// SPDX-License-Identifier: MPL-2.0 #include #include #include #include #include #include #include #include "test.h" static struct sockaddr_in sk_addr; #define C_PORT htons(0x1234) #define S_PORT htons(0x1235) FN_SETUP(general) { sk_addr.sin_family = AF_INET; sk_addr.sin_port = htons(8080); CHECK(inet_aton("127.0.0.1", &sk_addr.sin_addr)); signal(SIGPIPE, SIG_IGN); } END_SETUP() static int sk_unbound; static int sk_bound; static int sk_listen; static int sk_connected; static int sk_accepted; FN_SETUP(unbound) { sk_unbound = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)); } END_SETUP() FN_SETUP(bound) { sk_bound = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)); sk_addr.sin_port = C_PORT; CHECK(bind(sk_bound, (struct sockaddr *)&sk_addr, sizeof(sk_addr))); } END_SETUP() FN_SETUP(listen) { sk_listen = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)); sk_addr.sin_port = S_PORT; CHECK(bind(sk_listen, (struct sockaddr *)&sk_addr, sizeof(sk_addr))); CHECK(listen(sk_listen, 2)); } END_SETUP() FN_SETUP(connected) { sk_connected = CHECK(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)); sk_addr.sin_port = S_PORT; CHECK_WITH(connect(sk_connected, (struct sockaddr *)&sk_addr, sizeof(sk_addr)), _ret < 0 && errno == EINPROGRESS); } END_SETUP() FN_SETUP(accpected) { struct sockaddr addr; socklen_t addrlen = sizeof(addr); struct pollfd pfd = { .fd = sk_listen, .events = POLLIN }; CHECK_WITH(poll(&pfd, 1, 1000), _ret >= 0 && ((pfd.revents & (POLLIN | POLLOUT)) & POLLIN)); sk_accepted = CHECK(accept(sk_listen, &addr, &addrlen)); } END_SETUP() FN_TEST(getsockname) { struct sockaddr_in saddr = { .sin_port = 0xbeef }; struct sockaddr *psaddr = (struct sockaddr *)&saddr; socklen_t addrlen = 0; TEST_RES(getsockname(sk_unbound, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == 0xbeef); TEST_RES(getsockname(sk_unbound, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == 0); TEST_RES(getsockname(sk_bound, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == C_PORT); TEST_RES(getsockname(sk_listen, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == S_PORT); TEST_RES(getsockname(sk_connected, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port != S_PORT); TEST_RES(getsockname(sk_accepted, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == S_PORT); } END_TEST() FN_TEST(getpeername) { struct sockaddr_in saddr = { .sin_port = 0xbeef }; struct sockaddr *psaddr = (struct sockaddr *)&saddr; socklen_t addrlen = sizeof(saddr); TEST_ERRNO(getpeername(sk_unbound, psaddr, &addrlen), ENOTCONN); TEST_ERRNO(getpeername(sk_bound, psaddr, &addrlen), ENOTCONN); TEST_ERRNO(getpeername(sk_listen, psaddr, &addrlen), ENOTCONN); TEST_RES(getpeername(sk_connected, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == S_PORT); TEST_RES(getpeername(sk_accepted, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port != S_PORT); } END_TEST() FN_TEST(peername_is_peer_sockname) { struct sockaddr_in saddr = { .sin_port = 0xbeef }; struct sockaddr *psaddr = (struct sockaddr *)&saddr; socklen_t addrlen = sizeof(saddr); int em_port; TEST_RES(getsockname(sk_connected, psaddr, &addrlen), addrlen == sizeof(saddr)); em_port = saddr.sin_port; TEST_RES(getpeername(sk_accepted, psaddr, &addrlen), addrlen == sizeof(saddr) && saddr.sin_port == em_port); } END_TEST() FN_TEST(send) { char buf[1] = { 'z' }; TEST_ERRNO(send(sk_unbound, buf, 1, 0), EPIPE); TEST_ERRNO(send(sk_bound, buf, 1, 0), EPIPE); TEST_ERRNO(send(sk_listen, buf, 1, 0), EPIPE); } END_TEST() FN_TEST(recv) { char buf[1] = { 'z' }; TEST_ERRNO(recv(sk_unbound, buf, 1, 0), ENOTCONN); TEST_ERRNO(recv(sk_bound, buf, 1, 0), ENOTCONN); TEST_ERRNO(recv(sk_listen, buf, 1, 