// Otherwise, you can use the `get_current_userspace` macro /// to obtain an instance of `CurrentUserSpace` if it will only be used once. /// /// # Panics /// /// This method will panic in debug builds if the specified `task` is not the current task. pub fn new(task: &'a Task) -> Self { let user_space = task.user_space().unwrap(); debug_assert!(Arc::ptr_eq( task.user_space().unwrap(), Task::current().unwrap().user_space().unwrap() )); Self(user_space.vm_space()) } /// Creates a reader to read data from the user space of the current task. /// /// Returns `Err` if the `vaddr` and `len` do not represent a user space memory range. pub fn reader(&self, vaddr: Vaddr, len: usize) -> Result> { Ok(self.0.reader(vaddr, len)?) } /// Creates a writer to write data into the user space. /// /// Returns `Err` if the `vaddr` and `len` do not represent a user space memory range. pub fn writer(&self, vaddr: Vaddr, len: usize) -> Result> { Ok(self.0.writer(vaddr, len)?) } /// Reads bytes into the destination `VmWriter` from the user space of the /// current process. /// /// If the reading is completely successful, returns `Ok`. Otherwise, it /// returns `Err`. /// /// If the destination `VmWriter` (`dest`) is empty, this function still /// checks if the current task and user space are available. If they are, /// it returns `Ok`. pub fn read_bytes(&self, src: Vaddr, dest: &mut VmWriter<'_, Infallible>) -> Result<()> { let copy_len = dest.avail(); if copy_len > 0 { check_vaddr(src)?; } let mut user_reader = self.reader(src, copy_len)?; user_reader.read_fallible(dest).map_err(|err| err.0)?; Ok(()) } /// Reads a value typed `Pod` from the user space of the current process. pub fn read_val(&self, src: Vaddr) -> Result { if core::mem::size_of::() > 0 { check_vaddr(src)?; } let mut user_reader = self.reader(src, core::mem::size_of::())?; Ok(user_reader.read_val()?) } /// Writes bytes from the source `VmReader` to the user space of the current /// process. /// /// If the writing is completely successful, returns `Ok`. Otherwise, it /// returns `Err`. /// /// If the source `VmReader` (`src`) is empty, this function still checks if /// the current task and user space are available. If they are, it returns /// `Ok`. pub fn write_bytes(&self, dest: Vaddr, src: &mut VmReader<'_, Infallible>) -> Result<()> { let copy_len = src.remain(); if copy_len > 0 { check_vaddr(dest)?; } let mut user_writer = self.writer(dest, copy_len)?; user_writer.write_fallible(src).map_err(|err| err.0)?; Ok(()) } /// Writes `val` to the user space of the current process. pub fn write_val(&self, dest: Vaddr, val: &T) -> Result<()> { if core::mem::size_of::() > 0 { check_vaddr(dest)?; } let mut user_writer = self.writer(dest, core::mem::size_of::())?; Ok(user_writer.write_val(val)?) } /// Reads a C string from the user space of the current process. /// The length of the string should not exceed `max_len`, /// including the final `\0` byte. pub fn read_cstring(&self, vaddr: Vaddr, max_len: usize) -> Result { if max_len > 0 { check_vaddr(vaddr)?; } let mut user_reader = self.reader(vaddr, max_len)?; user_reader.read_cstring() } } /// A trait providing the ability to read a C string from the user space /// of the current process specifically for [`VmReader<'_, UserSpace>`], which /// should reading the bytes iteratively in the reader until encountering /// the end of the reader or reading a `\0` (is also included into the final C String). pub trait ReadCString { fn read_cstring(&mut self) -> Result; } impl<'a> ReadCString for VmReader<'a, Fallible> { /// This implementation is inspired by /// the `do_strncpy_from_user` function in Linux kernel. /// The original Linux implementation can be found at: /// fn read_cstring(&mut self) -> Result { let max_len = self.remain(); let mut buffer: Vec = Vec::with_capacity(max_len); macro_rules! read_one_byte_at_a_time_while { ($cond:expr) => { while $cond { let byte = self.read_val::()?; buffer.push(byte); if byte == 0 { return Ok(CString::from_vec_with_nul(buffer) .expect("We provided 0 but no 0 is found")); } } }; } // Handle the first few bytes to make `cur_addr` aligned with `size_of::` read_one_byte_at_a_time_while!( !is_addr_aligned(self.cursor() as usize) && buffer.len() < max_len ); // Handle the rest of the bytes in bulk while (buffer.len() + mem::size_of::()) <= max_len { let Ok(word) = self.read_val::() else { break; }; if has_zero(word) { for byte in word.to_ne_bytes() { buffer.push(byte); if byte == 0 { return Ok(CString::from_vec_with_nul(buffer) .expect("We provided 0 but no 0 is found")); } } unreachable!("The branch should never be reached unless `has_zero` has bugs.") } buffer.extend_from_slice(&word.to_ne_bytes()); } // Handle the last few bytes that are not enough for a word read_one_byte_at_a_time_while!(buffer.len() < max_len); // Maximum length exceeded before finding the null terminator return_errno_with_message!(Errno::EFAULT, "Fails to read CString from user"); } } /// Determines whether the value contains a zero byte. /// /// This magic algorithm is from the Linux `has_zero` function: /// const fn has_zero(value: usize) -> bool { const ONE_BITS: usize = usize::from_le_bytes([0x01; mem::size_of::()]); const HIGH_BITS: usize = usize::from_le_bytes([0x80; mem::size_of::()]); value.wrapping_sub(ONE_BITS) & !value & HIGH_BITS != 0 } /// Checks if the user space pointer is below the lowest userspace address. /// /// If a pointer is below the lowest userspace address, it is likely to be a /// NULL pointer. Reading from or writing to a NULL pointer should trigger a /// segmentation fault. /// /// If it is not checked here, a kernel page fault will happen and we would /// deny the access in the page fault handler either. It may save a page fault /// in some occasions. More importantly, double page faults may not be handled /// quite well on some platforms. fn check_vaddr(va: Vaddr) -> Result<()> { if va < crate::vm::vmar::ROOT_VMAR_LOWEST_ADDR { Err(Error::with_message( Errno::EFAULT, "Bad user space pointer specified", )) } else { Ok(()) } } /// Checks if the given address is aligned. const fn is_addr_aligned(addr: usize) -> bool { (addr & (mem::size_of::() - 1)) == 0 }