0), ENOTCONN); } END_TEST() FN_TEST(send_and_recv) { char buf[1]; buf[0] = 'a'; TEST_RES(send(sk_connected, buf, 1, 0), _ret == 1); buf[0] = 'b'; sk_addr.sin_port = 0xbeef; TEST_RES(sendto(sk_accepted, buf, 1, 0, (struct sockaddr *)&sk_addr, sizeof(sk_addr)), _ret == 1); TEST_RES(recv(sk_accepted, buf, 1, 0), buf[0] == 'a'); TEST_RES(recv(sk_connected, buf, 1, 0), buf[0] == 'b'); TEST_ERRNO(recv(sk_connected, buf, 1, 0), EAGAIN); } END_TEST() FN_TEST(bind) { struct sockaddr *psaddr = (struct sockaddr *)&sk_addr; socklen_t addrlen = sizeof(sk_addr); TEST_ERRNO(bind(sk_unbound, psaddr, addrlen - 1), EINVAL); TEST_ERRNO(bind(sk_bound, psaddr, addrlen), EINVAL); TEST_ERRNO(bind(sk_listen, psaddr, addrlen), EINVAL); TEST_ERRNO(bind(sk_connected, psaddr, addrlen), EINVAL); TEST_ERRNO(bind(sk_accepted, psaddr, addrlen), EINVAL); } END_TEST() FN_TEST(bind_reuseaddr) { sk_addr.sin_port = htons(8081); struct sockaddr *psaddr = (struct sockaddr *)&sk_addr; socklen_t addrlen = sizeof(sk_addr); int disable = 0; int enable = 1; int sk1 = TEST_SUCC(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)); int sk2 = TEST_SUCC(socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)); TEST_SUCC(bind(sk1, psaddr, addrlen)); TEST_ERRNO(bind(sk2, psaddr, addrlen), EADDRINUSE); // FIXME: The test will fail in Asterinas since it doesn't check // if the previous socket was bound with `SO_REUSEADDR` // // TEST_SUCC(setsockopt(sk1, SOL_SOCKET, SO_REUSEADDR, &disable, // sizeof(disable))); // TEST_SUCC(setsockopt(sk2, SOL_SOCKET, SO_REUSEADDR, &enable, // sizeof(enable))); // TEST_ERRNO(bind(sk2, psaddr, addrlen), EADDRINUSE); TEST_SUCC(setsockopt(sk1, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable))); TEST_SUCC(setsockopt(sk2, SOL_SOCKET, SO_REUSEADDR, &disable, sizeof(disable))); TEST_ERRNO(bind(sk2, psaddr, addrlen), EADDRINUSE); TEST_SUCC(setsockopt(sk1, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable))); TEST_SUCC(setsockopt(sk2, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable))); TEST_SUCC(bind(sk2, psaddr, addrlen)); TEST_SUCC(close(sk1)); TEST_SUCC(close(sk2)); } END_TEST() FN_TEST(listen) { // The second `listen` does nothing but succeed. // TODO: Will it update the backlog? TEST_SUCC(listen(sk_listen, 2)); TEST_ERRNO(listen(sk_connected, 2), EINVAL); TEST_ERRNO(listen(sk_accepted, 2), EINVAL); } END_TEST() FN_TEST(accept) { struct sockaddr_in saddr; struct sockaddr *psaddr = (struct sockaddr *)&saddr; socklen_t addrlen = sizeof(saddr); TEST_ERRNO(accept(sk_unbound, psaddr, &addrlen), EINVAL); TEST_ERRNO(accept(sk_bound, psaddr, &addrlen), EINVAL); TEST_ERRNO(accept(sk_listen, psaddr, &addrlen), EAGAIN); TEST_ERRNO(accept(sk_connected, psaddr, &addrlen), EINVAL); TEST_ERRNO(accept(sk_accepted, psaddr, &addrlen), EINVAL); } END_TEST() FN_TEST(poll) { struct pollfd pfd = { .events = POLLIN | POLLOUT }; pfd.fd = sk_unbound; TEST_RES(poll(&pfd, 1, 0), (pfd.revents & (POLLIN | POLLOUT)) == POLLOUT); pfd.fd = sk_bound; TEST_RES(poll(&pfd, 1, 0), (pfd.revents & (POLLIN | POLLOUT)) == POLLOUT); pfd.fd = sk_listen; TEST_RES(poll(&pfd, 1, 0), (pfd.revents & (POLLIN | POLLOUT)) == 0); pfd.fd = sk_connected; TEST_RES(poll(&pfd, 1, 0), (pfd.revents & (POLLIN | POLLOUT)) == POLLOUT); pfd.fd = sk_accepted; TEST_RES(poll(&pfd, 1, 0), (pfd.revents & (POLLIN | POLLOUT)) == POLLOUT); } END_TEST() FN_TEST(connect) { struct sockaddr *psaddr = (struct sockaddr *)&sk_addr; socklen_t addrlen = sizeof(sk_addr); TEST_ERRNO(connect(sk_listen, psaddr, addrlen), EISCONN); TEST_ERRNO(connect(sk_connected, psaddr, addrlen), 0); TEST_ERRNO(connect(sk_connected, psaddr, addrlen), EISCONN); TEST_ERRNO(connect(sk_accepted, psaddr, addrlen), EISCONN); } END_TEST() FN_TEST(async_connect) { struct pollfd pfd = { .fd = sk_bound, .events = POLLOUT }; int err; socklen_t errlen = sizeof(err); sk_addr.sin_port = 0xbeef; TEST_ERRNO(connect(sk_bound, (struct sockaddr *)&sk_addr, sizeof(sk_addr)), EINPROGRESS); TEST_RES(poll(&pfd, 1, 60), pfd.revents & POLLOUT); TEST_RES(getsockopt(sk_bound, SOL_SOCKET, SO_ERROR, &err, &errlen), errlen == sizeof(err) && err == ECONNREFUSED); // Reading the socket error will cause it to be cleared TEST_RES(getsockopt(sk_bound, SOL_SOCKET, SO_ERROR, &err, &errlen), errlen == sizeof(err) && err == 0); } END_TEST() void set_blocking(int sockfd) { int flags = CHECK(fcntl(sockfd, F_GETFL, 0)); CHECK(fcntl(sockfd, F_SETFL, flags & (~O_NONBLOCK))); } FN_SETUP(enter_blocking_mode) { set_blocking(sk_connected); set_blocking(sk_bound); } END_SETUP() FN_TEST(sendmsg_and_recvmsg) { struct msghdr msg = { 0 }; struct iovec iov[2]; char *message = "Message:"; char *message2 = "Hello"; iov[0].iov_base = message; iov[0].iov_len = strlen(message); iov[1].iov_base = message2; iov[1].iov_len = strlen(message2); msg.msg_iov = iov; msg.msg_iovlen = 2; // TEST CASE 1: Send one message and recv one message TEST_RES(sendmsg(sk_connected, &msg, 0), _ret == strlen(message) + strlen(message2)); #define BUFFER_SIZE 50 char concatenated[BUFFER_SIZE] = { 0 }; strcat(concatenated, message); strcat(concatenated, message2); char buffer[BUFFER_SIZE] = { 0 }; iov[0].iov_base = buffer; iov[0].iov_len = BUFFER_SIZE; msg.msg_iovlen = 1; TEST_RES(recvmsg(sk_accepted, &msg, 0), _ret == strlen(concatenated) && strcmp(buffer, concatenated) == 0); // TEST CASE 2: Send two message and receive two message iov[0].iov_base = message; iov[0].iov_len = strlen(message); msg.msg_iovlen = 1; TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret == strlen(message)); TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret == strlen(message)); char first_buffer[BUFFER_SIZE] = { 0 }; char second_buffer[BUFFER_SIZE] = { 0 }; iov[0].iov_base = first_buffer; iov[0].iov_len = BUFFER_SIZE; iov[1].iov_base = second_buffer; iov[1].iov_len = BUFFER_SIZE; msg.msg_iovlen = 2; // Ensure two messages are prepared for receiving sleep(1); TEST_RES(recvmsg(sk_connected, &msg, 0), _ret == strlen(message) * 2); // TEST CASE 3: Send via a partially bad send buffer char *good_buffer = "abc"; char *bad_buffer = (char *)1; iov[0].iov_base = good_buffer; iov[0].iov_len = strlen(good_buffer); iov[1].iov_base = bad_buffer; iov[1].iov_len = 1; msg.msg_iov = iov; msg.msg_iovlen = 2; TEST_ERRNO(sendmsg(sk_accepted, &msg, 0), EFAULT); // TEST CASE 4: Receive via a partially bad receive buffer iov[0].iov_base = good_buffer; iov[0].iov_len = strlen(good_buffer); msg.msg_iov = iov; msg.msg_iovlen = 1; TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret == strlen(good_buffer)); sleep(1); char recv_buffer[4096] = { 0 }; iov[0].iov_base = recv_buffer; iov[0].iov_len = 1; TEST_RES(recvmsg(sk_connected, &msg, 0), _ret == 1); iov[0].iov_base = recv_buffer; iov[0].iov_len = 1; iov[1].iov_base = (char *)1; iov[1].iov_len = 1; msg.msg_iovlen = 2; TEST_ERRNO(recvmsg(sk_connected, &msg, 0), EFAULT); iov[0].iov_base = recv_buffer; iov[0].iov_len = 4096; msg.msg_iovlen = 1; TEST_RES(recvmsg(sk_connected, &msg, 0), _ret == strlen(good_buffer) - 1); // TEST CASE 5: Send a large buffer int big_buffer_size = 1000000; char *big_buffer = (char *)calloc(0, big_buffer_size); iov[0].iov_base = big_buffer; iov[0].iov_len = big_buffer_size; msg.msg_iovlen = 2; int sndbuf = 0; socklen_t optlen = sizeof(sndbuf); TEST_SUCC(getsockopt(sk_accepted, SOL_SOCKET, SO_SNDBUF, &sndbuf, &optlen)); TEST_RES(sendmsg(sk_accepted, &msg, 0), _ret <= sndbuf); } END_TEST()